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Abstract. We propose a novel global optimization approach to seg-
menting a given 3D prostate T2w magnetic resonance (MR) image, which
enforces the inherent axial symmetry of the prostate shape and simul-
taneously performs a sequence of 2D axial slice-wise segmentations with
a global 3D coherence prior. We show that the proposed challenging
combinatorial optimization problem can be solved globally and exactly
by means of convex relaxation. With this regard, we introduce a novel
coupled continuous max-flow model, which is dual to the studied con-
vex relaxed optimization formulation and leads to an efficient multi-
plier augmented algorithm based on the modern convex optimization
theory. Moreover, the new continuous max-flow based algorithm was
implemented on GPUs to achieve a substantial improvement in compu-
tation. Experimental results using public and in-house datasets demon-
strate great advantages of the proposed method in terms of both accuracy
and efficiency.

Keywords: Prostate MRI segmentation, axial symmetry, convex
optimization.

1 Introduction

Prostate cancer is the most common non-skin cancer in men of developed coun-
tries [1]. Recent developments of prostate biopsy systems by fusing 3D TRUS
images with MR images demonstrated increased positive yields and greater num-
ber of cores with higher Gleason grade[2]. Based on 3D TRUS-MRI registration,
these techniques provide an alternative to the expansive MRI-based prostate
biopsy by indirectly targeting biopsy needles toward prostate regions containing
suspicious lesions identified with MR imaging. With this respect, an efficient and
accurate prostate segmentation of the 3D prostate MR image is highly desired
for such a 3D MRI to TRUS registration procedure. In addition, MR guided
focal therapies can also benefit from this technique since an accurate prostate
identification in 3D MR image is the crucial step of therapy planning [3].

Even though there existed extensive studies of delineating the prostate bound-
aries from 3D MR images, the segmentation of in vivo 3D T2w prostate MR im-
ages is still challenging due to the widely distributed high-contrast image edges
and intensity inhomogeneities. Most studies of the automated or semi-automated
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segmentation of 3D prostate MRIs rely on classifiers, atlas or deformable mod-
els (see [4,5]), which usually cannot meet the requirements on both efficiency
and accuracy for the clinical routine. To this end, additional information about
prostate shapes can greatly help locating the right prostate surfaces in practice.
Such shape priors can be often learned through a specific training data-set [6].
However, the wide variety of prostate shape appearances often makes the learn-
ing step a computationally intensive task, especially for the 3D prostate shape
representations. The axial symmetry of prostate has been applied to the segmen-
tation of 3D prostate TRUS images [7], for which the segmentation of one 2D
slice was propagated to assist segmenting its succeeding slice. Such propagation
procedures often carry the segmentation errors in one slice to the segmentation
of the following slices, thus causing an accumulated bias in all followed segmenta-
tions. On the other hand, the segmentation result of any slice has no contribution
on refining the segmentation of its preceding slices.

Contributions. In this study, we introduce a rotational-resliced based approach
to segmenting 3D prostate MRIs, which explores the inherent axial symmetry of
the prostate shape. We propose a novel global optimization method to jointly
segment all the generated 2D MRI slices while enforcing the introduced axial
symmetry or rotational coherence along the specified axis. We show that the
resulted combinatorial optimization problem can be optimized globally and ex-
actly by means of convex relaxation.

2 Methodology

Initialization: The given 3D prostate MR image is first resliced rotationally
around a specified axis in a transverse view (see the red dashed line in Fig. 1(b)
for illustration) to 30 2D slices with the reslicing step angle of 6◦. The rotational
axis needs to be selected manually if the prostate is not in the middle of the
image, making that all resliced 2D prostate contours intersect approximately
along the rotational axis and have an equal angular spacing. Then, the user vi-
sually identifies the approximate prostate centroid on the first resliced transverse
view; and a 2D mean shape, learned from 20 manually segmented 2D prostate
transverse MR images, is aligned by the specified centroid, where the intensity
appearance models, e.g. the probability density functions (PDF), of the prostate
region and the background region are approximated by the voxels inside and
outside the mean shape respectively.
Optimization Formulation with Axial Symmetry Prior: Let V be the
input 3D prostate MR image, which is resliced rotationally along a given axis
(red star in Fig. 1(a) and the red dashed line in Fig. 1(b)) to n 2D images S1

. . .Sn (white lines in Fig. 1(a)). The 3D prostate surface can be reconstructed
once the n 2D contours are correctly extracted. The shape of prostate allows
the specification of the rotation axis, such that the prostate regions in every
two adjacent slices are spatially consistent, i.e. the axial symmetry prior. In
this section, we propose a novel and efficient global optimization approach to
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Fig. 1. Initialization scheme: (a) n resliced slices from the coronal view: rotation axis
(red star), transverse view (green line), saggital view (yellow line) other resliced slices
(white lines); (b) the rotational axis (red dash-line) is specified to reslice the input
volume on a prostate transverse view (prostate boundary in green); (c) the initial and
the last slices are colored in red and spatially correlated by left-right flipping.

simultaneously extract the n prostate contours from the 2D slices S1 . . .Sn by
jointly enforcing their axial symmetry prior.

