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Abstract. Manifold learning of medical images plays a potentially im-
portant role for modeling anatomical variability within a population with
applications that include segmentation, registration, and prediction of
clinical parameters. This paper describes a novel method for learning
the manifold of 3D brain images that, unlike most existing manifold
learning methods, does not require the manifold space to be locally lin-
ear, and does not require a predefined similarity measure or a prebuilt
proximity graph. Our manifold learning method is based on deep learn-
ing, a machine learning approach that uses layered networks (called deep
belief networks, or DBNs) and has received much attention recently in
the computer vision field due to their success in object recognition tasks.
DBNs have traditionally been too computationally expensive for applica-
tion to 3D images due to the large number of trainable parameters. Our
primary contributions are 1) a much more computationally efficient train-
ing method for DBNs that makes training on 3D medical images with a
resolution of up to 128× 128× 128 practical, and 2) the demonstration
that DBNs can learn a low-dimensional manifold of brain volumes that
detects modes of variations that correlate to demographic and disease
parameters.
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1 Introduction

The need for manifold learning often arises when very high-dimensional data
needs to be analyzed but the intrinsic dimensionality of the data is much lower.

� Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As
such, the investigators within the ADNI contributed to the design and imple-
mentation of ADNI and/or provided data but did not participate in analy-
sis or writing of this report. A complete listing of ADNI investigators can be
found at: http://adni.loni.ucla.edu/wp-content/uploads/how to apply/ADNI
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Fig. 1. Layer-wise dimensionality reduction network with 2 RBM layers. The visible
units of the first layer are set to the image intensities. The hidden units of the last
layer are the manifold coordinates.

This situations occurs, for example, when trying to visualize variability and
common patterns in a given group of magnetic resonance images (MRIs) of the
brain. Each image can be regarded as a point in a high-dimensional image space
(called the ambient space), with nx×ny×nz coordinates, where nx, ny, nz are the
dimensions of each image. On the other hand, each image could also be identified
by a smaller set of parameters that describe shape variations and patterns that
are common for a particular group of images. These parameters span a new
space called the manifold space. The task of manifold learning is to discover the
low-dimensional space and its parameters which can then be used to model the
anatomical variability within a population.

Various methods for manifold learning have been proposed (e.g., locally lin-
ear embedding (LLE) [1], Laplacian eigenmaps (LEM) [2], Isomaps [3]), with
Isomaps and LEM being the most popular for medical image analysis. Both
methods require a prebuild proximity graph. In order to build the proximity
graph, it is assumed that the manifold space is locally linear, which means that
distances between neighboring points in manifold space can be approximated by
their distances in ambient space. Gerber et. al. have shown that the choice of a
suitable distance measure is crucial for manifold learning using Isomaps and that
the warping distance between brain images improves the learning performance
over previously used Euclidean distances in the image space [4].

Manifolds have been used to regularize the segmentation of brain ventricles [5],
and to constrain the deformable registration of brain images to have biologically
plausible parameters [6]. Gerber et al. used Isomaps to predict clinical parame-
ters of Alzheimers’s (AD) patients [4], and Wolz et al. used Laplacian eigenmaps
to perform biomarker discovery [7], also of AD patients, and atlas propagation
for the segmentation of the hippocampus [8].

In this paper, we propose a novel approach for learning the manifold of brain
images that uses a deep belief network (DBN) [9] to discover patterns of simi-
larity in groups of images. In contrast to previous brain manifold learning algo-
rithms, DBNs do not assume the manifold space to be locally linear and do not
require a previously defined similarity measure or the construction of a proxim-
ity graph. Despite their popularity in computer vision (e.g., hand-written digit
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classification [9], object recognition [10]), the use of DBNs has so far been largely
limited to small 2D images due to the extremely high computational cost of train-
ing a DBN. The much higher resolution of medical images has traditionally made
training of DBNs too slow to be practical. A recent advance in efficiency was the
introduction of convolutional DBNs (convDBNs) [10], which has made training
of 2D images with a resolution of up to 200× 200 pixels feasible. Our primary
contributions are 1) a much more computationally efficient training method for
convDBNs that performs parameter learning in frequency domain in order to
avoid the time consuming calculation of convolutions while minimizing the num-
ber of transformations to and from frequency space; when executed in parallel
on graphical processors, training on images with a resolution of 128× 128× 128
voxels can be done quite practically with low-cost consumer hardware, and 2)
the demonstration that DBNs can learn a low-dimensional manifold of brain vol-
umes that detects modes of variation that correlate to demographic and disease
parameters.

