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Abstract. Quantifying volume and growth of a brain tumor is a primary
prognostic measure and hence has received much attention in the medical
imaging community. Most methods have sought a fully automatic seg-
mentation, but the variability in shape and appearance of brain tumor
has limited their success and further adoption in the clinic. In reaction,
we present a semi-automatic brain tumor segmentation framework for
multi-channel magnetic resonance (MR) images. This framework does
not require prior model construction and only requires manual labels on
one automatically selected slice. All other slices are labeled by an itera-
tive multi-label Markov random field optimization with hard constraints.
Structural trajectories—the medical image analog to optical flow—and
3D image over-segmentation are used to capture pixel correspondences
between consecutive slices for pixel labeling. We show robustness and
effectiveness through an evaluation on the 2012 MICCAI BRATS Chal-
lenge Dataset; our results indicate superior performance to baselines and
demonstrate the utility of the constrained MRF formulation.

1 Introduction

Magnetic resonance imaging provides detailed information of the human brain
and is an essential tool for the neuro-oncologist. Quantifying the volume of a
brain tumor is the key prognostic measurement of tumor progression [1, 2]. Yet,
manually labeling a brain tumor in 3D MRI is a time-consuming and error-prone
task. The medical imaging community has hence invested a significant amount
of effort in methods for automatic brain tumor segmentation [3–7]. However,
despite these efforts, there has been limited success in translation to the clinical
environment; the current performance of automatic methods does not meet the
prognostic needs [1] (e.g., the best performer in BRATS 2012 has a Jaccard score
of 0.5 for high-grade tumor). This may be due to the underlying variability of
tumor shape and appearance, or due to assumptions of the approaches.

Semi-automatic methods that require some input from the user are a plausible
alternative. They have received comparatively little attention for brain tumor
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imaging, e.g., [2, 8, 9]. In contrast, 2D image interactive labeling has been hotly
studied, e.g., GrabCut [10], LazySnapping [11]. Similar ideas have been used on
2D brain tumor segmentation, such as [8]. However, generalizing these ideas to
3D is non-trivial. The interaction mechanisms in these papers, such as drawing
lines to specify foreground and background, moving a square brush or lasso, or
giving a bounding box, are no longer trivial tasks in a 3D volume for complex
objects, tumor and edema. Recently, some approaches for object segmentation
in 3D medical images by iterative energy optimization based on shape model
were proposed [12, 13]. However, compared to some organs, such as the liver,
the edema and tumor shape are comparatively harder to model.

We propose an alternative mechanism for incorporating human input in semi-
automatic brain tumor segmentation. Our main idea is based on the assumption
that pixels with the same label in consecutive slices will have a similar feature
distribution and strong spatial correspondence. Hence, we require the human to
manually label only one slice (using standard 2D annotation techniques) and
then all other slices are sequentially labeled based on a constrained Markov ran-
dom field model. The constraints in the model are created based on a 3D notion
of optical flow, which we call structural trajectories, and on over-segmentation.
The initial slice to be labeled is automatically selected based on an asymmetry
heuristic. Our thorough experiments on the BRATS 2012 data set [3] demon-
strate the potential of our approach with limited input of only one manually
labeled slice (our Jaccard score for high-grade tumor is 0.75, which is a 50% im-
provement over the best fully automatic method). To the best of our knowledge,
this is the first time an optical flow-like calculation has been used to provide a
global 3D structural consistency measure for brain tumor segmentation.

2 Methods

Our proposed semi-automatic segmentation approach labels the volume slice-
by-slice using a constrained Markov random field (MRF) energy minimization
on neighboring slices. In this procedure, the structural correspondence between
adjacent slices is detected by optical flow estimation, which we call structural
trajectories and helps in the iterative pixel labeling as hard constraints.

Given a sequence of slices, S = {si, i = 1 : n}, the whole procedure of the
proposed approach is as follows:

1. Compute structural trajectories TR = {trj , j = 1...M}.
2. Select the most asymmetric slice simax .
3. Label pixels in simax as tumor, edema, or background manually.
4. In simax+1 to sn and simax−1 to s1, label pixels slice-by-slice with Alg. 1.