Let Ri, i = 1 . . . n, denote the prostate region of the 2D slice Si, and
ui(x) ∈ {0, 1}, i = 1 . . . n, be the indicator or labeling function of the region
Ri. The segmentation of each slice Si, i = 1 . . . n, can be formulated as a spa-
tially continuous min-cut problem [8] such that

min
ui(x)∈{0,1}

Ei(ui) := 〈1− ui, C
s
i 〉+

〈
ui, C

t
i

〉
+

∫

Ω

gi(x) |∇ui| dx (1)

where the two cost functions Cs
i (x) and Ct

i (x) define the costs to label each
pixel x ∈ Si as the prostate region and background respectively. Moreover, the
weighted total-variation function of (1) measures the smoothness of the region
indicated by the labeling function ui(x) ∈ {0, 1}, i = 1 . . . n.

In this work, the n slices S1 . . .Sn are simply aligned along the specified
rotation axis, such that the rotational axis (see the red dotted line in Fig.1(b)).
We propose to enforce the axial symmetry prior of prostate by penalizing the
spatial inconsistency of the extracted prostate regions within two adjacent slices:

πi(u) :=

∫

Ω

|ui+1 − ui| dx , i = 1 . . . n− 1 , (2)

and the spatial differences of Rn and R1 within the last and first slices:

πn(u) :=

∫

Ω

|un(L− x1, x2)− u1(x1, x2)| dx (3)

where x := (x1, x2) and the spatial comparison is performed by left-right flipping
the horizontal coordinates of the last slice, as shown in Fig.1(c).

In view of (1), (2) and (3), we propose to segment the n 2D image slices while
incorporating their axial symmetry prior, such that

min
u1...n(x)∈{0,1}

n∑

i=1

Ei(ui) + α

n∑

i=1

πi(u) , (4)
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Fig. 2. (a) shows the flow-maximization configuration between two adjacent slices; (b)
shows the flow-maximization configuration between the last and first slices.

where α is a parameter weighting the symmetry prior (α = 0.05 in our
experiments).

Convex Relaxation and Continuous Max-Flow Approach: We demon-
strate that the proposed optimization problem (4) can be globally and exactly
solved by its convex relaxation

min
u1...n(x)∈[0,1]

n∑

i=1

Ei(ui) + α

n∑

i=1

πi(u) (5)

where the binary-valued constraints u1...n(x) ∈ {0, 1} in (4) is replaced by its
convex relaxation u1...n(x) ∈ [0, 1]. We study the convex optimization problem
(5) under the primal and dual perspective, for which we introduce a new coupled
continuous max-flow model and demonstrate that it is dual or equivalent to (5).
With help of the proposed coupled continuous max-flow model, we prove that the
computed global optimum of the convex relaxation problem (5) can also be used
to solve its original combinatorial optimization problem (4) globally and exactly.
In addition, a new coupled continuous max-flow algorithm can be derived.

We first introduce the new spatially continuous flow configuration (as illus-
trated in Fig. 2 (a) and (b)): For each image slice Si, i = 1 . . . n, two additional
flow terminals: the source si and the sink ti, are added. We link the source si
to each pixel x in Si and there is a flow psi (x) streaming from si to x. We also
link each pixel x ∈ Sk to the sink ti and there is a flow ptk(x) streaming from x
to ti; within Si, there is a local vector flow field qi(x) ∈ R

2 around x. Between
two adjacent slices Si and Si+1, i = 1 . . . n− 1, we link x ∈ Si to the same pixel
x ∈ Si+1 and there is a flow ri(x) streaming in both directions. Between the last
slice Sn and the first slice S1, we link the pixel x := (x1, x2) ∈ S1 to the pixel
(L− x1, x2) ∈ Sn and there is a flow rn(x) streaming in both directions.

