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Abstract. We present a method for automatic struts detection and
stent shape estimation in cross-sectional intravascular ultrasound images.
A stent shape is first estimated through a comprehensive interpretation
of the vessel morphology, performed using a supervised context-aware
multi-class classification scheme. Then, the successive strut identifica-
tion exploits both local appearance and the defined stent shape. The
method is tested on 589 images obtained from 80 patients, achieving
a F-measure of 74.1% and an averaged distance between manual and
automatic struts of 0.10 mm.
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1 Introduction

An intraluminal coronary stent is a metal mesh tube deployed in a stenotic
artery during Percutaneous Coronary Intervention (PCI), in order to prevent the
vessel narrowing after balloon angioplasty. After stent placement, cases of under-
expansion (stent correctly placed but not completely expanded) or malaposition
(stent only partially in contact with the luminal wall) may be experienced. These
cases are recognized as important risk factors and might lead to restenosis [1]. In
both cases, the definition of the stent shape, compared with the luminal border
and the vessel border, allows to assess the stent placement in the vessel.

The appearance of struts can be obtained by Intravascular Ultrasound (IVUS),
a catheter based imaging technique that provides the sequence of tomographic
images (pullback) of the internal vessel morphology. The appearance of a stent
in IVUS is shown in Figure 1(a), which represents a cross-section of the artery.

The condition of stent placement in the vessel can be deduced by the position
of its structural elements (struts), (see Figure 1(a,b)). Unfortunately, often only a
few struts are visible in the IVUS image, due to the inclination of the ultrasonic
probe with respect to the longitudinal axis of the vessel and to the presence
of calcification or a dense fibrosis in contact with the stent. On the other hand,
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Fig. 1. Example of IVUS image in short-axis (a) and polar form (b). In (a), stent struts
are marked; in (b), manual contours of main vessel areas are indicated. In (c), the map
of classes obtained by processing the annotations in (b) is depicted.

several regions in the IVUS image may be confused with a strut, due to their local
appearance. Clear examples are artifacts produced by the guide-wire, refractions
of ultrasonic waves, reverberations, or presence of small calcifications.

Despite the importance of stent analysis in clinical practice, the problem of
modeling a stent shape and detecting struts was solely tackled in [2,3,4,5,6], and
never in a unique framework. Regarding stent modeling in [2], two deformable
cylinders corresponding to the luminal wall and the stent were used. The cylin-
ders were adapted to image edges and ridges to obtain a three-dimensional recon-
struction of the boundaries. A semi-automatic stent contour detection algorithm
was presented in [3]. The method performs a global modeling of struts by min-
imum cost algorithm, followed by refinement using local information on stent
shape and image intensity gradient. User interaction is finally foreseen to cor-
rect the stent shape in 3D. In [4], the same authors proposed an improved version
of this method, where the stent shape is accurately reconstructed in images with
good quality, but the algorithm requires at least three clearly visible struts.

The problem of struts detection was instead tackled in [5,6]. An automatic
method, limited to bio-absorbable stents, was proposed in [5], using Haar-like
features and a cascade of classifiers. Recently, a detection algorithm based on
two-stage classification for fully automatic stent detection, has been presented
[6]. Despite the encouraging results, the number of false positive struts makes
the method not suitable for clinical purposes.

Our Contribution. We present a novel methodology that jointly formulates (1)
automatic stent shape estimation and (2) struts detection. Differently from pre-
vious methods, in our approach the struts detection is constrained by the stent
shape assessment. The overall layout of the methodology is depicted in Figure 2.
The idea is that the stent shape can be approximated by considering both (a)
presence of struts and (b) vessel morphology, which partially solves the prob-
lem of lack of visible struts. A curve is first estimated through a comprehensive
interpretation of the vessel morphology. For this purpose, morphologic regions
in the vessel are modeled using the context-aware classification framework pre-
sented in [7], where the class strut is added. Successively, the struts are detected
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Fig. 2. Schematic representation of the framework. The IVUS image (a) is the input,
(b) is the map of classified regions, with the estimated stent shape. The estimated
strut kernel (c) allows to compute the struts likelihood map (d) that, combined with
classified struts (e) and with the stent shape (b), is used to identify the struts centers
(f). In (g) the detection result in short-axis is depicted.

based on both local appearance and stent model, which allows a reduction of
false positives detection. To the best of our knowledge, this is the first time that
both stent shape and struts position are jointly identified in a fully automatic
framework. The method is formulated without making any assumption on stent
type and imaging parameters and validated with a highly heterogenous dataset
of 589 IVUS images from 80 in-vivo arteries.

