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Abstract. Dictionary learning has been shown to be effective in ex-
ploiting spatiotemporal coherence for echocardiographic segmentation.
To overcome the limitations of previous methods, we present a stochastic
online dictionary learning approach for segmenting left ventricular bor-
ders from 4D echocardiography. It is based on stochastic approximations
and processes a mini-batch of samples at a time, which results in lower
memory consumption and lower computational cost than classical batch
algorithms. In contrast to the previous methods, where dictionaries and
their weights are optimized only on the most recently segmented frame,
our stochastic online learning procedure optimizes the dictionaries and
the corresponding weights by aggregating all the past information while
adapting them to the dynamically changing data. The rate of updating
the past information is controlled and varied according to the appear-
ance scale to seek a balance between old and new information. Results
on 26 4D echocardiographic images show the proposed method is more
accurate, more robust, and faster than the previous batch algorithm.

1 Introduction

Segmentation of 4D echocardiography plays an important role in the quanti-
tative analysis that provides important cardiac functional parameters such as
ejection fraction and strain. Due to gross intensity inhomogeneities, character-
istic artifacts, and poor contrast, automatic segmentation of the left ventricle is
particularly challenging in echocardiography. The inherent spatiotemporal coher-
ence of echocardiographic data provides useful constraints. The key observation
is that the inherent spatio-temporal consistencies regarding image appearance
(e.g., speckle pattern) and shape over the sequence can be exploited to guide car-
diac border estimation. Statistical models have received considerable attention.
Following the seminal work of Cootes et al. on statistical shape modeling [1/],
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a number of statistical models [2-5] have been proposed for learning spatiotem-
poral priors offline from a database. The main limitation of these methods is
that the high level spatiotemporal patterns in routine clinical images, especially
for disease cases, may deviate from the priors learned from a database.

Exploiting individual data coherence through online learning overcomes this
limitation. It is particularly attractive when a database is inapplicable or
unavailable. Sparse representation and dictionary learning have recently been
successfully applied to modelling local image appearance and segmenting left
ventricular borders in 4D echocardiography [6, [7]. Dictionary learning on the fly
exploits the spatiotemporal coherence inherent to individual data and achieves
promising segmentation results |6]. However, these methods use classical second-
order batch procedures for dictionary learning. The batch algorithm assumes a
fixed-size dataset and accesses the whole training set at each iteration. It is
memory-consuming and computationally expensive. It can be impractical when
the training set is large. Every time new data is added to the training set, the
dictionary needs to been retrained on the new complete training set in order to
incorporate the new information, which makes the batch algorithm inefficient for
dynamically changing data and online learning. In [6, 7], the appearance dictio-
naries are trained only on the last segmented frame rather than all the previous
frames. This accelerates error accumulation and compromises the segmentation
accuracy and reliability, especially for endocardial borders.

To overcome these limitations, we present a stochastic online dictionary learn-
ing approach for segmenting left ventricular borders from 4D echocardiography.
It utilizes a stochastic optimization technique and processes a mini-batch of
samples at a time, which results in lower memory consumption and lower com-
putational cost than classical second-order batch algorithms. In contrast to the
previous methods, our stochastic online learning procedure optimizes the dictio-
naries and the corresponding weights by aggregating the information of all the
past frames while adapting the dictionaries to the latest segmented frame. The
past information is carried forward by sufficient statistics. We weight the past
information to control the rate at which the past information is updated by the
new information. This updating rate varies with appearance scale to maintain a
balance between old and new information.

2 Methods

2.1 Segmentation Framework

We employ a frame-by-frame sequential segmentation procedure interlaced with
dictionary learning on the fly introduced in |6, [7]. Multiscale appearance dic-
tionaries are dynamically updated each time a new frame is segmented. In a
maximum a posteriori (MAP) framework, we estimate the shape S; in frame I;
given the knowledge of Sl:t—l and Iq.4:

S, = argn}gaxp(SASl:t_l,Il:t). (1)
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It is approximated by a decomposition of information into intensity I;, local
appearance discriminant R;, and shape prediction S}

S, ~ arg n}gaxp(SZ‘\St)p(Rt|St)p(It|St)p(St). (2)

The discriminant R; summarizing multiscale local appearance dominates the
estimation. It is predicted by multiscale appearance dictionaries D; that are de-
rived from 5‘1;,5,1 and I1.;—1 through sparse representation and dictionary learn-
ing. In |6, [7], the dictionaries D, are trained only on S;_1, I,_1. The knowledge
of the previous information is not fully utilized. This paper focuses on comput-
ing D, more efficiently and reliably and achieving more accurate and reliable
discriminant R;. Further details of solving (2) can be found in [6].

