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Abstract. Despite recent advances, automatic blood vessel extraction
from low quality retina images remains difficult. We propose an inter-
active approach that enables a user to efficiently obtain near perfect
vessel segmentation with a few mouse clicks. Given two seed points, the
approach seeks an optimal path between them by minimizing a cost func-
tion. In contrast to the Live-Vessel approach, the graph in our approach
is based on the curve fragments generated with vessel tracing instead
of individual pixels. This enables our approach to overcome the shortcut
problem in extracting tortuous vessels and the problem of vessel interfer-
ence in extracting neighboring vessels in minimal-cost path techniques,
resulting in less user interaction for extracting thin and tortuous vessels
from low contrast images. It also makes the approach much faster.

1 Introduction

Analysis of retinal images is useful for studying and diagnosing eye diseases,
including retinopathy of prematurity (ROP) [1]. Accurate vessel extraction is a
prerequisite for computing vessel tortuosity, width and branching patterns. Al-
though many automatic approaches have been proposed, it remains a challenge
to extract vessels from low contrast and noisy retinal images like those gener-
ally obtained from the eyes of premature infants. These retinal images may be
captured using wide angle camera (RetCam) or one with a more limited field-
of-view (Nidek NM-200D) [1]. With these cameras, due to optical and clinical
factors [1], images are usually much lower in quality than the higher quality im-
ages obtained with cameras used for adults such as those images in the DRIVE
dataset [2]. Figure 4(a) (b) are two typical examples. We are not aware of any ex-
isting automatic approach that can generate satisfying vessel extraction results
on these images. This motivates us to seek a semi-automatic approach.

A traditional paradigm for vessel detection, which we refer to as vessel tracing
in this paper, has 3 components. First is the computation of vesselness (likeli-
hood of being a vessel) for each pixel with approaches such as matched filters [3],
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and Hessian-based filters [4]. Second is the vessel/non-vessel classification based
on the vesselness measurement, e.g. by using a threshold. Last is the linking of
the vessel pixels into curve segments based on connectivity. The problem with
this paradigm is that the vessel/non-vessel classification is never perfect. There is
always a trade off between false alarms and missed detection. Some approaches
try to reduce false alarms by tracing vessels from seed points in combination
with adaptive thresholding [3]. These seed points are manually selected in some
interactive systems such as ROPTool [5]. However, vessel tracing is often halted
prematurely or directed into wrong directions due to image noise. Therefore for
low-quality images, the users of these interactive systems must provide a consid-
erable number of seed points. Moreover, the extracted vessels are not globally
optimal in terms of vesselness and smoothness.

Live-Vessel [4], developed by Poon, et al., is an efficient interactive vessel
extraction approach based on global optimization. Given a starting point and
the current cursor position, the approach finds the optimal path between the two
points in a graph by minimizing a cost function with the Dijkstra’s algorithm.
In the graph, each pixel is a node and neighboring pixels are connected by edges.
The cost function is a weighted sum of data terms measuring the vesselness of
each pixel in the path and smoothness terms measuring the consistency of the
vessel radius and orientation between neighboring pixels. The smoothness terms
also encourage shorter paths in order to avoid contour jaggedness.

Although Live-Vessel has good performance on the DRIVE dataset in general,
we found it has two important shortcomings. First is the shortcut problem due
to the difficulty in reaching an optimum balance between the data terms favoring
high vesselness and the smoothness terms encouraging shorter paths. This leads
to difficulties in extracting highly tortuous vessels, as shown in Figure 1(a). The
optimal path found by Live-Vessel between two endpoints E1 and E2 is far from
the correct vessel. The shortcut problem also results in poor performance in
extracting vessels that are not so tortuous but are of very low vesselness. Live-
Vessel tends to straighten these vessels and make the extraction inaccurate.
Figure 1(c) makes such an example. The vessel (white) output by Live-Vessel is
too straight at the middle of the vessel compared to the ground truth (red).

Figure 1(d) illustrates another limitation of Live-Vessel in which a salient
vessel can interfere with the extraction of nearby weaker vessels. The two seed
points E1 and E2 do not yield the intended vessel. Instead, a path in which the
two ends are composed of some non-vessel pixels and in which the middle part is
related to a neighboring vessel with higher vesselness is returned as the minimal-
cost path. Correcting these wrong or inaccurate vessel extractions caused by the
two problems of Live-Vessel described above requires more user interactions.