2 Methods

Our proposed method performs manifold learning by reducing the dimensional-
ity of the input images using a DBN, a deep generative model that is composed
of multiple restricted Boltzmann machines (RBMs) [9] as illustrated by the sim-
plified example in Fig. 1. An RBM is a Markov random field with trainable
weights whose nodes are divided into a visible layer v representing the inputs of
the model and a hidden layer h representing extracted features from the inputs.
The first RBM receives the intensity values of a group of images as input and
reduces the dimensionality of each image by discovering patterns of similarity
that are common within groups of images. Subsequent RBMs receive the hid-
den unit activations of the previous RBM as input, thus learning successively
more complex and abstract patterns from a training set. The number of train-
able weights increases significantly with the resolution of the training images.
In order to scale the model to high-resolution images, the first several layers of
our DBN are convolutional RBMs (convRBMs), a type of RBM that uses weight
sharing to reduce the number of trainable weights, albeit at the cost of using the
much more computationally expensive convolutions instead of multiplications.
In the remainder of this section, we will briefly review the training of convRBMs,
followed by a description of our novel training algorithm that performs param-
eter learning in frequency domain. For comprehensive introductions to RBMs
and convRBMs, the reader is referred to [9] and [10], respectively.

Our algorithm for the dimensionality reduction of an input image using a
convRBM is illustrated in Fig. 2. In contrast to previous work that uses max
pooling to reduce the dimensionality [10], all steps involved in our method are
invertible, which allows the reconstruction of images from their manifold coordi-
nates. In the first step, the pixels of an input image are reorganized into multiple
images of lower resolution in order to reduce the dimensionality of a single image.
The number of images in the image vector is then reduced with the following
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Fig. 2. Dimensionality reduction using a convRBM. We map neighboring voxels in an
image to different images of lower dimensions, then apply convolutions and stack the
sum of the images within each vector to form a new vector of images that represents
the hidden units.

steps. To apply the model to real-valued data like the intensities of some medical
images, the visible units are modeled as Gaussian units. When the visible units
have been mean centered and standardized to unit variance, the expectation of
the visible units is given by

E[vi | h] =
∑

j wij ∗ hj + bi (1)

where vi, hj , bi ∈ RN×N×N , bi are bias terms, N is the image size, wij ∈
RNw×Nw×Nw are the weights, Nw is the size of a weight kernel, and ∗ denotes
circular convolution. A binary hidden unit can only encode two states. In or-
der to increase the expressive power of the hidden units, we use noisy rectified
linear units as the hidden units, which has shown to improve the learning per-
formance [11] of RBMs. The hidden units can be sampled with

hj ∼ max(0, μj +N (0, sigm(μj))) (2)

where μj =
∑

i w̃ij ∗ vi + cj , cj ∈ RN×N×N , w̃ denotes a flipped version of
w in all three dimensions, N (0, σ2) denotes Gaussian noise, and sigm(x) is the
sigmoid function defined as sigm(x) = (1+ exp(−x))−1, x ∈ R. The weights and
bias terms of a convRBM can be learned using contrastive divergence (CD) [9].
During each iteration of the algorithm, the gradient of the parameters is esti-
mated and a gradient step with a fixed learning rate is performed. The gradient
of the weights can be approximated by:

Δwij = vi ∗ h̃j − v′i ∗ h̃′
j (3)

where hj and h′
j are samples drawn from p(hj | v) and p(hj | v′) using (2) and

v′i = E[vi | h].
The computational bottleneck of the training algorithm is the calculation of

convolutions, which has to be performed 4 × V ×H times per iteration, where
V = |v| and H = |h|. To speed up the calculation of convolutions, we perform
training in frequency domain, which maps the calculation of convolutions to sim-
ple element-wise multiplications. For example, this reduces the number of mul-
tiplications required to calculate the activation of one hidden unit with a weight
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kernel size of 7 from 343×V to only V multiplications. In order to avoid the time-
consuming calculation of Fourier transforms every time an image is convolved
with a weight kernel, we map all operations needed for training to frequency do-
main wherever possible. Flipping of a convolutional kernel h̃(a) = h(−a) can be
expressed by element-wise calculation of the complex conjugate, which follows
directly from the time-reversal property of the Fourier transform and the reality

condition f̂(−ξ) = f̂(ξ). The only operations that can not be directly mapped
to frequency domain are the calculation of the maximum function and the gen-
eration of Gaussian noise. To perform these operations, an image needs to be
mapped to the spatial domain and back. However, these operations need only be
calculated H times per iteration and are therefore not a significant contributor
to the total runtime. Using the aforementioned mappings, equations (1) to (3)
can be rewritten as

E[v̂i | ĥ] =
∑

j ŵij · ĥj + b̂i (4)

ĥj ∼ F (
max(0,F−1(μ̂j) +N (0, σ2))

)
(5)

Δŵij = v̂i · ĥj − v̂′i · ĥ′
j (6)

where μ̂j =
∑

i ŵij ·v̂i+ĉj, σ
2 = sigm(F−1(μ̂j)), x̂ = F(x) denotes x in frequency

domain, F−1 denotes the inverse Fourier transform, and · denotes element-wise
multiplication. Training in frequency domain requires solely the calculation of
element-wise operations and reductions, which can be efficiently performed on
graphics cards.

3 Experiments and Results

We have evaluated the proposed method on a subset of the ADNI dataset [12],
containing 300 T1-weighted MRIs of Alzheimer’s disease (AD) and normal sub-
jects. The images were provided skull-stripped and bias field corrected. We re-
sampled all images to a resolution of 128× 128× 128 voxels and a voxel size of
2.0mm× 2.0mm× 2.0mm. We then normalized their intensities to a common
range, and rigidly registered them to a group-wise mean image prior to training
and testing. We did not perform non-rigid registration for spatial normalization
in order to evaluate the capabilities of the method without the added confound
of complex registration parameters. The dataset was divided into a training set
and a test set such that each set contains 75 AD and 75 normal subjects. To
learn the manifold of brain MRIs, we used a DBN with three convRBM layers
and two RBM layers. After three convRBMs, the dimension of each image is
reduced to 8× 8× 8 and small enough for RBMs. The training of the DBN took
approximately 43 hours on two GeForce GTX 560 Ti graphics cards.

The geometric fit of the learned manifold model was evaluated in terms of the
generalizability to new images and the specificity to images from the training
set. The generalizability was measured as the average root mean squared error
(RMSE) between an image and its reconstruction, normalized by the intensity



638 T. Brosch and R. Tam

0.04

0.06

0.08

0.10

0.12

1 2 3 4 5

Layer

R
M
S
E

Specificity error Test error Training error

(a) Generalizability vs. specificity (b) Generated images

Fig. 3. (a) The similarity of the reconstruction errors between the training and test
images indicates that no overfitting occurs. The opposite slopes of the reconstruction
errors and error of generated images (specificity error) indicates a trade-off between
generalizability vs. specificity in the earlier phases of training, but the low errors at
Layer 5 indicate that the method is both generalizable and specific. (b) Axial slices
from generated volumes from the manifold. An increase of the first and second manifold
dimension visually correlates with an increase in brain and ventricle size, respectively.

