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Abstract. The reliable estimation of fiber orientation distributions from diffusion-
sensitized magnetic resonance imaging is an important processing step for reveal-
ing structural connectivity in the human brain. Fiber orientation distributions are
usually represented in spherical harmonic (SH) domain, but many modern spatial
regularization techniques were not yet formulated in SH-domain such that they
cannot benefit from the well known advantages. In this article we propose a novel
SH-formulation of the contour enhancement propagator (fiber continuity) which
enables to implement a variety of processing steps in SH-domain.

1 Introduction

Magnetic resonance imaging (MRI) has the potential to visualize non-invasively the
fibrous structure of the human brain white matter [5]. Based on the directional depen-
dency of water diffusivity in fibrous tissue it is possible to reveal underlying connec-
tivity information. There are numerous methods for estimating orientation distributions
on the basis of the diffusion-weighted MR-signal. We will focus on spherical decon-
volution [8], which is one way to estimate the so called fiber orientation distributions
(FOD) on the basis of the diffusion-weighted MR-signal. The idea is based on a model-
driven deconvolution scheme to turn the diffusion weighted MR-signal into a FOD.
Fiber orientation distributions are usually represented in spherical harmonic (SH) do-
main. However, sophisticated spatial regularizers based on R

3 × S2-diffusion [1,2,3,6]
are difficult to implement in SH domain (apart from the simple isotropic ones [4]). They
all rely on an equiareal discretization of the two-sphere S2. Indeed, there are implemen-
tations [3] that use spherical harmonics as an intermediate S2-interpolation scheme, but
they cannot benefit from the well-known advantages of the spherical harmonic repre-
sentation such as the compact and memory efficient storage, the analytic and efficient
computations of S2-convolutions, and the closeness under rotations. In this article we
overcome these restrictions by showing how the generators of diffusion and convection
on R

3×S2 can be described and implemented in terms of spherical harmonics and how
the spherical discretization as proposed in [3,6] can be avoided.

2 Theory

We are interested in solving or propagating a partial differential equation of the form
∂tφ(r,n, t) = Hφ(r,n, t) where φ is a function (typically the FOD) on R

3 × S2 and
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H a linear differential operator in the orientation n ∈ S2 and position r ∈ R
3. The

orientation n corresponds the local fiber direction at location r in the brain. In [3] it was
shown that, if H generates directed diffusion/convection, then it is a linear/quadratic
form in n�∇ (convection and anisotropic diffusion) and linear in Δ = ∂2

x + ∂2
y + ∂2

z

and J 2, which denotes the Laplace-Beltrami operator on the two-sphere. Our goal is to
understand the action of the generator H , if the field φ is written in terms of a spherical
harmonics expansion

φ(r,n) =

∞∑

j=0

f j(r)�Yj(n) =

∞∑

j=0

m=j∑

m=−j

f j
m(r)Y j

m(n)

where the spherical tensor fields f j are obtained by the projections f j = 1
2j+1 〈Yj , φ〉,

where Yj are semi-Schmidt normalized spherical harmonics. Hence we are interested
in matrix elements Ĥjm

j′m′ = 〈Y j′
m′ , HY j

m〉 of H in spherical harmonic representation

such that the propagating equation can be written as ∂tf j
m(r, t)=

∑
j′,m′ Ĥ

jm
j′m′f

j′
m′(r, t)

where Ĥjm
j′m′ is a differential operator in r, but purely algebraic in the orientation co-

ordinate. The spherical Laplace-Beltrami operator is well known in this representa-
tion 〈Y j

m,J 2φ〉 = −j(j + 1)f j
m. Also for the spatial Laplacian Δ the result is trivial

〈Y j
m, Δφ〉 = Δf j

m (see [7]). But for the directed convection n · ∇ and the directed
diffusion (n · ∇)2 generator the results are more intricate. In our companion report [7]
we give the general proof for SE(3) diffusion, but state here the more simple case for
R

