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Abstract. Cataracts, which result from lens opacification, are the leading cause
of blindness worldwide. Current methods for determining the severity of cataracts
are based on manual assessments that may be weakened by subjectivity. In this
work, we propose a system to automatically grade the severity of nuclear cataracts
from slit-lamp images. We introduce a new feature for cataract grading together
with a group sparsity-based constraint for linear regression, which performs fea-
ture selection, parameter selection and regression model training simultaneously.
In experiments on a large database of 5378 images, our system outperforms the
state-of-the-art by yielding with respect to clinical grading a mean absolute er-
ror (ε) of 0.336, a 69.0% exact integral agreement ratio (R0), a 85.2% decimal
grading error ≤ 0.5 (Re0.5), and a 98.9% decimal grading error ≤ 1.0 (Re1.0).
Through a more objective grading of cataracts using our proposed system, there
is potential for better clinical management of the disease.

1 Introduction

Cataracts are the leading cause of visual impairment worldwide, accounting for more
than 50% of blindness in developing countries. Most cataracts are age-related, though
they have also been attributed to disease, trauma and congenital factors. With the global
trend of aging populations, the prevalence of cataracts is expected to increase. By 2020,
number of blind people is projected to reach 75 million [1].

In cataracts, the normally clear crystalline lens develops opacities which result in
reduced transmission of light to the retina. There are three main types of cataracts which
are defined by their location and clinical appearance: nuclear, cortical and posterior
subcapsular cataracts [2]. Of these, nuclear cataracts are the most common type and
will be the focus of this work. With progression, nuclear cataracts may result in the loss
of vision and color discrimination, eventually leading to blindness.

Currently, cataracts are diagnosed by ophthalmologists directly using a slit-lamp mi-
croscope, or graded by clinicians who assess the presence and severity of the cataract
by comparing against a set of standard reference photographs. These photographs are
provided with cataract grading protocols such as the Lens Opacities Classification Sys-
tem III (LOCS III) [3] and the Wisconsin cataract grading system [4]. Fig. 1 shows the
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Fig. 1. Standard photographs of the Wisconsin grading system

standard photographs of the Wisconsin protocol. However, such manual assessments
can be subjective, time-consuming and costly [4]. Accurate, automated grading of the
presence and severity of cataracts would help to improve clinical management of the
disease, as well as provide an objective basis for epidemiological studies [5].

To increase the objectivity and efficiency of cataract grading, some computer-aided
systems have been proposed to grade nuclear cataracts. In the state-of-the-art method
of [6], bottom-up detection and top-down modeling are combined to detect the region
of interest (ROI) and lens structure robustly, with a detection rate of 95% on a popu-
lation study database [7,8] of 5850 slit-lamp lens images. Within the detected lens and
structure of the nucleus, twenty-one features describing the lens and nuclear regions are
extracted to model nuclear cataracts. Support Vector Regression (SVR) is then applied
to automatically determine the cataract grade. In comparison to the method of the Wis-
consin group [9], the technique of [6] yields an improvement of 33.6% (from 0.541 to
0.359) in average grading difference with respect to ground truth.

In this work, we propose a new approach for the automatic grading of nuclear
cataracts from slit-lamp images. Our contributions include the introduction of a new
feature for nuclear cataract grading, and the use of a corresponding group sparsity re-
gression (GSR) to perform feature selection, parameter selection and regression model
training simultaneously. Our proposed system is able to achieve higher overall perfor-
mance than previous work, and has the potential to be applied to other eye diseases.

2 Automatic Grading System for Nuclear Cataracts

Our automatic grading system for nuclear cataracts is formulated as linear regression
with a group sparsity constraint. The system consists of three components: ROI and
structure detection, feature extraction, and prediction.

