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Abstract. The advent of diffusion magnetic resonance imaging (DMRI)
presents unique opportunities for the exploration of white matter connec-
tivity in vivo and non-invasively. However, DMRI suffers from insufficient
spatial resolution, often limiting its utility to the studying of only ma-
jor white matter structures. Many image enhancement techniques rely
on expensive scanner upgrades and complex time-consuming sequences.
We will instead take a post-processing approach in this paper for res-
olution enhancement of DMRI data. This will allow the enhancement
of existing data without re-acquisition. Our method uses a generative
model that reflects the image generation process and, after the param-
eters of the model have been estimated, we can effectively sample high-
resolution images from this model. More specifically, we assume that
the diffusion-weighted signal at each voxel is an agglomeration of signals
from an ensemble of fiber segments that can be oriented and located
freely within the voxel. Our model for each voxel therefore consists of
an arbitrary number of signal generating fiber segments, and the model
parameters that need to be determined are the locations and orienta-
tions of these fiber segments. Solving for these parameters is an ill-posed
problem. However, by borrowing information from neighboring voxels,
we show that this can be solved by using Markov chain Monte Carlo
(MCMC) methods such as the Metropolis-Hastings algorithm. Prelimi-
nary results indicate that out method substantially increases structural
visibility in both subcortical and cortical regions.

1 Introduction

Diffusion magnetic resonance imaging (DMRI) [3] is a key imaging technique for
the investigation and characterization of white matter pathways in the brain.
It probes water diffusion in various directions and at various diffusion scales
to characterize micro-structural compartments that are much smaller than the
voxel size. However, limited by today’s imaging technique, the typical (2mm)3

resolution of DMRI is too coarse to sufficiently capture the subtlety of neuronal
axons, diameters of which range from 1μm to 30μm [3,9,11]. This causes signif-
icant partial volume effect since the signal collected at each voxel is likely to be
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Fig. 1. Ambiguity Due to Partial Volume Effect. Radically different subvoxel
fiber configurations (red) can result in similar fiber ODF shapes (blue).

due to multiple fascicles that concurrently traverse the voxel. Acquiring images
with resolution higher than the typical (2mm)3, however, is extremely difficult
without incurring unrealistic scan times and causing very low SNR due to re-
duced voxel size [9]. The impact of noise is aggravated in high angular resolution
diffusion imaging (HARDI), which often requires prolonged echo time (TE) to
achieve relatively high diffusion weighting.

In this paper, we propose to harness the rich connectivity information afforded
by DMRI for estimating a generative model that best explains the observed data.
By sampling from this model using a resolution that is higher than the acquisition
resolution, high-resolution images can then be generated. More specifically, we
assume that the diffusion-weighted signal at each voxel is an agglomeration of
signals from an ensemble of fiber segments that can be oriented and located
freely within the voxel. Our model for each voxel therefore consists of an arbitrary
number of signal generating fiber segments, and the model parameters that need
to be determined are the locations and orientations of these fiber segments.

Solving these parameters is an ill-posed problem. For example, Fig. 1 illustrates
that, due to the symmetrical nature of diffusion-weighted MR measurements, the
resulting fiber orientation distribution functions (ODFs) are symmetric and do
not distinguish between curving and fanning fiber configurations. Put differently,
even though the fiber segments that form the fibers traversing this voxel are lo-
cated and oriented in radically different configurations, the signal observed within
this voxel cannot be used to disambiguate between the configurations, let alone
be used to estimate the configurations of the fiber segments. One viable solution
to this is to gather information from neighboring, anatomically connected voxels
to regularize the problem. The continuous nature of the fiber trajectories provides
subvoxel information that can help super-resolve the voxel. This provides a pow-
erful mechanism that allows us to collapse measurements across multiple voxels
to estimate micro-structural properties with spatial resolution that is finer than
the voxel dimensions. We will show that the associated problem can be solved
by using the Metropolis-Hastings algorithm [2, 5], a Markov chain Monte Carlo
(MCMC) method that is well suited for solving high-dimensional problems.
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2 Approach

We assume that the signal at each voxel is an agglomeration of signals from con-
stituent fiber segments that reside within the voxel. Formally, denoting the signal
at location x and gradient direction g as E(x,g) = S(x,g)/S0(x), we define the
generative model of this signal in the form of spatio-angular decomposition:

E(x,g) =
∑

i

G(x,xi)Ei(g) + ε(x,g) s.t. M. (1)

Our task is to solve for the parameters of model M by minimizing error ε(x,g)
and at the same time imposing some form of regularity on the solution, i.e,

min
M

[Θ(M)] = min
M

⎧
⎪⎨

⎪⎩

∫

Ωx×Ωg

|E(x,g) −
∑

i

G(x,xi)Ei(g)|2dxdg + γΦ(M)