3 × S2. For the convection generator one finds

〈Y j
m, (n · ∇)φ〉 =

∑

j′=−1,1

m=m′+q

2j′ + 1

2j + 1
〈jm|j′m′, 1q〉〈j0|j′0, 10〉 ∂1

qf
j′
m′ (1)

where ∂j
m = Rj

m(∇) is the so called spherical derivative operator, which is a j-
homogeneous differential as the solid harmonicRj

m(r)=rjY j
m(r/r) is a j-homogeneous

polynomial. The 〈jm|j′m′, 1q〉 are the so called Clebsch Gordan coefficients, which are
just real numbers. The sum runs over the indices j′,m′ and q, but note that due to the
selection rules of the Clebsch Gordan coefficients only very few terms remain (at most
6). On the other hand the diffusion generator takes the form

〈Y j
m, (n · ∇)2φ〉 = Δ

3
+

2

3

∑

j′=−2,0,2

m=m′+q

2j′ + 1

2j + 1
〈jm|j′m′, 2q〉〈j0|j′0, 20〉 ∂2

qf
j′
m′ (2)

Again the sum runs over j′,m′ and q and can contain at most 10 terms.

Spatially Regularized Spherical Deconvolution. The goal of spherical deconvolution
is to find a FOD φ such that ||Fφ− S||2 is minimized. Here S is typically the diffusion
weighted measurement normalized by the b0-image. The operator F denotes the spher-
ical convolution with the so called fiber response function. As F is highly non-regular
a regularizer is needed. In this article we consider the contour enhancement [3] regu-
larizer (also called fiber continuity [6]) RFC(φ) = λ

∫
(n · ∇φ)2 dxdn that prevents
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‘arbitrary’ smoothing and preserves and emphasize the fibrous nature of the data. In-
stead of smoothing isotropically like done in [4] the smoothing takes place only along
the current fiber direction. The idea behind is that a fiber which goes through voxel r
with direction n is very likely to go also through voxel r+ εn for some small ε.

The choice of regularization strength is a crucial issue. We found that too strong
regularization emphasizes discretization artifacts. On the other hand too low values lead
to less stable results. We found by a simple visual inspection of a simulated crossing a
value of λ = 0.005 is a good trade-off between stability and accuracy.

Optimization and Implementation. In order to find the optimum of Jreg = ||Fφ −
S||2+RFC(φ), one has to compute its derivative and set it to zero. This leads to (F�F−
λ(n · ∇)2)φ = F�S. The second term of the equation is formulated with the proposed
SH representation from equation (2) and solved by an ordinary conjugate gradients
(CG) scheme. The operator F is simple to implement in terms of spherical harmonics,
because it is a diagonal matrix. For details about the discretized sphere (512 directions)
approach we refer to our companion report [7]. For both methods the CG algorithm was
iterated 100 times, which was enough for convergence. For initialization a ’zero’ FOD
was used.
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Fig. 1. Two simulated crossing situations to compare the SH representation with the angular
discrete version. The simulation was performed with 64 gradient directions at a b-value of
1000s/mm2 and with a diffusion coefficient of 10−3mm2/s
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3 Experiments

The goal of the experiment is to compare the proposed spherical harmonic represen-
tation with the discrete angular representation of the fiber orientation distributions.
Therefore, we simulated the MR-signal of a crossing region with 64 gradient direc-
tions. The signal was simulated by using the standard exponential model Snfib(n) =

e−bD(n·nfib)
2

, that is, no diffusion perpendicular to a fiber is assumed. We have cho-
sen bD = 1, which emulates a b-value of 1000s/mm2 and a typical diffusion coeffi-
cient for the human brain. The generated signal was distorted by Rician noise Snoisy =√
(S + nreal)2 + n2

imag, where nreal and nimag are normally distributed real numbers with

standard deviation σ. The signal-to-noise ratio is defined as SNR = 1/σ, that is, the
SNR is calculated with respect to the b = 0 measurement. The crossing was created
on a 24× 24 voxel grid, where the tracts of the crossing are on average 5 voxels thick.
To get an impression look at Figure 1. To measure the performance of the deconvolu-
tion method, the local maxima of the estimated FODs are extracted and compared to
the ground truth direction (see [7] for details). A ground truth direction is said to be
detected, when it is in a range of 10◦ from a detected direction. To measure the per-
formance we used precision, recall and the f-score1. The precision rate reflects how
many of the directions detected by the algorithm are true fiber directions, on the other
hand, the recall rate gives the percentage of true fiber directions that were detected by
the algorithm. The f-score is just a measure reflecting the trade-of between recall and
precision. To generate the performance measures the simulations were repeated 100
times.