2.1 Feature Extraction

Lens Structure Detection. Current methods for lens structure based feature detec-
tion [6,9,10,11,12] are highly effective, and in this work we employ the technique used
in [6] for this purpose. With structure detection, each lens is separated into three sec-
tions: nucleus, anterior cortex, and posterior cortex. After obtaining the lens structure
of each image, the central part of the lens along the visual axis is extracted and resized
to 128× 512. Features are extracted from each of the resized sections.
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Bag-of-features Extraction. The bag-of-features (BOF) model, also known as the bag-
of-words model [13], is a simplifying representation used in natural language process-
ing to model a text by a sparse vector or histogram of word occurrences over a vocab-
ulary. This idea has been adopted in computer vision to model an image as a sparse
vector of occurrence counts over a vocabulary of local image features (codebook). The
BOF model provides a location-independent global representation of local features in
which properties such as intensity, rotation, scale or affine invariance can be preserved.

In this work, the local features in our BOF model are image patches that represent
intensity and texture information. Each section of the resized lens image is divided into
a grid of half-overlapping s × s patches each represented as an s2-dimensional vector.
After obtaining all the local patches from a set of training images, k-means clustering
is used to generate the codebook from randomly selected samples, and then the BOF
(i.e., occurrence counts of the visual words) is obtained in a binning procedure. Since
each BOF is a histogram, the clustering parameter k is referred to as the bin number.
Readers may refer to [13] for more details on BOF extraction.

Image Feature Representation. Finally, for each slit-lamp image, we obtain its image
feature representation fi by concatenating the BOFs extracted in its three sections S =
{Sa, Sn, Sp} (i.e., anterior cortex, nucleus, and posterior cortex), computed for each of
six color channels C = {Ch, Cs, Cv, Cr, Cg, Cb} (i.e., HSV and RGB color channels),
with a fixed patch size s = 8 and various bin numbersK = {100, 200, 400}. This leads
to a feature dimension of |fi| = |S| × |C| ×∑|K|

n=1 Kn = 18
∑|K|

n=1 Kn = 12600.
We refer to each BOF extracted for a given section of the lens, color channel, patch

size and bin number as a group feature. L1-normalization is performed such that the
sum of each group feature is equal to 1, and a truncation similar to that used in SIFT
feature extraction [14] is applied to reduce feature bias and noise, i.e., if a bin is greater
than 0.2, it is set to 0.2 and the L1-norm is recomputed.

With this image feature representation, we wish to train a regression model for the
nuclear cataract grading task; however, the large size and redundancy of this model
would make training and testing inefficient. A reduced representation could potentially
be used, but it is unclear which color channels are most informative for each section of
the lens, and how many bins is optimal for a given channel. To address this problem,
we apply a group sparsity constraint in the regression to select an effective subset of the
extracted features for nuclear cataract grading.

2.2 Feature Selection and Grading Using Group Sparsity Regression

Identifying and using only the effective elements of the image feature representation
can bring higher precision and speed. For a training sample with an image feature rep-
resentation fi consisting of g feature groups, we denote its regression value (i.e., the
clinician grading) as yi ∈ (0, 5]. We adopt the linear regression model ωT fi + μ to
predict the grading value, where ω is the weighting vector and μ denotes the bias. We
minimize the following objective function:

min
ω,μ

n∑

i=1

‖yi − ωT fi − μ‖2 + λ

g∑

j=1

‖ωj‖2, (1)
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where ωj is the corresponding weight of the jth feature group, n is the number of
training samples, g is the number of groups and λ is used to control the sparsity of ω. In
Eq. (1), the first term represents the regression error and the second term is anL2,1-norm
based regularizer to enforce group sparsity. As the features are intrinsically organized
into groups, the L2,1-norm based regularizer essentially selects features from only a
sparse set of groups. In our experiments, we use the SLEP toolbox [15] to optimize
Eq. (1).

The solution for ω indicates which group features are included in the final feature xi,
i.e., the jth group of features is selected when ‖ωj‖2 > 0. The lower dimension of the
final feature xi leads to faster feature extraction and grading in the testing phase when
compared to using the higher-dimensional image feature representation.

3 Experiments

In this section, we first compare our method with the state-of-the-art nuclear cataract
grading method [6], and then evaluate the effectiveness and robustness of the group
sparsity regression by comparing to other related regression methods while using the
same feature.