With the above flow settings, we formulate the new coupled continuous max-
flow model by maximizing the total amount of flows streaming from the n sources
s1 . . . sn, such that

max
ps,pt,q,r

n∑

i=1

∫

Ω

psi (x) dx (6)
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subject to the following flow-capacity constraints

psi (x) ≤ Cs
i (x) , p

t
i(x) ≤ Ct

i (x) , |qi(x)| ≤ gi(x) ; i = 1 . . . n ; (7)

|ri(x)| ≤ α , i = 1 . . . n ; (8)

the flow conservation constraints on the slices Si, i = 2 . . . n:

ρi(x) :=
(
div qi − psi + pti + ri − ri−1

)
(x) = 0 ; (9)

and flow conservation constraints on the first slice S1:

ρ1(x) :=
(
div q1 − ps1 + pt1 + r1

)
(x) − rn(L− x1, x2) = 0 . (10)

By introducing the multiplier functions ui(x), i = 1 . . . n, to the linear equal-
ities (10) and (9), we obtain the equivalent primal-dual model of (6):

min
u1...un

max
ps,pt,q,r

n∑

i=1

∫

Ω

psi (x) dx +

n∑

i=1

〈ui, ρi〉 (11)

subject to the flow capacity constraints (7) - (8).
Through variational analysis (as in [8]), we can prove: I) the coupled continu-

ous max-flow model (6), the convex relaxation problem (5) and the primal-dual
model (11) are equivalent to each other; II) the optimum of the convex relaxation
problem (5) is just given by the optimal multipliers to the corresponding flow
conservation conditions (9)-(10), which directly derives an efficient coupled con-
tinuous max-flow algorithm by augmented Lagrangian algorithms. The proofs
for these two proposition are omitted due to the limited space.

3 Implementation and Experiments

Image Acquisitions: We validated our algorithm using the publicly available
dataset from 2012 MICCAI challenge [9], which comprises of 26 MR images
acquired in a clinical setting. The data is multi-center and multi-vendor and has
different acquisition protocols (e.g. differences in slice thickness, with/without
endorectal coil). The proposed algorithm was also evaluated on 20 T2w images
acquired in our institution. All subjects were scanned at 3.0T by a GE Excite
HD MRI system (Milwaukee, WI, USA). 10 images were acquired with a body
coil at a size of 512× 512× 36 voxels (voxel size: 0.27× 0.27× 2.2 mm3), and 10
more were acquired with an endo-rectal coil using the same voxel size.

Evaluation Metrics: The experiment results were evaluated by the Dice sim-
ilarity coefficient (DSC), the mean absolute surface distance (MAD) and maxi-
mum absolute surface distance (MAXD)[7]. In addition, 5 endocoil images and 5
bodycoil images from our dataset were randomly selected to evaluate the intra-
and inter-observer variability of the proposed method caused by user initializa-
tion. Each image was segmented for 5 times by the first observer for assessing
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Fig. 3. Segmentation of one 3D MR image, green: the computed segmentation result,
red : manual segmentation; (a) transverse view; (b) sagittal view; (c) coronal view.

the intra-operator variability. The mean run time of 5 repeated segmentations
for each image was considered as the segmentation time used to evaluate the
algorithmic efficiency. These 10 images were also segmented by three observers
for evaluating the inter-observer variability. The coefficient of variation (CV ) of
DSC was used as the metric for assessing the intra-observer and inter-observer
variability of the proposed method.

Accuracy and Reliability: Table 3 shows the segmentation results by the
proposed method for three sets of 46 images: the proposed approach obtained
a DSC of 85.2 ± 4.5% for the public dataset, 90.7 ± 1.0% for the bodycoil im-
ages, and 89.4± 1.4% for the endocoil images; the MAD and MAXD can also be
found in the same Table. The intra-operator variability experiments yielded a
DSC of 88.0± 1.5% and a CV of 1.7% for 5 segmentations from the same oper-
ator. ANOVA analysis with a single factor showed that there is no statistically
significant difference between the three segmentations (p = 0.61, F = 0.52). In
the intra-observer variability experiments, the proposed method yielded a DSC
of 89.5 ± 2.1%, 88.6 ± 1.2% and 90.3 ± 2.2%, and a CV of 2.3%, 1.4% and
2.4% for the three observers respectively. ANOVA analysis with a single factor
failed to demonstrate a statistically significant difference between these three
segmentations (p = 0.85, F = 0.90).

