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Abstract. In prostate cancer radiotherapy the association between the dose
distribution and the occurrence of undesirable side-effects is yet to be revealed.
In this work a method to perform population analysis by comparing the dose dis-
tributions is proposed. The method is a tensor-based approach that generalises an
existing method for 2D images and allows for the highlighting of over irradiated
zones correlated with rectal bleeding after prostate cancer radiotherapy. Thus, the
aim is to contribute to the elucidation of the dose patterns correlated with rectal
toxicity. The method was applied to a cohort of 63 patients and it was able to
build up a dose pattern characterizing the difference between patients presenting
rectal bleeding after prostate cancer radiotherapy and those who did not.

1 Introduction

Radiotherapy is one of the prescribed treatments for prostate cancer. Its objective is to
deliver high doses of radiation to the tumour cells whereas sparing the neighbouring
organs, often called organs at risk (OAR). The prediction of normal tissue complic-
ation has traditionally being addressed using dose volume histograms (DVH) [1] or
dose surface histograms (DSH) which are reductions of the 3D dose distribution re-
ceived by the organs. Although many studies have shown a correlation between dose,
volume and rectal toxicity [2,3], they lack spatial accuracy and are not able to correlate
the treatment outcome with a specific dose pattern. One of the reasons is that normal
tissue complication probability (NTCP) models mainly use the dosimetry information
through the DVH, which does not preserve the spatial information. In radiotherapy is a
well-known fact that similar DVHs may come from different dose distributions.

In the context of intensity modulate radiotherapy (IMRT) more adapted treatments
could be proposed by including new constraints during the treatment planning step.
Thus, the identification of anatomical regions correlated with toxicity is crucial to
provide new recommendations for treatment planning. Some attempts have been made
to introduce the notion of spatiality [4], but still within the dose-volume space. In [5]
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Buettner et al. have shown that late complications in the rectum are not only related
to volumetric aspects of the dose, but particularly to the shape of the dose distribution.
More recently, in [6,7] spatial considerations were incorporated by parametrizing the
3D patterns of dose. In this way, by selecting a limited set of predictive features, their
method outperforms the classical models based on DVH/DSH. These approaches still
lie in the reduction of feature dimensionality by fitting analytic functions to each dose
shape. In [8] a principal components analysis (PCA) is developed. The PCA is applied
on the registered dose matrices (expressed as row vectors) to obtain the principal modes
of variation. Then, the modes of variation are used to classify patients according to a
specific toxicity. The main issue of this work is the difficulty to interpret the results.
Even if some principal components are related with a toxicity event, a spatial dose pat-
tern is still hard to identify.

It would be desirable to have a method that allows for the identification of dose
patterns. To accomplish this, we propose to generalise and use a population value de-
composition (PVD) technique proposed in [9] for 2D image analysis. We propose a
tensor-based generalisation of this PVD combined with a method to carry out statistical
analysis that mimics the voxel-base morphometry (VBM) methods [10,11]. We show
that the direct application of these methods, as proposed in [12], is difficult mainly
because of the normality assumptions for the test statistics. In the end we show that
it is possible to exhibit dose patterns associated with some type of toxicity following
prostate cancer radiotherapy treatment.

2 Tensor-Based Population Value Decomposition

The tensor-based population value decomposition presented herein is a generalization
of the PVD presented in [9]. In this former reference, a PVD method is developed using
a possibly-truncated singular value decomposition (SVD) along with a PCA over the
individuals’ left- and right-singular eigen-vector matrices. This method enables com-
pressing, thus leading to a more efficient representation of the subjects

2.1 Matrix-Based Population Value Decomposition

Consider a population consisting of N 2D images, Yi ∈ R
F×G, i = 1, 2, . . . , N . The

objective is to express Yi as in eq. 1,

Yi = URiW, (1)

where U and W are common to the whole population and Ri is specific to the i-th
subject. The steps depicted in [9] to obtain the individuals’ and the population matrices
are as follows:

1. Obtain the SVD of each image Yi = SiViD
T
i .

2. Create the concatenated resulting matrices S = [S1| . . . |SN ] and D =
[D1| . . . |DN ].

3. Perform a PCA over S to obtain the eigen-vector matrix U of the covariance matrix
SST such as S = U

(
UTS

)
.
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4. Perform a PCA over D to obtain the eigen-vector matrix W of the covariance
matrix DDT such as D = W

(
WTD

)
.

5. Express Yi in terms of the population matrices as

Yi = SiViD
T
i (2)

= U{(UTSi

)
Vi

(
DT

i W
)}WT

6. Define Ri =
(
UTSi

)
Vi

(
DT

i W
)

to obtain the decomposition Yi = URiW.

The rationale behind this procedure is that the space spanned by the columns of Si

(or Di) contains subject-specific left (or right) singular-vectors that, although they are
not equal amongst them, they should be similar. Thus, applying PCA should allow for
the calculation of the principal modes of variation of the left (or right) singular-vectors.