2.1 Slice Selection by Asymmetric Area Detection

Consider a 3DMRI brain image, Img.We first flip it sagittally, yielding Imgmirror

and then refine it with a non-rigid 3D registration [14] to the original Img. We
then compare the refined flipped image Imgr to Img to look for regions of high



Semi-automatic Brain Tumor Segmentation 569

Algorithm 1. Sequential Optimization on Three Consecutive Slices

Input: Three consecutive slices, {si, sk, s2k−i}(k = i± 1). Labels of pixels in si.
Output: Labels of pixels in sk

1: Estimating the intensity distributions on si with GMM
2: Selecting some pixels in sk to label by estimating the constraints between si and

sk. Calling the set of these pixels Consk (Sec. 2.3, 2.4)
3: Labeling pixels in sk \Consk by MRF optimization on Ji+1 = {si, sk, s2k−i} with

hard constraints on the labeled pixels. (Sec. 2.4)

asymmetry. Concretely, for pixel p ∈ Img(x, y, z), let I(p) be its feature vector
(4D MRI). To define Asym(p), we measure local asymmetry of p:

Asym(p) = minq∈N(p)‖I(p)− Imgr(q)‖ (1)

where, N(p) is the neighborhood of p. We use Otsu’s Method [15] on Asym(p),
p ∈ I, resulting in the threshold θAysm and define the most asymmetric slice:
imax = argmini

∑
p∈si

1(Asym(p) ≥ θAysm), where 1(·) returns 1 if the argu-
ment is true and 0 otherwise.

2.2 Annotation

For manual annotation of the selected slide, we have developed an interface that
allows the human to make labels (Tumor, Edema and Background) in all four
channels. The interface supports drawing rectangles and curves with the mouse.
When a pixel is labeled in one channel, it will be labeled in all the other three
channels in the same time in the interface. This approach has been a minimal
burden on the user as the asymetric slice typically finds large tumor and edema
regions and at the same time, our method is robust to minor errors in initial
labeling (see Sec. 2.4 for details). A novice annotator with no background on
medicine spends about 2–4 minutes (used in this paper).

2.3 Structural Trajectories

Fig. 1. Example
trajectories

To exploit the 3D structural consistency of the MRI volume,
we develop a method to constrain the ultimate pixel label
problem based on tracking voxels through the volume, which
we call structural trajectories. Ultimately, these will form con-
straints for our MRF formulation (i.e., linking a tumor pixel in
one slice to the corresponding tumor pixel in the next slice, if
it exists, and analogously for the other types of tissue). We use
an optical flow algorithm [16] to track points between neigh-
boring slices by successive registrations, resulting in spatially
dense trajectories, capturing the global correspondence of pix-
els over the whole volume.

First, we register neighboring slices by minimizing intensity and gradient pixel
matching scores [17]. Given a sequence of slices S = {si, i = 1...n}, define a struc-
tural trajectory to be a sequence of pixels: trj = {pjt |pjt ∈ st, t = t0...t1, 1 ≤ t0 ≤
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Algorithm 2. Over-Segmentation Based Local Consistency

Input: Jk = si, sk, s2k−i

1: for label1 ∈ {tumor, edema, background} do
2: Defining slabel1i , such that I(slabel1i (x, y)) = I(si(x, y)) ∗ δ(f(x,y) == label1)
3: Defining J label1

k = {slabel1i , sk, s2k−i}
4: Making over-segmentation on J label1

k , resulting in a set of segments, SEGlabel1 =
{Seglabel1j , j = 1...T} using the method of [18] with the implementation of [19]

5: Defining Llabel1
k = {p ∈ sk|∃[Seg1 ∈ SEGlabel1, q ∈ si], s.t. fq == label1, p ∈

Seg1, q ∈ Seg1}
6: end for
7: Cons1tumor

k ← Ltumor
k \ (Ledema

k ∪ Lbackground
k )

8: Cons1edema
k ← Ledema

k \ (Ltumor
k ∪ Lbackground

k )

9: Cons1background
k ← Lbackground

k \ (Ledema
k ∪ Ltumor

k )

t1 ≤ n}. Trajectories hence capture slice-to-slice pairwise pixel correspondence
(Fig. 1), even if the pair of pixels are not neighboring. In a brain MRI 3D image,
a point trajectory refers to a sequence of physical points in brain which inten-
sities are successively similar. We use the point tracking with forward-backward
checking method to compute the trajectories. To the best of our knowledge,
this is the first time an optical flow-like computation has been used to enforce
structural consistency in 3D MRI brain tumor segmentation.

2.4 Constrained MRF Pixel Labeling

Given the label of pixels of si, we define a traditional Markov random field on
pixels of Jk = {si, sk, s2k−i}. (k = i± 1). In this pixel labeling problem we have
a 3D image Jk with a 6-connected neighborhood system N and a set of labels
L = {tumor, edema, background}. A labeling f assigns a label fp ∈ L. The
feature vector of p is defined as I(p). The goal is to find a labeling minimizing
an energy function of the form,

E(f) =
∑

p∈Jk

Dp(fp) +
∑

(p,q)∈N

Vpq(fp, fq) (2)

where Dp(fp) = −log(P (I(p)|fp)) is the data term and smoothness is

Vpq(fp, fq) = Smoothness(fp, fq)× exp(−α ∗Dis(I(p), I(q), Σ)) (3)

where Smoothness is a 3× 3 non-negative matrix, α is a positive scalar, Dis(·)
is Mahalanobis distance, Dis(x, y,Σ) =

√
(x− y)TΣ−1(x− y). Σ is computed

with the training data.