In this paper, we propose an approach that can overcome the two problems
of Live-Vessel without losing much of its advantages. The approach is based on
the observation that the constraints of connectivity and linearity between vessel
pixels that the traditional vessel tracing techniques rely on is not utilized in the
global optimization scheme in which there is no vessel/non-vessel classification.
Although this classification in vessel tracing is prone to noise and error, false
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(a) (b) (c) (d)

Fig. 1. Limitation of Live-Vessel: (a) The minimum cost path between E1E2; (b) Curve
segments from vessel tracing on (a); (c) The result of Live-Vessel (white) vs the ground
truth (red); (d) A stronger vessel interferes with the extraction of a nearby vessel.

vessel pixels due to random noise usually do not align into a linear connected
chain. Therefore, a long curve segment from vessel tracing has high possibility
of being part of a vessel, even if it is very tortuous and each of its pixels has
very low vesselness. This can be seen in Figure 1(b) in which the main structure
of the tortuous vessel is detected by vessel tracing. Although it is broken into
many curve fragments, the fragments line up into a linear chain. On the other
hand, the global optimization scheme is powerful in filling the gaps between the
fragments and grouping them into a continuous vessel. Therefore, we integrate
these two complimentary techniques. First vessel tracing is applied to extract
curve fragments. Then, to link the fragments into a vessel path between two seed
points, a minimal-cost path is searched for in a graph whose nodes represent the
individual curve fragments and the edges represent their connections.

The key in the vessel tracing is to keep the missed detection rate low whereas
false alarms can be pruned in the graph optimization. The cost function in the
graph optimization is designed to maximize the connectivity and linearity of the
path, by minimizing the gap distance between the curve fragments and by max-
imizing the smoothness of the connection between the fragments respectively.
There is no extra penalty on the total length of the path nor on the tortuosity
of the curve fragments so that the approach can overcome the shortcut problem.
The cost function also does not depend on the vesselness measurement, so salient
vessels will have less interference on extraction of nearby weak vessels. In addi-
tion, the optimization in this approach is much faster than that in Live-Vessel
due to far fewer nodes in the graph.

Related Work: The shortcut problem of minimal path techniques has also
been pointed out by other researchers [6]. Zhu [6] proposed using minimal
average-cost path instead of minimal-cost path. However, the approach can ag-
gravate the problem of interference between neighboring vessels since long and
strong vessels become more dominant in reducing the average cost. Wang [7]
proposed an interactive approach for guidewire extraction in 2D Fluoroscopy by
finding a minimal cost path in a graph structure constructed based on curve
segments. However, their curve segments are short line segments with constant
length. In our approach, the curve segments are usually long and with arbitrary
shape so that the connectivity constraint in vessel tracing is fully utilized. More
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importantly, solving the shortcut problem is not targeted in [7] and their cost
function gives significant penalties to long and tortuous vessels, which leads to
similar difficulties as those of Live-Vessel. Many existing perceptual grouping
works also studied the problem of linking short edges into longer edges. How-
ever, most of them aimed at automatic object boundary extraction and many
assumed contour closure[9]. Our grouping approach is guided by user interaction
and is optimized for extracting vessels that are usually open curves.

The remainder of this paper is organized as follows: Section 2 describes the
preprocessing and vessel tracing. Section 3 gives details about the vessel extrac-
tion by finding the optimal path. Section 4 presents the experimental results on
DRIVE and two of our ROP datasets, and the paper is concluded in Section 5.

2 Preprocessing and Vessel Tracing

Our system adopts the approach of Sofka, et al [3], for vesselness computation.
Other vesselness computation approaches can also be applied. The vesselness
of a pixel is its maximum response of a matched filter over multiple scales and
orientations. Figure 2(a) is an example of a vesselness map. The orientation
and radius of the matched filter at the maximum response are the vessel ori-
entation and radius at the pixel. Many non-vessel pixels can be removed with
non-maximum suppression on the vesselness map as shown in Figure 2(b).

The matched filter has strong response not only to vessels but also to step
edges [3]. To reduce false alarms, we check the edge response on both sides of
the vessel boundary. In particular, let x denote the pixel position, n the normal
to the vessel orientation and W the vessel width. At each of the two potential
edge locations x1 = x + (W/2)n and x2 = x − (W/2)n, we search in a ±1
pixel interval along n to find if there is a pixel whose gradient orientation, when
projected onto n, points outwards from x. We only keep the pixels that pass this
test and have positive matched filter response (blood vessels are dark). Figure
2(c) shows the result after this verification. Unlike some other approaches, we
do not set a threshold on the vesselness of a pixel nor the gradient magnitude
of its supporting edge pixels in order to lower the missed detection rate. The
vessel pixels are then linked into curve segments with edge tracing based on the
8-connected neighborhood. The segments shorter than 3 pixels are removed to
reduce noise. Figure 2(d) shows the curve segments after vessel tracing.