2 Method

Classification. A multi-class classifiers is used to identify the main morphologic
regions in the IVUS image. For this purpose, six regions are defined by manual
annotation: blood (B), plaque (P), calcium (C), guide-wire (G), strut (S), tissue
(T) (see Figure 1 (b,c)). For classification purposes, we adopt Multi-Scale Multi-
Class Stacked Sequential Learning (M2SSL), which has been shown to provide
a robust interpretation of the IVUS image [7].

The M2SSL is a classification architecture based on two stacked classifiers,
namely H1 and H2. The classifier H1 is fed with a set of features xA of tissues
appearance, computed for each position q = (ρ, θ) of the IVUS image in polar
coordinates, and provides as output a vector P ∈ R

1×Nc of pseudo-likelihoods,
where Nc is the number of classes. As in [7], the ECOC technique is used to deal
with multi-class problem, and to compute the vector P(q) for any location of
the image. The classifier H2 is fed with the combination of xA with features of
context xC . The role of xC is to encode long-range interactions between regions
in the image. This is done through a multi-scale sampling of the map P at Ns

scales. At each scale s, the map is smoothed with a Gaussian kernel of standard
deviation σs = 2(s−1) and then sampled in positions corresponding to the 8N
neighborhood of each location q for each class. The central pixel is included
as well: as a consequence, |xC | = 9NcNs. Finally, an extended feature vector
xE = [xA xC ] is provided to H2, which assigns the label Y pixel-wise.
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Features of Appearance, xA. The features of appearance in IVUS are ob-
tained by joining 30 textural descriptors. First, from the set of features in [7],
we select a subset of operators: Gabor filters, Local Binary Patterns, and the
shadow-related features. Then, we introduce two novel operators that are spe-
cific for the strut detection problem. The first one is related to the oval-like strut
appearance in images and is defined as IBD = −I ∗Lγ , where Lγ is the Laplacian
of Gaussian with parameter γ and I is the IVUS image. We apply the filter for
values γ = {2, 3, 4, 5, 6}, and for each position q we consider the feature vector
xq
BD = [IqBD|γ=2, . . . , I

q
BD|γ=6] ∈ R

1×5.
The second operator is related to blood characterization, and consists in the

cross-correlation between subsequent images of the pullback. Given a position pi
of one frame in a sequence, we consider three adjacent frames {Ipi−1, Ipi , Ipi+1},
and we apply cross-correlation R between squared sliding windows of size Wcc

over the three pairs of frames {(Ipi−1, Ipi), (Ipi , Ipi+1), (Ipi−1, Ipi+1)}. The fea-
ture is assigned to each pixel in position q as xq

CC = 1
3 (Rpi,pi−1 + Rpi,pi+1 +

Rpi−1,pi+1). We vary the size Wcc from 5 to 11 pixel with a step of 2 pixel, ob-
taining |xq

CC | = 4.

Stent Shape Estimation. Estimating the stent shape consists in finding a
curve that simultaneously fulfills three criteria: (1) the shape should cross as
many struts as possible; (2) it should fulfill morphologic constraints with re-
spect to the vessel structure (e.g., no struts inside a calcified region); (3) given
the rigidity of the stent meshes, the shape should be as regular as possible.

Considering (3), we assume the ellipsis as a model for the stent shape, which
has more degrees of freedom than the circular shape used in [4]. In polar coor-
dinates, the ellipsis is expressed as ρ(θ) = P (θ)+Q(θ)

R(θ) , where:

P (θ) = ρ0[(b
2 − a2)cos(θ + θ0 − 2φ) + (a2 + b2)cos(θ − θ0))],

Q(θ) =
√
2ab

√
R(θ)− 2ρ20sin

2(θ − θ0),

R(θ) = (b2 − a2)cos(2θ − 2φ) + a2 + b2.

The curve is thus defined by the set of parameters E = [a, b, φ, ρ0, θ0], indicat-
ing, in order, the major (a) and minor (b) axes, the orientation (φ) and the
coordinates (ρ0, θ0) of the center of the ellipsis.

Following criteria (1,2), a robust estimation of stent shape is obtained through
a comprehensive interpretation of the curve position with respect to the ves-
sel morphology. For this purpose, similarly to [7], we design a functional Ψ(E)
that encodes the dependencies between parameters of the stent curve and vessel
morphology: Ψ(E) =

∑|t+|
i=1 wit(E)+i − ∑|t−|

j=1 wjt(E)−j . Based on the classifica-
tion output, t+ = {t(E)+i } and t− = {t(E)−j } are the regions of the image
positively or negatively contributing to the correct curve placement, due the re-
lationship with the vessel morphology. Given the tissue nomenclature, we define
t+ = {L↑, P↑, C↓, L↓, P↓, C�, P�, S�} and t− = {C↑, S↑, T↑, S↓, }, where
the arrows indicate a region placed above (↑), below (↓) or crossed (�) by the
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curve. The stent shape is estimated as Estent = argminE(−Ψ(E)), where the set
of coordinates of the stent curve (ρ(E)stent,θ(E)stent) in polar coordinates is ob-
tained by a minimization procedure [8]. The shape is initialized with the elliptic
approximation of the luminal region of the IVUS image, obtained by considering
the area of connected pixels labelled as blood close to the region occupied by the
catheter (see Figure. 2(b)).