Estimation of Intensity Distribution: Using the labeled pixels in si as train-
ing data, we model the node-class likelihoods P (I(p)|fp) as a Gaussian mixture
(GMM). Let Σ be the covariance matrix of {I(p)|p ∈ si, fp == background}.
Estimation of Constraints: With the constraints between si and sk, we use
two different methods to select two sets of pixels in sj to label; here a constraint
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Algorithm 3. Local Modification of Structural Trajectories

1: for q ∈ si do
2: NEAR(q) = argminp∈sk(‖I(p)− I(q)‖|pre(p) ∈ N(q)))
3: end for
4: for p0 ∈ sk do
5: voter 1(p0) = {q ∈ si|p0 = NEAR(q)}
6: cr(p0) = argminq∈voter 1(p0)(‖I(p)− I(q)‖)
7: discr(p0) = ‖I(p0)− I(cr(p0))‖
8: voter(p0) = {q ∈ voter 1(p0)|}
9: end for
10: for label1 ∈ {tumor, edema, background} do
11: Cons2label1k = {p ∈ sk|∀[q ∈ voter(p)], fp = label1}
12: end for

means that we will fix the label of the pixel during inference use it to propagate
the labels to neighboring unconstrained pixels (see Sec. 2.5 for details).

Erosion-like Processing with Over-Segmentation: The basic idea is that if a

Fig. 2. Local modi-
fication of structural
trajectories

pixel is grouped (in the over-segmentation) with other
pixels of different labels on si, then its labeling has a
high uncertainty and it should hence not be selected as a
hard-constraint, which makes our method robust to mi-
nor errors in the labeling. The estimation process is per-
formed according to Alg. 2.
Local Modification of Structural Trajectories: Structural-
trajectories cross slices and there is strong correspon-
dence between the pixels in the same trajectory. We
make a local modification of these trajectories to se-
lect some pixels in sk to label. For a pixel p0 ∈ sk,
let pre(p0) be the pixel in si and in the same trajec-
tory with p0. Obviously, p0 is likely to have the same
label with pre(p0). Let voter(p0) be the set of pixels in
si that have the same label with p0. Define Cons2label1k

as the set of pixels in sk that we select to label as label1.
Alg. 3 shows how to compute Cons2label1k and Fig. 2
gives a visualization. We then intersect the two con-
straint sets, Conslabel1k = Cons1label1k ∩Cons1label1k where
label1 ∈ {tumor, edema, background} and Consk = ∪Conslabel1k , as a conserva-
tive step since these will be used as hard constraints in the MRF optimization
(all pixels in Conslabel1k are given label label1), which we discuss next.

2.5 Optimizing MRF with Hard Constraints

In Jk = {si, sk, s2k−i}, we have pixels in si ∪Consk labeled. Hence, the Markov
random field on Jk is constrained by the labeled pixels. We implement these
hard constraints through with the following MRF conversion. We define Hk =
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si ∪ Consk, J
H
k = Jk \ Hk. We can define a new MRF on JH

k with the same
neighborhood system N , which has no hard constraints. To make the two MRFs
equivalent, we define a new energy function based on the original one in Eq. (2):

EH(fH) =
∑

p∈JH
k

DH
p (fH

p ) +
∑

(p,q)∈N

V H
pq (f

H
p , fH

q ). (4)

DH
p (fH

p ) = Dp(f
H
p ) +

∑

(p,q)∈N,q∈H

Vpq(f
H
p , fH

q ) (5)

V H
pq (f

H
p , fH

q ) = Vpq(f
H
p , fH

q ) (6)

It is easy to prove, if ∀p ∈ JH
k , fp = fH

p ,then EH(fH) = E(f). Hence, we can

optimize E(f) on Jk by optimizing EH(fH) on JH
k . Our MRF is a conventional

multi-class MRF, we hence optimize with the alpha-expansion graph cut [20].