In addition, a more efficient representation could be obtained as a previous step to the
population analysis. This decomposition allows for two different compression levels:

1. At the individual’s level some columns of Si and Di could be discarded regarding
at some reconstruction error, leading to the approximation Yi ≈ SLiVLiJiD

T
Ji

,
where SLi is the matrix resulting of taking only the first Li columns of Si, DJi is
the analogous with respect to Di and VLiJi consists only of the first Li columns
and the first Ji rows of Vi.

2. At the population level it is possible to take only the first A columns of U (or the
first B columns of W), considering for example the explained percentage of vari-
ance, to build up the projection matrix U (or W). The same reduction is possible
when the PCA is performed over SL = [SL1 | . . . |SLN ] andDJ = [DJ1 | . . . |DJN ],
with L =

∑N
i=1 Li and J =

∑N
i=1 Ji.

As one can notice, the resulting individual specific matrices Ri are not diagonal.
This matrices can be regarded as projections onto a subspace of RA×B , with A ≤ F
and B ≤ G.

2.2 Extension to 3D Images

In the following approach the fact that a 3D image can be regarded as a third-order
tensor is used. The SVD step of the 2D-PVD described before is emulated using a
higher order singular value decomposition (HOSVD) [13]. The population consists of
3D images, Yi ∈ R

A×B×C , i = 1, 2, . . . , N , regarded as tensors.
The procedure to obtain a 3D-PVD was implemented as follows:

1. Obtain the HOSVD of each image as in eq. (3),

Yi = Vi ×1 S
1
i ×2 S

2
i ×3 · · · ×M SM

i , i = 1, . . . , N, (3)

where Vi is the core tensor and S1
i , . . . ,S

M
i are the corresponding factor matrices.

For a 3D image M = 3.
2. Create the M matrices Sk =

[
Sk
1 | . . . |Sk

N

]
, k = 1, . . . ,M .

3. Perform a PCA over each Sk to obtain the projection matrices Pk such as Sk =

Pk
(
Pk

)T
Sk, k = 1, . . . ,M .
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4. Express each individual’s image as in eq. (4),

Yi = Λi ×1 P
1 ×2 · · · ×M PM , (4)

where Λi = Vi ×1

(
P1

)T
S1
i ×2 · · · ×M

(
PM

)T
SM
i .

As it can be seen from eq. (4), the image corresponding to the i-th individual can be
expressed in terms of a specific-individual core tensor, namely Λi, and M population
factor matrices. In addition, as in the 2D case, two compression levels are allowed:

1. At the individual’s level each image can be expressed as in eq. (5),

Yi ≈ V̂i ×1 S
1
L1

i
×2 S

2
L2

i
×3 · · · ×M SM

LM
i
, (5)

where Sk
Lk

i
is a matrix consisting of the the first Lk

i columns of Sk
i , and V̂i ∈

R
L1

i×···×LM
i is the truncated core tensor.

2. At the population level the Pk matrices can be truncated by taking only the first Qk

columns leading to the reduced matrix PQk . The same reduction is possible when

the PCA is carried out on SLk =
[
Sk
Lk

1
| . . . |Sk

Lk
N

]
.

Using both levels of compression the i-th invididual’s image can be approximated as
in eq (6),

Yi ≈ Λi ×1 P
Q1 ×2 · · · ×M PQM , (6)

where Λi = V̂i ×1

(
PQ1

)T
S1
L1

i
×2 · · · ×M

(
PQM

)T
SM
LM

i
is the i-th individual’s

core tensor and PQ1 , . . . ,PQM are the population factor matrices.

2.3 Population Analysis

Once each individual has been rewritten as in eq. (6) the statistical analyses can be
carried out using the reduced individuals’ representation Λi, i = 1, . . . , N . If the pop-
ulation can be split into two mutually exclusive groups, say G1 and G2, an element-
by-element comparison of the elements of Λ could help to highlight the differences
amongst both groups. This comparison can be done using a two-sample t-test. The res-
ulting p-values could be used then to decide which components are different amongst
the two groups. Let Λ(G1) and Λ(G2) be the typical core tensors of groups G1 and G2,
respectively, with components λ

(G1)
mnp and λ

(G1)
mnp . In addition, let Pv be the resulting

p-value tensor with entries pvmnp. In this work the components of Λ(G1) and Λ(G2)

are calculated as λ
(Gj)
mnp = 1

|Gj |
∑

i∈Gj

λi
mnp, j = 1, 2 if pvmnp < ptr and λ

(Gj)
mnp =

1
|G1∪G2|

∑

i∈G1∪G2

λi
mnp otherwise, where ptr is some specified threshold. It means that

for the components where no statistical difference is found the reconstruction is done
using the information of the whole population whereas for those components where a
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statical difference is accepted the component reconstruction is done with the informa-
tion coming from either one group or the other.