range of the input image. The specificity was measured by calculating the av-
erage RMSE between images randomly generated from the manifold model and
the most similar images from the training set. Figure 3(a) shows a comparison of
the reconstruction errors between the training and test sets, and the specificity
at different layers of the DBN. The similarity of the reconstruction errors be-
tween the training and test images indicates that no overfitting is occurring. The
average reconstruction error at the last layer is below 6%. Even though the very
small reconstruction error is partially due to head MRIs having a large amount
of homogeneous background, it demonstrates the ability of the learned manifold
to capture most of the visual information with only two manifold parameters.
The opposite slopes of the reconstruction errors and error of generated images
indicates a trade-off between generalizability and specificity in the earlier phases
of training. The low errors at the end of training (Layer 5) indicates that the
method is able to be both specific and generalizable.

Figure 3(b) shows axial slices of 16 volumes sampled at the grid points of a 2D
regular grid in manifold space. Volumes sampled along the first manifold dimen-
sion (from left to right) appear to increase in brain size, and the images sampled
along the second manifold dimension (from bottom to top) appear to increase in
ventricle size. Figure 4 shows an axial slice of each image of the training set plotted
against its manifold coordinates. Consistent with images sampled from the mani-
fold, an increase in ventricle size, which is indicative of brain atrophy (a hallmark
of AD), visually correlates with an increase of the second manifold coordinate.
The AD/normal status is indicated by the frame color of each image. The vertical
separation between AD and normals suggests that the secondmanifold coordinate
is potentially of practical use in differentiating between AD and normal.
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Fig. 4. Axial slices of volumes from the training set plotted against their manifold
coordinates. The brains with larger ventricles, indicative of atrophy, are mostly at the
top, which is also where most of the AD patients are.

Table 1. Pearson correlation r of demographic and clinical parameters with manifold
coordinates (x1, x2). The stronger correlation in each column is highlighted in bold.

Age Gender MMSE AD/Normal Status
r p-value r p-value r p-value r p-value

x1 −0.17 0.03 0.45 8.24·10−9 0.01 0.89 −0.03 0.69

x2 0.45 9.85·10−9 0.19 0.02 −0.40 3.53·10−7 0.41 1.54·10−7

To evaluate the potential of the manifold coordinates to reveal or predict clin-
ically relevant information, we have calculated the Pearson correlation r of de-
mographic parameters (age, gender) and disease parameters (mini-mental state
examination (MMSE) score, AD/normal status) with the manifold coordinates
(x1 and x2). The results of the correlation tests are summarized in Table 1.
Age, MMSE and AD/normal status show highly significant correlations with
x2 (p-values between 9.85× 10−9 and 3.53× 10−7), which makes intuitive sense
because x2 visually correlates with ventricle size. The first manifold coordinate
correlates strongest with gender (p-value = 8.24× 10−9), which also makes sense
in terms of the general difference in size between male and female. The strength
and significance of the correlations demonstrate the potential of deep learning
of brain images for classification and prediction of disease status.

4 Conclusions

We have proposed a novel approach to learning the manifold of brain MRIs. In
contrast to previous work, our approach does not require an explicitly defined
similarity measure, or building a proximity graph. Furthermore, we have shown
that the learned manifold coordinates capture shape variations of the brain
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that correlate with demographic and disease parameters. Our manifold learn-
ing method uses deep learning to discover patterns of similarity and variability
within a group of images. Our proposed DBN training algorithm is much more
efficient than traditional, convolution-based methods and, when parallelized on
graphics processors, makes DBN training on 3D MRIs practical for the first time.
For future work, we plan to incorporate clinical parameters into the training pro-
cess to learn a model of the joint probability of images and associated clinical
parameters. We would also like to investigate the effect of spatial normalization
using affine or deformable registration, which we expect would result in further
improvements in correlations with clinically relevant parameters. In addition,
we would like to compare our method to other state-of-the-art brain manifold
learning methods to investigate relative strengths and weaknesses for particular
clinical applications such as the prediction of mild cognitive impairment to AD
conversion, which is a topic of strong clinical interest.
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