3 Vessel Extraction by Finding an Optimal Path

Given the two endpoints of a vessel input by a user, our approach extracts
the vessel by finding the optimal path between them. The path is formed by
connecting the curve segments generated with vessel tracing. An example is
shown in Figure 3(a), where E1 and E2 are the two endpoints. A path with hig-
her connectivity and linearity, meaning shorter gaps and smoother connections
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(a) (b) (c) (d)

Fig. 2. Pre-processing and vessel tracing, applied to the image in Fig. 4b: (a) Maximal
response of the matched filter; (b) Non-maximum suppression; (c) Vessel verification;
(d) Curve fragments from vessel tracing shown in random color

between the curve fragments, is more likely to be the correct vessel. Therefore,
our approach seeks a path that can minimize the following cost function:

c =

N−1∑

i=1

gi + wgi((αi/π)
p + (βi/π)

p), (1)

where N is the number of curve segments in the path. The total cost is the sum
of the connection cost of every segment with its following segment in the path;
the cost has two terms in Equation 1: the length of the gap gi and the second
term representing the connection smoothness gauged by the continuity of tangent
orientation. As shown in Figure 3(b), assuming that

−−→
AB is the i-th segment and−−→

CD is its following segment (overhead arrow indicates the direction of the curve
segment in the path), gi is the length of the gap BC, and α and β are the angles

from the orientation of line
−−→
BC to the tangent orientation of segment

−−→
AB at B

and that of
−−→
CD at C respectively. Note that the smoothness term is proportional

to the gap length so the tolerance to the orientation discontinuity depends on
the gap length. In Equation 1, w and p are parameters. In our experiments w = 6
and p = 2, which are learnt by maximizing the performance on a set of training
data with manual tracing as the ground truth.

The two endpoints of the path are also treated as two curve segments with 0
length. One is selected as the starting point for which we set α = 0 in Equation
1; and for the other point, β = 0. To find the optimal path, a directed graph is
created. Each curve segment generates two nodes in the graph corresponding to
its two possible directions in the path. Every two nodes of different segments are
connected with two edges representing the connection between the two segments
in two possible orders, and the edge cost equals the connection cost. The path
with the minimal cost can be found efficiently with Dijkstra’s algorithm.

In practice, however, the linking of vessel pixels into curve segments by vessel
tracing contains errors, especially around endpoints and junctions. This some-
times makes connecting curve segments by directly linking their endpoints as in
Figure 3(b) unreasonable. As illustrated in Figure 3(c), the connection cost of−−→
AB with

−−→
CD is very high if we link the endpoint B with C because the connec-

tion is not smooth. However, the cost can be much smaller if the linking is from
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E to F that are internal points on the segments. Considering the possible error
in vessel tracing, we choose the path AE → FD instead of AB → CD.

Therefore, before the graph is created, we find the optimal connection from
segment

−−→
AB to

−−→
CD using the following approach. First, we find the points E′ and

F ′ that have the smallest distance between the two curve segments. Then, we
search in a ±5 pixels interval centered at E′ and F ′ on the two curve segments
for the points E and F so that the connection cost of AE → FD based on
Equation 1 is minimal. The reason to limit the search range is for efficiency.
To further reduce computation, we calculate the optimal connection only for
neighboring curve segments. The range of the neighborhood of a curve segment
is proportional to its length as depicted in Figure 3(d).

If the optimal connection requires breaking one of the segments, new curve
segments will be formed. For Figure 3(c), new segments AE and FD will be

added to the graph. However,
−→
AE can only be followed by

−−→
FD in the path, and−−→

DF can only be followed by
−→
EA, since their existence depends on each other. In

addition, the connection from
−−→
AB to

−−→
CD will be removed from the graph.

Once the optimal path is found, to bridge the gap between two consecutive
curve segments, we can use the same approach as Live-Vessel to find the optimal
path between the two endpoints of the gap on a graph with each pixel as a
node. However, in our experiments, this has no significant improvement over
simply filling the gap with a straight line segment. We think this is because, in
the areas where vessel tracing fails to find the curve fragments, the smoothness
term encouraging the shortest path in the cost function of Live-Vessel becomes
dominant over vesselness measurement. For the sake of efficiency, we simply link
the gaps with straight line segments.