2.2 Multiscale Sparse Representation

Let {2 denote the 3D image domain. We describe a pixel u € {2 in frame I;
with a series of appearance vectors yF¥(u) € IR™ at different appearance scales
k=1,..,J. y¥(u) is constructed by concatenating orderly the pixels in a local
block centered at u and normalized to unit length. Complementary multiscale
appearance information is extracted at different levels of Gaussian pyramid.
A shape S in I; is represented by a level set function @;(u). The regions of
interest are two band regions 2} = {u € 2 : 0 < &;(u) < ¥} and 22 =
{u€ 2:0> & (u) > —1} which form two appearance classes. Let {D}, D?},,
denote two dictionaries adapted to appearance classes 2} and 22 respectively
at scale k. Under a sparse linear model, an appearance vector y € IR" can
be decomposed as a sparse linear combination of the atoms from a dictionary
D € R™¥ which encodes the typical patterns of a corresponding appearance
class. That is, y ~ Dx, and ||x||o is small. How well y¥ (u) is sparsely represented
by the appearance dictionary {D{}) is measured by the reconstruction residue:

{Ri(w)}i = |lyr () — {DFx; (u) a2 3)

Vk e {1,...,J} and ¢ € {1, 2}, where
{x{ ()}, = argmin ||y (u) — {Df}ex|3 s.t. |[x[lo < T, (4)

where T is a sparsity factor. The residue indicates the likelihood u is in class c.
Combining the multiscale information, we define the discriminant as

J J
=3 1og sen({RZ (ke — (R @)}/ S 1og (5)
k=1 j=1

Yu € 2, where BF’s are the weighting parameters of the .J appearance scales.
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2.3 Stochastic Online Dictionary Learning

Learning a dictionary D € R™*¥ from a finite training set Y = [y1,...,yum] €
R™*M ig to solve a joint optimization problem with respect to the dictionary D
and the sparse representation coefficients X = [xy, ..., xps] € REXM:

M
o1
r]:r)1’1)r(12||Y—DX||§ +>\;‘|Xi||Qa (6)

where ||x||, is a sparsity-inducing regularization that can be ¢y pseudo norm
or ¢1 norm. Classic algorithms for dictionary learning are second-order iterative
batch algorithms such as the K-SVD [g] algorithm that is used in |6, [7]. The
batch algorithm accesses the whole training set at each iteration and is memory
consuming and computationally expensive. It may become impractical in the
case of large training sets. This problem is aggravated when the data is dynam-
ically changing over time like echocardiography, since the dictionary needs to
be retrained on the new complete dataset each time new data is available. In
[6, 7], the appearance dictionaries are updated each time a new frame is seg-
mented, but they are only optimized on the newly segmented frame rather than
all the previous frames. This accelerates accumulation of errors, especially at
endocardial borders where there are often large deformations.

Stochastic online learning technique proposed in [9] can be used to overcome
these limitations. It has recently been applied to shape modeling [10]. It processes
one element of the training set at a time, which particularly suits applications
with large training sets or image sequence analysis. It alternates classic sparse
coding steps with dictionary update steps where the new dictionary D,, at mth
iteration minimizes a surrogate for the empirical cost (@):

m

. 1
Do, Zargngan(QHYi —Dx; )3 + Allxill1) (7)

i=1

where sufficient statistics x; computed during the previous steps aggregate the
past information. The past information is carried forward in matrices:

A, =A,_1+ XmX?n and B,, = B,,—1 + mez;u (8)

which enables optimizing dictionaries on the past information without accessing
the past data again. Then the dictionary update step (@) is reduced to solving (@)
with initialization D,,,_1. This procedure leads to faster performance and better
dictionaries than classical batch algorithms [9]. It converges almost surely to a
stationary point of the cost function and scales up gracefully to large datasets
[9]. For dynamic data, the dictionary is dynamically updated by the new data
while optimized on the whole dataset. Here we use a variant of [9] as summarized
in Algorithm [II We use a mini-batch extension that accesses a mini-batch of 7
samples per iteration to accelerate convergence. We assign weights g to the past
training data to control the rate of updating out-of-date information.