3 Experiments and Results

Data Set: We evaluate our method on 2012 BRATS Training Data [3], which
is now the standard benchmark for brain tumor segmentation research. This
dataset contains 30 cases from patients with high- and low-grade gliomas. The
data has four channels, T1, T2, T1C and FLAIR; the feature I(p) in our experi-
ment is hence a 4D vector. The typical volume size is about 130× 170× 170. We
also evaluate our method on 2012 BRATS Challenge Data [3], which contains
11 high- and 4 low-grade gliomas from patients, and compare the result with a
state-of-the-art semi-automatic method, Tumor-cut [9]. The gold standard labels
are not given and DICE scores of Tumor and Complete Tumor(Tumor+Edema)
are computed by an online evaluation infrastructure (hence we avoid a bias by
the human annotator, who has never seen the gold standard). The DICE Scores
of [9] are given by 2012 BRATS [3].

Table 1. Smoothness term

Smoothness bg tumor edema

bg 0 2 1

tumor 2 0 1

edema 1 1 0

Parameters: The MRF parameter α is set
to 0.001 and Smoothness is given by Table 1
based on empirical experiments.

Baselines and Metrics: We use the Jac-
card and DICE metrics in our evaluation. j∗

refers to our method. We define a set of ap-
propriate baselines: to evaluate the hard constraints from the structural tra-
jectories and the over-segmentation, denote the baseline without any hard con-
straints as jB. We also assess the value of the structural trajectories, which are
global through the whole volume, with respect to the local over-segmentation
constraints; jL uses only the local over-segmentation. We follow the exact eval-
uation regime specified in [3].

Results: We show the quantitative results in Table 2. As a point of comparison
to the current state of the art fully automatic method, we also compare our
results to supervised automatic method [21] on the same dataset (denoting it
jA), which won the first prize in the BRATS Challenge 2012 [3]. Although this
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Table 2. Comparative Jaccard scores on BRATS Training Set and DICE scores on
BRATS Challenge Set: our method (j∗), no hard constraints (jB), no structural trajec-
tories (jL), the best fully automatic method [21] from [3] (jA), and the state-of-the-art
semi-automatic Tumor-cut(jT ) [9]

BRATS Training Set BRATS Challenge Set
Tumor Edema Tumor Complete tumor

jB jL j∗ jA jB jL j∗ jA j∗ jT j∗

High-grade 0.121 0.653 0.750 0.500 0.113 0.451 0.629 0.450 0.683±0.242 0.694 0.835±0.089
Low-grade 0.072 0.564 0.657 0.360 0.050 0.144 0.215 0.230 0.563±0.345 0.324 0.848±0.087

comparison will clearly favor our semi-automatic method, we show it to get a
sense of what value our approach yields. Note that not all of the semi-automatic
methods in Table 2 outscore the automatic counterparts. The results clearly
demonstrate that the proposed semi-automatic method, which requires only one
slice to be labeled by a human, outperforms the best fully automatic method
[21] by a significant margin on all cases except the low-grade edema class, which
is known to be challenging. The results also indicate the value of both the local
over-segmentation constraints and the global structural trajectories. The average
runtime of one case is about 5 minutes in Matlab. Fig. 3 shows an example.

Fig. 3. Example results. Top: results of our
method (Tumor: Red; Edema: Green). Mid-
dle: gold standard. Bottom: T1C-MRI.

Failure Modes: Mode 1: In some
cases, especially low-grade cases, tu-
mor or edema is not successive slice-
by-slice. In these cases, because we
cannot estimate the feature distri-
bution accurately and no pixel cor-
respondence is available, our results
may just contain some connected
components of tumor or edema. Mode
2: Let A be a small homogeneous re-
gion contained in slice sk. If its fea-
ture distribution is very different from
any of the feature distribution of tu-
mor, edema or background estimated
by the previous labeled slice si, and it is strongly adjacent to both of two dif-
ferent tissues (e.g. tumor and edema), then the pixel labeling of A by MRF
optimization will not be accurate.

4 Conclusion

In this work, we have proposed a novel semi-automatic brain tumor segmenta-
tion method. We just need to ask for a manual labeling on a single slice, which is
selected automatically based on asymmetry. All the other slices are labeled iter-
atively with the local intensity distribution and both global and local constraints
in a constrained MRF framework. The constraints are extracted automatically



574 L. Zhao, W. Wu, and J.J. Corso

based on an optical flow-like measure, which is the first time such a structural
global measure has been used for brain tumor segmentation, to the best of our
knowledge. Our method does not depend on the assumption that training data
and testing data have similar intensity distribution or similar shape prior, unlike
many existing methods. Our experiments demonstrate that the proposed ap-
proach yields significant improvements over fully automatic methods (e.g., 50%)
in most cases, as expected, and the novel structural constraints greatly improve
the MRF optimization over the conventional MRF labeling.
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