Table 1. Overall performance results for public dataset and our datasets

DSC (%) MAD (voxel) MAXD (voxel)

Public dataset (26 images) 85.2 ± 4.5 7.2± 2.3 16.7 ± 6.1
Body-coil images (10 images) 90.7 ± 1.0 6.3± 0.9 14.5 ± 2.6
Endo-coil images (10 images) 89.4 ± 1.4 6.4± 1.0 14.6 ± 3.0

Computational Time: The proposed coupled max-flow algorithm was im-
plemented on GPU (CUDA, NVIDIA Corp., Santa Clara, CA) and the user
interface was implemented in Matlab (Natick, MA). The experiments were per-
formed on a Windows desktop with an Intel i7-2600 CPU (3.4 GHz) and a GPU
of NVIDIA Geforce 5800X. The mean segmentation time of the proposed method
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for all the images is 0.65± 0.15 sec, in addition to 4± 1 sec for initialization; so
less than 5 sec for segmenting a single 3D MR prostate image.

4 Discussion and Conclusions

We proposed a new global optimization algorithm to prostate segmentation
from T2w MR images by enforcing the geometrically axial symmetry of prostate
shapes, which jointly segments a series of 2D reslices under a global perspective.
Experimental results with different datasets showed that the proposed method
can segment the 3D prostate MR image within 5 seconds including 4 seconds
for initialization, yielding a DSC of 90.7± 1.0%. Another great advantage of our
method is that it demonstrated robust against initialization. It should be noted
that the proposed method is slightly sensitive to the parameter of the reslicing
step, which is affected by image resolution: a small reslicing step results in a
more accurate segmentation, while a large reslicing step leads to a less accurate
segmentation. Therefore, the proposed method yielded a higher accuracy at our
in-house dataset than the public dataset. In addition, the axial symmetry prior
prevents the segmented 2D contours from leaking at locations of weak edges
while keeping the spatial consistency between any adjacent 2D segmented con-
tours. The soft constraint, i.e. the L1 penalty, of axial symmetry, in combination
with the local image intensity and edge information, allows some asymmetric
structure, such as tumors.

A direct quantitative comparison with the state-of-the-art methods in the
literature is difficult due to the differences in used data and techniques. For ex-
ample, the proposed method does not need training whereas some automatic
methods [10] need a trained model to drive the segmentation. Thus, the experi-
ments were performed in this paper to highlight the advantage of the proposed
approach for prostate segmentation. For the public dataset, the highest mean
DSC of 88.0± 3.0% for each image was reported in [11] using active appearance
models, but the segmentation time was 8 minutes per image in addition 2 more
hours for training. Compared to this method, the proposed approach performed
with comparative accuracy, while demonstrating a great advantage in computa-
tional efficiency. Additionally, Yi et al.[12] reported a mean DSC of 84.0± 3.0%
for their dataset, but did not report the segmentation time on their method of
combined segmentation with registration. A mean DSC of 86.0% was reported
for 36 cases in [10]. In this sense, 90.7±1.0% for bodycoil images and 89.4±1.4%
for endocoil images obtained by the proposed approach is favourable in addition
to its high computational efficiency compared to these methods[10,12]. Moreover,
our experiment results also outperform the reported results by the 3D prostate
segmentation method [13] with star-shape prior.

In conclusion, this paper provides an accurate and numerically efficient solu-
tion to a challenging 3D prostate MRI segmentation. The performance results
of our algorithm demonstrate its promising application to 3D TRUS/MR image
guided prostate interventions.



Fast Globally Optimal Segmentation of 3D Prostate MRIt 205

Acknowledgments. The authors are grateful for the funding support from the
Canadian Institutes of Health Research (CIHR), the Ontario Institute of Cancer
Research (OICR), and the CanadaResearchChairs (CRC) Program for this work.

References

1. Jemal, A., Siegel, R., Xu, J., Ward, E.: Cancer statistics. CA Cancer J. Clin. 60(5),
277–300 (2010)

2. Leslie, S., Goh, A., Lewandowski, P.M., Huang, E.Y.H., de Castro Abreu, A.L.,
Berger, A.K., Ahmadi, H., Jayaratna, I., Shoji, S., Gill, I.S., Ukimura, O.: 2050
contemporary image-guided targeted prostate biopsy better characterizes cancer
volume, gleason grade and its 3D location compared to systematic biopsy. The
Journal of Urology 187(suppl. 3), e827 (2012)

3. Zini, C., Hipp, E., Thomas, S., Napoli, A., Catalano, C., Oto, A.: Ultrasound- and
MR-guided focused ultrasound surgery for prostate cancer. World J. Radiol. 4(6),
247–252 (2012)
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