Struts Detection. Once the stent shape is estimated, we can automatically
detect the positions SA = (ρA, θA) representative for struts by considering three
conditions. First, the appearance of a strut is accounted considering a likelihood
map Lstrut(ρ, θ) (see Figure 2(d)), obtained through the normalized cross cor-
relation between the IVUS image and a kernel KS , which represents the local
strut appearance (Figure 2(c)). This kernel is learned by averaging the intensity
of the pixels in a bounding box of side H1, centered around the labelled struts
in the training set. A local maxima of Lstrut identifies a potential strut position.

The strut detection is then subject to two additional conditions: (1) SA

must belong to a region classified as strut Qstrut = {q}|Y (q)=strut; (2) SA

must be proximal with respect to the estimated stent shape. The coordinates of
struts are then obtained as (ρstrut, θstrut) = argmaxρ,θ(Lstrut(ρ, θ)

⋂Qstrut),
subject to dist((ρstrut, θstrut), (ρstent, θstent)) ≤ dstrut. We assume the value
dstrut = 0.2 mm � 2H , representing a significant value for stent distance in
clinical practice, used for example to assess malaposition.

a b c d e
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Fig. 3. Examples of stent shape estimation and strut detection. The stent shape is de-
picted (dotted line) along with the manual annotation (blue circles) and the automatic
strut detection (red circles).

1 The value H = 0.18 mm was empirically chosen in order to include the strut ap-
pearance in the bounding box, along the whole dataset.
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Table 1. Quantitative results, where all the frames of TSds are considered (all),
presence of calcification (calcium), bifurcations (side-branch), large vessel (large),
absence of previous cases (normal). The mean (MN) and median (MD) distances between
automatic and manual struts (ss), and between manual struts and stent curve (sc) are
indicated. All values are reported in average and (standard deviation).

all calcium side-branch large normal

Precision [%] 76.6 (29.2) 70.2 (33.0) 70.4 (33.3) 69.5 (34.4) 77.7 (26.5)
Recall [%] 77.5 (30.0) 74.0 (34.4) 68.9 (33.0) 64.9 (32.9) 82.9 (27.2)
F-measure [%] 74.1 (26.7) 67.5 (30.2) 66.6 (29.9) 63.6 (29.7) 77.6 (24.1)
MNss [mm] 0.10 (0.10) 0.10 (0.09) 0.10 (0.10) 0.11 (0.10) 0.09 (0.10)
MDss [mm] 0.07 0.07 0.08 0.08 0.07
MNsc [mm] 0.14 (0.22) 0.21 (0.27) 0.22 (0.36) 0.21 (0.29) 0.11 (0.18)
MDsc [mm] 0.07 0.11 0.09 0.09 0.06

3 Validation

Experimental Setup. A set of 93 IVUS pullbacks of different patients were
used in this study. The IVUS sequences were acquired using iLab echograph
(Boston Scientific) with a 40 MHz catheter; no standardization of the echo-
graph parameters was applied during the acquisitions. Data acquisition protocol
was approved by the ethical committee of the university hospital. For training
purposes, 180 frames were randomly extracted from 13 pullbacks, assuring a pro-
portion of 50% between frames with and without stent, representing the dataset
TRds. In order to train H1 and H2 with different data, TRds was split into two
balanced subsets TRds1 and TRds2, containing 90 frames each. The remaining
80 pullbacks were used for testing purposes. An expert identified the range of
frames containing the stent in each pullback, and 589 frames were randomly se-
lected within this range to create the test set TSds. The same expert manually
labelled the regions described in section 2 in each selected frame of TRds, and
manually marked the central position (ρM , θM ) of each visible strut in TSds.
The areas containing struts in TRds were assigned as a circular shape centered
in (ρM , θM ), with a radius of H/2. In the M2SSL architecture, the binary clas-
sifier for both H1 and H2 is Adaptive Boosting, and it is trained with up to 150
decision stumps. The training strategy in the ECOC framework is one-vs-one.
The number of scales in M2SSL is Ns = 6, covering up to half of the image
size. The training of the weights w = {wi, wj} is done by approximating manual
struts annotations with an ellipsis, and then averaging the normalized amount
of tissues over TRds by cross-validation.