⎫
⎪⎬

⎪⎭
. (2)

Here G(x,xi) = e−|x−xi|2/σ2

models the smoothing effect owing to signal averag-
ing and Φ(·) is a regularization term that enforces a certain degree of cross-voxel
smoothness in the model M, which encodes the fiber configuration. The pre-
dicted signal is generated via an ensemble of constituent signals {Ei(·)}, each
assumed to be generated by the i-th fiber segment located at xi. γ is a tun-
ing parameter that balances the two terms. The L2-norm is evaluated over all
locations (denoted by set Ωx ⊂ R

3) and gradient directions (denoted by set
Ωg = S

2), i.e., the position-orientation space (POS). The goal here is to deter-
mine the parameters (i.e., locations and orientations) of the fiber segments that
will result in a configuration that can best explain the observed signal E(x,g).
Unlike approaches such as spherical deconvolution [10] that seek to decompose
the signal at each voxel on the S2 domain; our framework seeks a R

3×S
2 decom-

position. The additional spatial component provides sub-voxel information that
is important for resolution enhancement. Note that since we are in practice only
concerned with white matter, the observed and predicted signals in (2) are first
centralized by removing their means so that isotropic diffusion will not affect
the outcome; a similar approach was used in [4, 7].

2.1 Signal Generating Fiber Segments

×xi
e−i

e+i

vi

li

Fig. 2. A Fiber Segment.
The signal at each voxel is as-
sumed to be an accumulation
of signal generated by an en-
semble of fiber segments.

Our method assumes that an arbitrary number
of fiber segments can reside within a voxel space.
Each fiber segment is represented by a cylinder
that contributes a signal typical of parallel fibers
within the voxel it resides. Each cylinder (see Fig-
ure 2) is defined by the tuple hi = (xi,vi, li, di).
The three-dimensional vector xi specifies the cen-
ter of the cylinder, and vi is a unit vector that
defines its orientation. The length li and diameter
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di are predefined and are identical for all cylinders (i.e., li = l, di = d, ∀i). The
two ends e+i and e−i of the cylinder hi are determined by e+i = xi +

li
2 vi and

e−i = xi − li
2 vi. The cylinders can be connected at the ends, e.g., e+i = e−i+1

and e−i = e+i−1. Each fiber segment i is assumed to generate signal based on a

single-tensor model, i.e., Ei(g) = we−bgTDig, where b is the diffusion weighting.
Di = λ1viv

T
i + λ2I denotes a diffusion tensor with diffusivities λ1 and λ2 and

principal diffusion direction vi, which is equivalent to the orientation of the fiber
segment. Constant w ∈ R

+ controls the amount of signal contribution from each
fiber segment.

2.2 Fiber Continuity as Regularization

The regularization term Φ(M) is important to ensure that the otherwise ill-
posed minimization of Θ(M) in (2) is tractable. The model M here consists of a
set of fiber segments H = {hi} as well as their connections E = {(eαi

i , e
αj

j )} with
α ∈ {+,−}. Smooth transition in both location and orientation is expected from
fiber segments that are connected. Similar to [8], this is enforced by defining

Φ(M) =
∑

(e
αi
i ,e

αj
j )∈E

1

l2
(||eαi

i − x̄ij ||2 + ||eαj

j − x̄ij ||2
)− L, (3)

where x̄ij =
xi+xj

2 is the midpoint of the line connecting the centers of the i-th
and j-th fiber segments. Parameter L controls the likeliness of connections. A
large L causes two segments to be connected with higher likeliness. The first two
terms of the above equation encourages the fiber segments to be close to each
other, but not closer than the length of the segments. The fiber segments are
also encouraged to be aligned by penalizing the misalignment of vi and vj .

2.3 The Metropolis-Hastings Algorithm

We minimize Θ(M) in (2) by utilizing the Metropolis-Hastings algorithm [2,5].
This is equivalent to maximizing the posterior distribution P (M|D). That is, we
need to determine the most probable M given the observed data D. The core
idea of the Metropolis-Hastings algorithm is to update the model from M to
M′ based on a proposal distribution Q(M′|M) and accept the model update
with probability min(1, R), where R is the so-called Green’s ratio

R =

(
P (M′|D)

P (M|D)

) 1
T Q(M|M′)
Q(M′|M)

. (4)

Temperature T is progressively lowered in a manner similar to simulated anneal-
ing so that the estimated posterior distribution can progressively become sharper
and more defined. The algorithm works best if the proposal density Q(M′|M)
matches the shape of the target distribution P (M′|D) from which direct sam-
pling is difficult, that is Q(M′|M) ≈ P (M′|D). We follow the approach outlined



Resolution Enhancement of Diffusion MRI Data 531

in [8] to construct a proposal distribution. The modelM is allowed to be modified
by creation/deletion, connection/disconnection, and shifting of fiber segments.
For more details, please refer to [8].