The vessel extracted based on only two endpoints is not always ideal. A user
can make corrections by providing a few more seed points on the vessel until
the result is optimal. The final vessel is the concatenation of the optimal path
between every two spatially consecutive seed points on the vessel. Once the
centerline of a vessel is obtained, each pixel on the centerline gives two pixels on
the boundary of the vessel with xb = xc ± (W/2)n, where xc is the position of
the center pixel, W is its vessel width and n is its vessel normal. These boundary
pixels define the contour of the vessel boundary on each side of the vessel but
they can be noisy. Therefore, we use a similar approach to [8] to fit a smooth
curve to these boundary pixels with RBF kernel regression.

(a) (b) (c) (d)

Fig. 3. Vessel extraction: (a) The path between E1 and E2; (b) The cost computa-
tion for connecting AB to CD; (c)The optimal connection from AB to CD ; (d) The
neighborhood of AB is defined by the green contour (Wb= 40 pixels)
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4 Experiments

We tested the approach on the DRIVE dataset [2] of retinal images from adult
eyes, and retinal images from premature infants at risk for ROP using 15 RetCam
images and 15 Nidek images. Figure 4(a) and (b) are examples from our RetCam
and Nidek ROP datasets. In Figure 4(c), the extraction is perfect based on the
two endpoints given by a user even though the vessel is very tortuous. Figure
4(d) shows another example given only the two endpoints of a vessel. Notice that
the extraction of the part near the lower endpoint is correct without interference
from the nearby much stronger vessel. In Figure 4(e), the user obtained the
target vessel by adding another seed point.

The performance of the approach is quantified with three criteria: repro-
ducibility, accuracy, and efficiency, which also are the criteria used in [4]. Repro-
ducibility is measured by comparing the results of several trials of the interactive
segmentation on the same images. For each image, 3 trials are performed. The
reproducibility rate is calculated as the average pairwise Dice similarity between

different trials with the equation: s = 2|X∩Y |
|X|+|Y | , where X and Y are the sets of

vessel pixels on the two segmentations in comparison. The rates are 0.993, 0.990,
0.991 for the DRIVE, RetCam and Nidek datasets respectively, which are high
and similar to those of Live-Vessel, meaning that the difference in the seed point
selection does not greatly impact the vessel extraction results.

Following [4], manual vessel segmentation is used as the ground truth to quan-
tify accuracy. For each dataset, we have manual tracings from two expert graders.
Manual tracing on the same image can be different between different human op-
erators due to two factors: 1) they segment the same vessels differently, mainly
on the vessel boundaries that can be ambiguous; 2) they select different vessels
to trace. To compute the similarity between two vessel segmentations, we elim-
inate the second factor by manually removing the vessel branches that are not
in both of the segmentation results. Table 1 gives the average Dice similarity
between the two manual tracings, and between the interactive segmentation and
every manual tracing for each dataset. We can see that both the accuracy of our
approach and that of Live-Vessel are comparable to a human operator.

Efficiency can be measured as the time required for a user to complete the
interactive vessel extraction. It excludes the time spent in preprocessing, such as
computing filter response, since that can be done automatically offline. Table 1
shows that compared to Live-Vessel our approach significantly reduced the time
by 62%, 65% and 77% for the DRIVE, RetCam and Nidek datasets respectively.

5 Conclusion

In this paper, we present an interactive approach for vessel extraction by inte-
grating local vessel tracing and global graph optimization. Our approach was
validated with three datasets. It demonstrated high accuracy, high reproducibil-
ity, and significant reduction on user interaction compared to Live-Vessel. In
particular, the approach improves the efficiency in extracting tortuous and low
contrast vessels that are common in retinal images from premature infants.



574 L. Wang et al.

(a) (b) (c) (d) (e)

Fig. 4. (a) A wide angle RetCam image; (b) A narrow angle Nidek image; (c) The
extraction result given only the two endpoints; (d) The result given only the two
endpoints; (e) The result of (d) is corrected by adding another seed point on the vessel.

Table 1. T1 and T2 represent manual tracing 1 and 2. LV represents Live-Vessel. The
efficiency is measured based on the average interaction time spent on each image.

Accuracy (Dice similarity) Efficiency

T1-T2 LV-T1 LV-T2 Ours-T1 Ours-T2 LV Ours Time reducion

DRIVE 0.814 0.820 0.811 0.823 0.815 11m:14s 4m:16s 62%

RetCam 0.799 0.790 0.801 0.806 0.797 3m:11s 1m:06s 65%

Nidek 0.808 0.809 0.798 0.812 0.806 4m:30s 1m:00s 77%
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