Performance Evaluation. The validation of the proposed method includes
two evaluations. First, in order to assess the performance of the struts detection,
we consider parameters Precision, Recall, and F-Measure. The set of positions
of struts manually labelled (ρiM , θiM ) and the ones obtained by automatic detec-
tion (ρjA, θ

j
A) are used to compute true positives (TP), false positives (FP) and

false negatives (FN). The presence of a detected struts (ρjA, θ
j
A) inside a circular
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region N of radius H around each (ρiM , θiM ) is considered: if (ρjA, θ
j
A) ∈ N , it is

considered as a TP; if (ρjA, θ
j
A) /∈ N , as FP; if N ⋂{ρjA, θjA} = ∅, it is a FN.

Secondly, in order to assess the performance of the stent shape estimation, we
consider distance measures. Since a manual annotation of the full stent shape is
not available, the performance is assessed in terms of both (a) radial distance
dSC between the strut points (ρiM , θiM ) and the stent curve (ρstent, θstent) and
(b) radial distance dSS between (ρiM , θiM ) and (ρjA, θ

j
A). The validation results

are reported in Table 1, where the distance measures are indicated in terms
of mean values (MNss, MNsc) and median values (MDss, MDsc). Furthermore, the
results grouped by categories of frames containing calcifications (calcium, 22.6%
of TSds), side-branches (side-branch, 8.3% of TSds), large vessel (large, 9.7%
of TSds) or none of these cases (normal, 65.4% of TSds), are also reported.

The obtained value of F-measure (F = 74.1%) indicates a good capabil-
ity of the method to correctly detect struts, expressing a low number of FPs
(P = 76.6%) and of FNs (R = 77.5%), thereby outperforming methods based on
similar approach (F = 71% in [5], F = 66% in [6]). In Figure 3, some examples
of stent shape estimation and struts detection are depicted.

4 Discussion

Considering the results in Table 1, we observe that the Recall score decreases in
images with large vessel. A similar effect is induced by presence of bifurcations,
where two stents are implanted and the detected strut may belong to the sec-
ond stent. In both cases, the suboptimal shape estimation is induced by the low
presence of similar cases in the training set, which hampers the possibilities of
the learning process to tune correctly the weights w for the specific morphology.
The presence of calcification also affects the performance, since few small calcifi-
cations are still confused with struts. In terms of distance measures, the position
of the estimated curve with respect to the manual struts (MNsc and MDsc) also
reflects the presence of these three challenging image typologies. When consid-
ering distances between manual and automatic struts position, a fairly constant
error is obtained in both MNsc and MDsc. This makes possible to characterize the
system performance, for struts detection, regardless of the clinical condition of
the vessel. It is also worth to note that the value MNss is four times smaller than
the allowed range 2dstrut around the curve.

The assumption of elliptic shape for the stent holds in most of the frames in
TSds (≈ 95%), while in few cases (4.24 %) the stent estimation is inaccurate due
to an irregular shape of the vessel. An example is depicted in Figure 3(i), where a
big calcification deforms the luminal area into a non-circular shape. This problem
could be overcome by using shape information of adjacent frames in the sequence,
where a weaker deformation is present. In case of an IVUS frame containing
no strut, as the one illustrated in Figure 3 (e), it is worth noticing that the
result of the algorithm is still correct, since the comprehensive interpretation of
morphology compensates for the lack of struts. In terms of computation time, the
current Matlab prototype code takes 4 seconds on a 2.8GHz dual core processor:
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1.2 sec for extraction of xA, 2.7 seconds for H1 classification, extraction of xC and
H2 classification, and 0.1 seconds for stent shape estimation and struts detection.
Since the method processes each frame independently, the whole execution can
be parallelized, potentially reaching a frame rate of 15 fps. Finally, it is worth
to consider that the presented framework can be easily deployed in the future
for ultra-high frequency IVUS systems. This will allow to deal with restenosis
phenomenon, since its analysis is currently hampered by the limited frequency
in available technology.

5 Conclusion and Future Work

We have presented a method for automatic struts detection and stent shape
estimation. The proposed approach does not make any assumption on the stent
type or the imaging parameters. It outperforms state-of-the-art strut detection
methods, and provides a stent shape estimation without making any assumption
on the number of visible struts. The capabilities of evaluating whether a generic
frame contains a stent has not been evaluated in this paper, and its quantification
is planned as future work. Furthermore, given the stent shape, the combination
of lumen and media-adventitia measurements will allow the detection of cases of
stent malaposition or under-expansion.
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