Using this approach the typical images for each group can be reconstructed as shown
in eq. (7),

Y(Gj) = Λ(Gj) ×1 P
Q1 ×2 · · · ×M PQM , j = 1, 2. (7)

3 Rectal Bleeding Study

3.1 Data

A total of 63 patients treated for localized prostate cancer with IMRT were included
in the study. The used treatment planning system was Pinnacle V7.4 (Philips Medical
System, Madison, WI). The total prescribed dose was 46 Gy to the seminal vesicles
delivered in 4.6 weeks, and 80 Gy to the prostate delivered in 8 weeks, with a standard
fractionation of 2 Gy/fraction. The patient positioning, CT acquisition, volume delin-
eations and dose constraints complied with the GETUG 06 recommendations as de-
scribed in [14]. For the rectal wall, the constraints were maximal dose ≤76 Gy and V72
Gy≤25% (the volume received by the 72% of the rectum wall volume). The CT images
consisted of 135 slices whose size in the axial plane was 512×512 pixels, with 1mm im-
age resolution and 2mm slice thickness. The median follow-up period was 38 months,
with a minimum of 24 months for all patients. Rectal toxicity events were prospectively
collected and scored according to the common terminology criteria for adverse events
(CTCAE) version 3.0. The endpoint of the study was 2-year Grade ≥ 1 rectal bleeding,
excluding acute toxicity. Patients with a history of hemorrhoids were not allowed to
be scored as Grade 1 bleeding. In total, 12 patients presented at least a Grade 1 rectal
bleeding event, which occurred between 6 and 24 months following the treatment.

3.2 Image Processing

Patient’s planned CT and dose distributions were non-rigidly registered with the demons
algorithm [15], on a single coordinate system by combining the CTs and organs delin-
eations as explained in [8]. The patients’ CTs were first registered and then the same
transformation was applied to the dose distributions in order to obtain the mapped dose
distributions to a single template that were compared in this work.

The dose images were cropped in the axial plane to be of size 87 × 87 and only 51
slices were considered. Each dose was decomposed using the HOSVD as shown in eq.
(3) and no compression was allowed for at the individual or population levels as the
interest was the precise identification of dose patterns.

Once all the patients’ core tensors were computed, an element-wise comparison was
performed in the core tensor space using a two-sample t-test, considering the patients
who presented at least a Grade 1 rectal bleeding event against to those who did not.
A p-value lower than 0.05 was considered statistically significant. A “typical” core
tensor for each group was calculated. Each element of the typical core tensors was
computed as an average of the corresponding element across the population. For those
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elements that were found to be statistically different the average was computed using
only the values of the corresponding group. For the remaining elements the average
was computed using both groups values. The “typical” dose image for each group was
reconstructed using the corresponding “typical” core tensor and the population factor
matrices. The difference amongst the two “typical” dose distributions was used to find
regions correlated with rectal bleeding Grade ≥ 1.

3.3 Results

The Fig. 1(a) shows the difference between the “typical” bleeder individual and the
“typical” non-bleeder individual obtained with the proposed method. This result suggest
an over irradiation (around 6 Gy) on patients presenting rectal bleeding Grade≥ 1 in the
zone of the posterior wall. For the sake of comparison in Fig. 1(b), the difference of the
means of the bleeders’ doses and the non-bleeders’ doses is presented. The normality
assumption was checked using a Shapiro-Wilk test in the core tensor space with a 95%
confidence level. Only on the 22% of the elements the normal assumption was rejected.
This test was also performed in the native image space and the normality assumption
was rejected on the 67% of the voxels. Conversely, in the tensor case, no difference was
detected on the elements where the normality assumption was rejected. To illustrate the
problem of normality assumptions, and then the validity of performing a two-sample t-
test in the native space, Fig. 2 shows the histograms of the test statistics for both cases:
the tensor case and the native image space. It is expected, if the normality assumption
is valid, that the normalized histograms look like a standard normal distribution. This
is the case for the tensor-based test statistics but not for those computed in the native
image space.

(a) Tensor-based PVD difference of
means.

(b) Simple difference of means.

Fig. 1. “Typical” toxic dose distribution minus “typical” non-toxic dose distribution. The rectum
of the template patient in the sagital plane is overlaid.
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(a) Tensor-based test statistic histogram. (b) Native space test statistic histogram.

Fig. 2. Histograms of the test statistics used in the t-test

4 Conclusions

This paper presented a method to perform population analysis for high order data (M >
2) and its application to the study of rectal bleeding after prostate cancer radiotherapy.
The presented method does not depend on the type of toxicity and it could be applied
to find out other dose patterns correlated with different side effects, even in a different
organ (such as the bladder). The main contribution of the tensor-based PVD was to
enable the use of a classical statistic test to perform group comparison through the
construction of the “typical” individual for both groups. The obtained results should be
carefully interpreted as the over irradiated zone depicted in Fig. 1(a) could depend on
the selected template for registering all the images but also on the registration algorithm.
Future work will include the segmentation of this zone and the study of the associated
DVHs.

The direct application of the t-test over the dose images is not advised as normality
assumption is rejected for most of the voxels. This is not the case in the core tensor
space, however, highlighting the zones where both group are statistically different in
the native image space is a subject of current research.

A future works will include as well a tensor-based PVD of each group and attempting
to reveal the inter-group differences by the comparison of the population matrices. The
effect of applying some level of compression at the individual’s or population level and
the validity of the method are also matter of future studies.
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