We introduce a stochastic online learning process supervised in a boosting
framework |11] as detailed in Algorithm Pl Algorithm []is invoked to enforce the



Segmentation of 4D Echocardiography 61

Algorithm 1. Stochastic Online Dictionary Learning
Require: training set y € R™ ~ p(y), sparsity weight A, initial dictionary Dy,, €
R™ X initial iteration number m; and terminal iteration number mz, mini-batch
size 7, weight p, and initial matrices A, and By, .
for m = my to mr do
Draw n samples Y = {ym,i };—; from p(y)
Sparse coding: X, ; = arg min,cpx |ym,i — Dm—1x[|3 + A||x||1, Vi € {1, ..., n}
Ay =0Am—1+ ,17 ZLI Xm,ixﬁ,z‘» Bm = 0Bm-1 + ,17 Z?:l ym,z‘ern,¢~
Update dictionary: compute D,, with D,,_; as initialization

_ 11 T _ T
Dm—arngmm(zTr(D DA,,) —Tr(D" Byn)). (9)

end for
return dictionary D,,,, and matrices A,,, and By, .

reconstructive property of the dictionaries. The boosting supervision strengthens
the discriminative property and optimizes the weighting of multiscale informa-
tion. At each time point ¢, the series of multiscale appearance dictionary pairs
{D},D?}), matrices A} and BY, and the corresponding weighting parameters
BF, k=1,...,J, are updated by the latest segmented frame ¢t—1: training samples
of appearance vectors belonging to two classes {Y;_;}x = {y¥_ ;(u) :ue 2}_;}
and {Y? ,}r = {yF_;(u) :u € 22 ,}. In contrast to [6, 7] where {D}, D?},. and
BF depend only on frame t — 1, we optimize {D},D?}, and S} by aggregating
the information of all the preceding frames (stored in A¥_;, BF |, and F ;). If
an error occurs in one frame, it can be compensated by the information of the
previous frames. The propagation of errors is alleviated. The rate of updating
the past information varies with appearance scale. Let [ be the axial width in
millimeter of the local image at scale k, we set g = al,;2 where a € R*. Higher
o’s are assigned to finer appearance scales to incorporate more past information.
Lower o’s are assigned to coarser appearance scales to put more emphasis on the
latest information, since the coarse appearance scale is more sensitive to cardiac
deformation. The stochastic online learning procedure can be initialized either
by offline learning from a suitable database or by a manual tracing.

3 Results

We validated our method on 26 4D canine open-chest echocardiographic images
acquired from both healthy and post-infarct animals using Phillips iE33 and an
XT7-2 array probe. Each image sequence spanned a cardiac cycle and contained
about 25 — 30 volumes. The sequential segmentation was initialized with a man-
ual tracing of the end-diastole volume. 100 volumes were randomly selected for
expert manual segmentation and quality assessment. We evaluated automatic re-
sults against manual tracings using the following segmentation quality metrics:
Hausdorff Distance (HD), Mean Absolute Distance (MAD), and Dice coefficient
(DICE). We compared the proposed method to [6] that uses the batch dictionary
learning technique K-SVD. The two algorithms shared the same set of relevant
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Algorithm 2. Boosted Multiscale Online Dictionary Learning

Require: training sets {Y} ;}» = {y} 1}Mll and {Y7 1 }r = {y5, }ﬁ"’l, initial dictio-

naries {D{_1, D?_; }x, matrices A¥ | and BF_;, accumulated # of previous iterations
N;_1, weighting parameters BE 1, ok, k=1,...,J, mini-batch size n, # of iterations
N, and sparsity factor T
wi = {wl z}Ml 1wy = {wQ,]}
for k=1to J do
Dictionary Learning: Apply Algorithm [ for N iterations to adapt {D;, D7}
to {Ytl—l}k ~ pf {pl z}Ml = ZM‘TIfwk and {Yt 1he ~ p5 = {p2 ]}MZ =
W’; i=1 "1,%