All the experiments are performed on the large ACHIKO-NC dataset [6], comprised
of 5378 images with decimal grading scores that range from 0.1 to 5.0. The scores are
determined by professional graders based on the Wisconsin protocol [4], with higher
decimal scores indicating greater severity of the cataract, e.g., a 3.1 is judged to be
a bit more severe than that of standard 3 in Fig. 1. The protocol takes the ceiling of
each decimal grading score as the integral grading score, i.e., a cataract with a decimal
grading score of 3.1 has an integral grading score 4. ACHIKO-NC consists of 94 images
of integral grade 1, 1874 images of integral grade 2, 2476 images of integral grade 3,
897 images of integral grade 4, and 37 images of integral grade 5. Since the unbalanced
data distribution of ACHIKO-NC may skew a learned prediction model towards middle
grade estimates, we set the training sample size of each grade to 20 as done in [6].

3.1 Evaluation Criteria

In this work, we use the same four evaluation criteria as in [6] to measure grading
accuracy, namely the exact integral agreement ratio (R0), the ratio of decimal grading
errors ≤ 0.5 (Re0.5), the ratio of decimal grading errors ≤ 1.0 (Re1.0), and the mean
absolute error (ε), which are defined as

R0 =
|�Ggt� = �Gpr�|0

N
, Re0.5 =

∣
∣|Ggt −Gpr| ≤ 0.5

∣
∣
0

N
,

Re1.0 =

∣
∣|Ggt −Gpr | ≤ 1.0

∣
∣
0

N
, ε =

∑ |Ggt −Gpr |
N

,

(2)

where Ggt denotes the ground-truth clinical grade, Gpr denotes the predicted grade, �·�
is the ceiling function, | · | denotes the absolute value, | · |0 is a function that counts
the number of non-zero values, and N is the number of testing images (N = |Ggt|0 =
|Gpr|0). Re0.5 has the most narrow tolerance among the four evaluation criteria, which
makes it more significant in evaluating the accuracy of grading.
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3.2 Comparison to the State-of-the-art [6] and Professional Grading

We first compare our method to the state-of-the-art [6] using the same dataset, exper-
imental setting and reporting methods. Results are listed in Table 1, where the perfor-
mance of [6] are values reported in their paper. Our method is shown to surpass [6] in
all four evaluation criteria. We additionally performed a comparison of their features
to our BOF group features by employing our BOF group features with their RBF ε-
SVR regression. Table 1 shows an improvement with our features on Re0.5 and Re1.0,
but some decrease in performance on R0 and ε. It also indicates that our group sparsity
regression outperforms their RBF ε-SVR regression when BOF group features are used.

More in-depth comparisons, such as multiple repeated tests with random training
samples, could not be conducted since the features of [6] are not described in enough
detail for accurate reproduction. Although we cannot conclude from these experiments
that our BOF group features are superior to those of [6], it is interesting to note that their
features could potentially be added to the BOF features in our method and processed
with our group sparsity regression.

Our method has important advantages over [6]. It requires less detailed segmenta-
tion of the lens, and our BOF features are less sensitive to segmentation accuracy. By
contrast, some features in [6] rely on accurate further segmentation of the nucleus into
three specific parts, which in practice can be difficult to achieve. Another advantage of
our method is its ability to identify and use discriminative features from a broad feature
set through group sparsity regression, in contrast to [6] which performs regression on a
set of predefined features. In this way, our method can consider a variety of potentially
useful features without introducing noise if the features are found to be redundant or
less effective. The performance improvements of our method can largely be attributed
to these differences.

A plot of our automatic grading against that of a professional grader is exhibited in
Fig. 2, which demonstrates that our method is in close agreement with the grader. The
selected discriminant feature groups are illustrated in Fig. 3, which indicates that:

1. K = 400 bins is not necessary for this problem and may introduce noise, so it was
not selected for any groups.

2. Features extracted from the anterior cortex have no discriminative power and can
be ignored in testing. This suggests that features in [6] that are dependent on the
anterior cortex may be less discriminative and could introduce noise.