2.4 Generating High-Resolution Images

Once the optimal model M∗ has been determined, high-resolution data can
be sampled from the model using a grid with resolution (e.g., (1mm)3) that is
higher than the acquisition resolution. More formally, the sampled signalE′(x,g)
is obtained as

E′(x,g) =
∑

i

G′(x,xi)Ei(g) s.t. M∗, (5)

where G′(x,xi) is the same function as G(x,xi), but with the bandwidth σ
reduced according to the up-sampling factor to reflect the reduced voxel size and
the fact that the sampled signal should now come from a smaller neighborhood,
in line with the actual MR acquisition mechanism. This in effect reduces the
blurring effect associated with the larger voxel size and hence helps produce a
super-resolved version of the data.

A scalar image indicating the anisotropy at each location can be generated
with the help of (5). This can be achieved by considering the anisotropic energy
of the fiber ODFs [10], i.e.,

A(x) =

∫

Ωg

E′(x,g)⊗H(g)dg =
∑

i

G′(x,xi)

∫

Ωg

Ei(g)⊗H(g)dg, (6)

where ⊗ denotes the spherical deconvolution operator, and H(g) is the response

function of a directionally coherent fiber bundle. If we let H(g) = we−bgTDg,
where D = λ1vv

T+λ2I with an arbitrary v, then (6) gives A(x) ∝ ∑
iG

′(x,xi).
Essentially, this implies that the anisotropic energy A(x) at each location x can
be evaluated by a weighted count of fiber segments in the vicinity of x. On
the surface, this approach resembles track-density imaging (TDI), as reported
in [1]; however, in TDI no signal model is attached to the fiber segments and an
arbitrarily huge or tiny number of fibers are allowed to transverse each voxel.
This makes interpretation of the fiber count based image contrast generated by
TDI very difficult.

3 Experimental Results

We report here preliminary results from our evaluation of the proposed tech-
nique using two different in vivo datasets, one acquired at the common (2mm)3

resolution, the other at (1mm)3 resolution.

3.1 Materials

Diffusion-weighted images for an adult subject were acquired at the typical
(2mm)3 resolution using a Siemens 3T TIM Trio MR scanner. Diffusion gradi-
ents were applied in 120 non-collinear directions with diffusion weighting
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Fig. 3. Results for (2mm)3 Data. Using our technique, the (2mm)3 data are en-
hanced to (1mm)3. The fractional anisotropy images are shown for the original data;
the anisotropic energy images are shown for the enhanced data. The images in the sec-
ond and fourth rows are closeup views of the images in first and third rows, respectively.

b = 2,000 s/mm2. An additional set of high-resolution (1mm)3 diffusion-weighted
images were acquired from a different adult subject using the same scanner with
the acquisition technique reported in [6]. Diffusion gradients were applied in 42
non-collinear directions with diffusion weighting b = 1,000 s/mm2.

3.2 Parameters

Setting the parameters of our algorithm to the following values was found to
yield reasonable results. Regularization tuning parameter: γ = 1; tensor model
parameters: bλ1 = 1, bλ2 = 0; the weight of each fiber segment: w = 0.0018;
the smoothing bandwidth: σ = d = 1mm; the length of each fiber segment: l =
3mm; the connection likelihood parameter: L = 10; and the initial temperature:
T = 0.1, which was decreased to the final temperature T = 0.001 in 5 × 107

iterations. More details on how to set these parameters can be found in [7, 8].
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Fig. 4. Results for Simulated (2mm)3 Data. The high resolution (1mm)3 data
(left) were down-sampled by averaging every 8 adjacent voxels to simulate the (2mm)3

data (middle), which were then enhanced to the resolution of (1mm)3 (right) by using
our technique.

3.3 Results

For preliminary evaluation, we applied our technique to the (2mm)3 data and en-
hanced the resolution to (1mm)3. The results, shown in Fig. 3, indicate that struc-
tural visibility can be significantly improved by using the proposed technique.
Structures not visible in the low resolution becomes visible after enhancement.

For better evaluation of the proposed technique, we down-sampled the (1mm)3

data by averaging every 8 adjacent voxels to simulate a (2mm)3 version of the
data. This simulated low-resolution data were then enhanced using our technique
to become (1mm)3. The results, shown in Fig. 4, indicate that the resolution
enhanced data retains most of the structures in the original high-resolution data.
It can also be observed that the enhanced data are generally less noisy.

4 Conclusion

We have presented a method to learn a generative model for producing high-
resolution DMRI data. The model consists of a set of fiber segments that are
configured in a way that best explains the observed data. The high-resolution
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data are generated by sampling from this learned model using a grid with res-
olution that is higher than the acquisition resolution. Even though the results
reported were preliminary, they do demonstrate that the proposed method is
effective and produces reasonable results.
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