M2 Use o0 = ok for the first iteration and ¢ = 1 for the rest.
g=1"2,j

Sparse Coding: Vy € {Y{_1, Y7 1}x, solve @) for sparse representations w.r.t.
{D{}rand{D7?}; and get residues R(y,Di{)x and R(y, D?)x.
Hypothesis hi: y € {Yi_1, Y71 }x — {0,1}: hi(y) = Hecwiside(R(y,D?);C —

MQ -1

R(y,Di)i). Calculate the error of hy : ¢ = ngk Doy phalhe(yts) — 1 +
M; Br_
M ph he(ys )] + 1+9k (1_,_;3%{1 ). Set BF = e /(1 — €).
_ E oy
Weight Update: wk+1 = wf,i tkl e 10) 1|,w§:§1 = zjﬂkl hk(y“)
end for

return {Di,D?},, A¥ Bf gF, k=1,..,J,and Ny = N;—1 + N.

parameters. We used the following parameter setting: J = 10, T = 2, K = 1.5n,
N =10(t > 2) or 20(t = 2), n = 2048, A = 0.8, and a = 100.

Figure [Il shows representative segmentation results for frames at end-systole
when it is easiest to access error accumulation. In the top row, the batch method
[6] resulted in more errors in end-systolic segmentations, since it learned appear-
ance dictionaries only on the latest segmented frame and did not fully leverage the
information carried in all the previous frames. The segmentation error of a frame is
likely to propagate to the following frames. Images in the bottom row show the im-
proved segmentation results by employing our new stochastic learning procedure.
Since we optimize the dictionaries on all the previous frames, the error in a given
frame is compensated by the information of the other frames. Figure[2 presents the
quality measure curves from end-diastole to end-systole for the endocardial seg-
mentations of a healthy sequence and a post-infarct sequence. DICE decays and
HD and MAD rise from end-diastole to end-systole due to accumulation of errors.
Compared to the batch method, our method resulted in flattened curves, which
suggests our method effectively alleviates error accumulation and improves seg-
mentation performance for both healthy and post-infarct images. For epicardial
segmentation, the improvement was not significant, since the baseline accuracy of
[6] was already very high (97% in DICE). Table[[lsummarizes the statistics of seg-
mentation quality measures and computational efficiency achieved by the two algo-
rithms in segmenting endocardial borders. The proposed method achieved smaller
mean MAD, smaller mean HD, larger mean DICE, and smaller standard devia-
tions of all the measures. The overall segmentation accuracy and robustness were
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Fig. 1. Comparisons of segmentation results by the batch method (top row) and our
method (bottom row). Green: Manual segmentation. Red: Automatic segmentation.
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Fig. 2. Segmentation quality measures at different frames of two example sequences
(healthy (top row) and post-infarct (bottom row)) from end-diastole to end-systole.
Blue: the batch method. Red: the proposed method.

Table 1. Sample means + standard deviations of the quality measures and dictionary
learning time per frame for the segmentation of endocardial borders

DICE (%) MAD (mm) HD (mm) Time (s)
Batch Algorithm [6] 93.6 +2.49  0.57 £ 0.14  2.95 + 0.62 ~45
Proposed Algorithm 94.6 £+ 2.17 0.48 £ 0.11 2.83 £ 0.53 ~25

effectively improved using our stochastic online learning procedure. We tested the
two algorithms on a laptop with Intel quad-core 2.2 GHz CPU and 8 GB memory.
Both algorithms were implemented with a mixture of MATLAB and C++. The
batch algorithm took about 45 seconds per frame for dictionary learning. The
proposed algorithm took only about 25 seconds per frame.
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4 Conclusion

We have presented an approach for segmenting left ventricular borders from 4D
echocardiography using stochastic online dictionary learning. It is based on a
stochastic optimization technique resulting in lower memory consumption and
computational cost than classical batch algorithms. We optimize the dictionaries
and their weights on all the preceding frames while adapting them to the latest
segmented frame. The rate of updating the past information is controlled and
varies with appearance scale. Our method effectively improved the accuracy and
robustness of endocardial segmentation and computational efficiency compared
to the previous batch methods. Future work will include automating the dic-
tionary initialization through offline learning. The stochastic learning procedure
is suitable for both offline and online learning. A database that is too large for
batch methods can be gracefully handled by our method which avoids accessing
the database during online learning. Our method can ultimately be used to build
an integrated offline and online learning framework.
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