3. Features extracted from the posterior cortex and nucleus have discriminative power,
which is consistent with protocol grading criteria. In the protocols [3,4], nuclear
cataracts are to be graded based on the intensity and visibility of the nuclear land-
marks, and the color of the nucleus and posterior cortex.

On a four-core 2.4GHz PC with 24GB RAM, our method takes 20.45s on average
to process an image, with 4.23s for feature extraction and 10−5s for prediction. This
processing speed slightly exceeds the 25.00s per image of [6], which takes 8.76s for
feature extraction and 0.02s for prediction.
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Fig. 2. Visualization of our automatic grading vs. that of a professional grader

Fig. 3. Visualization of the selected feature groups

Table 1. Performance comparisons for nuclear cataract grading methods

Method R0 Re0.5 Re1.0 ε

Proposed 0.690 0.852 0.989 0.336
BOF+RBF ε-SVR 0.604 0.789 0.978 0.388

RBF ε-SVR [6] 0.654 0.778 0.975 0.355
Our improvement over [6] 5.5% 9.5% 1.4% -5.4%

3.3 Comparison to other Regression Methods

We also compare our group sparsity regression method to linear SVR [16] and RBF
kernel based ε-SVR [6], using our BOF group features, to verify that the group sparsity
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Table 2. Grading performance comparisons with different regression methods

Method R0 Re0.5 Re1.0 ε

Proposed 0.682±0.004 0.834±0.005 0.985±0.001 0.351±0.004
Linear SVR[16] 0.667±0.010 0.815±0.015 0.980±0.004 0.363±0.011
RBF ε-SVR [6] 0.615±0.013 0.799±0.012 0.980±0.002 0.375±0.011

0.60

0.62

0.64

0.66

0.68

GSR Linear−SVR RBF−SVR

0.78

0.80

0.82

0.84

GSR Linear−SVR RBF−SVR

0.970

0.975

0.980

0.985

GSR Linear−SVR RBF−SVR    GSR       Linear−SVR   RBF−SVR     GSR       Linear−SVR   RBF−SVR     GSR       Linear−SVR   RBF−SVR

Fig. 4. Performance comparison in terms of R0, Re0.5 and Re1.0 (from left to right)

constraint reduces feature noise and thus increases accuracy. Testing is conducted over
twenty rounds. To examine generalization ability (scalability), we followed the train-
ing/testing sample ratio in [6], i.e., in each round, 100 training samples were randomly
selected from all the 5378 images, with 20 images for each grade, and the remain-
ing 5278 images were used for testing. In training, optimal parameters were selected
for each method by cross-validation, where half of the images (50 images with 10 per
grade) were used to train a regression model, the other half used for testing, and the set
of parameters with the highest average accuracy was chosen. All 100 images were then
used to train the new model with the optimal parameters, and the result of each round is
obtained by testing the remaining 5278 images using this new model. The performance
of the three regression methods is shown in Fig. 4 and also listed in Table 2 in terms of
mean value and standard deviation of R0, Re0.5, Re1.0 and ε over the twenty rounds.
From these results, the following observations can be made:

1. Comparing the proposed method to linear SVR shows that the group sparsity con-
straint is helpful to reduce feature noise and thus improve performance.

2. Comparing linear SVR to RBF ε-SVR shows that a linear kernel is better than
an RBF kernel for the proposed high dimensional feature, which can be expected
since RBF is more suitable for low dimensional features. In addition, RBF ε-SVR
is much slower in both training and testing, while the other two methods are more
efficient.

4 Conclusions

For nuclear cataract grading from slit-lamp lens images, we have proposed a regression-
based framework with BOF group features and a group sparsity constraint for joint
feature selection, parameter selection and regression model training. In tests on the
ACHIKO-NC dataset comprised of 5378 images, our system achieves a 69.0% exact
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agreement ratio (R0) against clinical integral grading, a 85.2% decimal grading error
≤ 0.5 (Re0.5) and a 98.9% decimal grading error ≤ 1.0 (Re1.0), which represents
significant improvements over the state-of-the-art method [6]. In future work, we plan
to elevate performance by using new features or by introducing other domain-specific
knowledge on this problem.
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