Method Comparison and Discussion. In Figure 1 we visually compare the spherical
harmonic implementation for a cutoff of L = 8 with the discrete version with 512 di-
rections on the sphere. We consider a crossing angle of 35◦ and 45◦. For both situations
one fiber bundle direction was chosen along the underlying Cartesian coordinate axis.
For the larger crossing, which is easier to resolve, we assumed a relatively low SNR of
7. For this case one can see that the discrete version is more susceptible to noise than the
spherical harmonic version, which is not astonishing due to the implicit regularization
by the finite SH-cutoff of L = 8. For the smaller crossing angle of 35◦ a higher SNR
of 20 was assumed. In this case a SH-representation of L = 8 is nearly at its limits
to discriminate between both directions, while the discrete version can still well distin-
guish. Further, one can observe that for both methods the FODs along the horizontal
Cartesian axis are sharper than along the skew axis. But this effect is more prominent
for the discretized version than for the spherical harmonic representation.

In Figure 2 we show quantitative results. The crossing was simulated for varying
crossing angles between 30◦ and 90◦. Additionally we varied the absolute pose α of
the crossing. For α = 0◦ the horizontal bundle is aligned with underlying x-axis of

1 Let TP be the number of successfully found ground truth directions, let FP be the number
of detections that are not in a range of 10 degree to a ground truth direction, and let FN the
number of ground truth direction that are not detected, then precision = TP/(TP + FP) and
recall = TP/(TP + FN) and f-score = 2 precision · recall/(precision + recall).
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Fig. 2. Detection accuracies in terms of precision/recall and f-score for different crossing angles
and absolute angles α. The measurement was simulated at a SNR = 20 with a value of bD = 1
and 64 gradient directions.

the Cartesian grid. With growing α the whole configuration is rotated clockwise. The
crossing was simulated at an SNR of 20, which is a realistic scenario. As a baseline ex-
periment we show results of the so called Constrained Spherical Deconvolution (CSD)
approach [9], where an additional positivity constraint is used to obtain more stable
results (original implementaion obtained by the author). Apart from the CSD approach
the results obviously depend on the absolute angle of the configuration due to the un-
derlying Cartesian voxel grid. The discrete approach has advantages for small crossing
angles, but suffers from a more severe dependency on the absolute orientation of the
configuration and less precision. For crossing angles above 45◦ the SH-based approach
solves the task nearly without any error.

In Figure 3 the results are further investigated by scatter plots in the φ, θ-plane. Each
extracted local maxima is represented as a blue dot in the φ, θ-plane, while the true di-
rections are depicted by solid red lines and the tolerance used for quantitative evaluation
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Fig. 3. Scatter plots in the φ-θ plane for the crossing configuration with a crossing angle of 50◦.
The angle φ is plotted along the x-axis, θ along the y-axis of the scatter plots. The intersections
of the thick red lines indicate the expected ground truth directions. The dotted lines indicate the
10◦ detection tolerance. On the left, the results for the configuration with an absolute angle of
α = 0 are shown, on the right the results for α = 15◦ are given.

by dashed red lines. With the same parameters as above a crossing of 50◦ was simulated
and reconstructed by the three methods. The crossing was simulated twice, for an abso-
lute angle of α = 0, i.e. one direction is along the x-axis, and secondly for an absolute
angle of α = 15◦. For α = 0 the SH-based approach is able to perfectly resolve the
direction along the x-axis (φ = 90◦), while the other direction (φ = 40◦) is a bit more
blurry. On the other hand, the discrete approach has severe problems with the φ = 90◦

direction, which explains the lack of precision, i.e. apart from the true direction there
are some additional local maxima that produce false positives. The main reason is the
interplay of the 64 gradient directions and the 512 discrete directions of the FOD. The
effect is reduced by an increase of measurement directions. But also the SH-based ap-
proach has problems when the number of measurement directions is too low. They are
revealed for an absolute angle of α = 15◦. Besides the uncertainty caused by the mea-
surement noise one can observe a systematic bias. For example, for the direction along
φ = 55◦, the center of the distribution is shifted in θ by approximately 5◦. Also for the
other direction the distribution is a bit squeezed. We also found that the main reason is
the low number of measurement directions. For example, for 128 gradient directions the
estimated directions are unbiased. Another way to reduce the effect is to decrease the
expansion cutoff of the spherical harmonic representation. For L = 6 and 64 gradient
directions the estimates do not show a bias. To conclude the differences: both methods
have problems when the number of measurements becomes too low. While the discrete
approach shows scattered, multimodal distributions, the SH-based approach shows a
slight systematic bias but the distributions stay unimodal.

In Figure 4 we show a real world example of the human brain. The setting of the
measurement is nearly the same like in the simulations. A b-value of 1000s/mm2 and
61 gradient directions were used with an isotropic resolution of 2mm. A kernel of the
form Snfib(n) = e−bD(n·nfib)

2

with bD = 1 was used as a model for deconvolution.
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Fig. 4. A real world example of the human brain. A coronal section is shown. Left: results of the
SH-based approach with L = 8, right: the discrete approach with 512 directions.

Figure 4 shows a coronal section in glyph representation. The green rectangle high-
lights a region with the largest differences. The red rectangle shows a regions where the
discrete approach shows a direction which does not appear for the SH-based approach.
Whether the direction is true or not is difficult to say, but the fact that it precisely points
along the x-axis makes it dubious.

Memory Consumption and Running Time. The memory consumption of the SH-
based and discrete approach is easy to compare. We want to consider the above real
world experiment as an example. The whole volume has a size of 96×96×60. Exploit-
ing the symmetry and realness each voxels consumes (L+ 2)2/4 complex numbers in
SH representation, resulting in 50 ·8 bytes for L = 8 and double precision. Overall, one
volume needs 962 · 60 · 50 · 8 = 220 MB. On the other hand, in discrete representation
with 512 direction needs 962 · 60 · 512 · 8 = 2264 MB, which is 10-times more com-
pared to the SH-representation. Recall, that the conjugate gradient algorithm needs four
instances of the volume in memory. The running time is more difficult to compare. The
application of (n · ∇)2 and the spherical convolution H are the important processing
steps. In case of the discrete approach one has to compute for each of the 512 compo-
nents six second order finite differences to get (n · ∇)2φ. For the SH-based approach
one also have to compute six finite differences, but the linear combinations of them to
obtain the final values are more expensive. In practice we found that one application of
(n·∇)2 with 256 discrete directions is comparable to an SH-based application of (n·∇)2

with L = 10. The computation of the operator H is negligible in SH-representation,
while it is the bottleneck for the discrete approach. The running time can heavily dif-
fer depending on the used library. For example, the highly optimized BLAS matrix-
multiplication shipped with MATLAB is 10 times faster than the standard non-optimized
version. To give an example, to reconstruct the above volume with 100CG iteration with
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512 directions takes on a Intel Xeon X7560 @ 2.27GHz about 20 minutes with a highly
optimized multiplication. For comparison, our SH-implementation for L = 8 takes
about 10 minutes on the same machine.

4 Conclusion

We proposed a SH-formulation for a family of diffusion/convection generators that are
of particular interest for the spatial regularization of FODs. The SH-formulation of-
fers advantages in terms of running time and memory consumption and keeps approx-
imately the performance and behavior of the original discrete implementation. While
the discrete implementation tends to produce additional local maxima and spikey dis-
tributions, the distributions of the SH-implementation are more smooth, but shows a bit
worse performance for smaller crossing angles.
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