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Personalized tumor growth model using clinical imaging data is valuable in tumor 
staging and therapy planning. In this paper, we build a patient specific tumor growth 
model based on longitudinal dual phase CT and FDG-PET. We propose a reaction-
advection-diffusion model integrating cancerous cell proliferation, infiltration, meta-
bolic rate and extracellular matrix biomechanical response. We then develop a 
scheme to bridge our model with multimodal radiologic images through intracellular 
volume fraction (ICVF) and Standardized Uptake Value (SUV). The model was eva-
luated by comparing the predicted tumors with the observed tumors in terms of aver-
age surface distance (ASD), root mean square difference (RMSD) of the ICVF map, the 
average ICVF difference (AICVFD) of tumor surface and the tumor relative volume 
difference (RVD) on six patients with pathologically confirmed pancreatic neuroendo-
crine tumors. The ASD between the predicted tumor and the reference tumor was 
2.5േ0.7 mm, the RMSD was 4.3േ0.6%, the AICVFD was 2.6േ0.8%, and the RVD 
was 7.7േ1.9%. 

1 Introduction 

Quantitatively characterizing the tumor spatial-temporal progression is valuable in 
staging tumor and designing optimal treatment strategies. Tumor growth not only 
relies on the properties of cancer cells, but also depends on dynamic interactions 
among cancer cells, and between cells and their constantly changing microenviron-
ment. The complexity of the cancer system motivates the study of the tumor growth 
using mathematical models [1] [2] [3]. Swanson et al. [1] assumed an infiltrative 
growth of the tumor cells, while considering differences in cell diffusion in white and 
gray matter. Clatz et al. [2] modeled locally anisotropic migration patterns by inte-
grating information from diffusion tensor images (DTI). Hogea et al. [3] included the 
mechanical properties of the lesion on surrounding structures to model mass effect. 

All these works use a reaction-diffusion model, originally introduced by Turing 
over 60 years ago, to study cell proliferation and infiltration. In this work, we will 
extend the reaction-diffusion model to incorporate cell metabolic rate based on the 
energy conservation law. The travelling front of the reaction-diffusion model offers 
the benefit that the model prediction (front) can be directly connected with the  
anatomical CT and MRI via the identifiable tumor boundary in the image. However, 
tumor boundary only provides limited tumor physiological information. In this paper, 
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we extract underlying tumor cell fraction in each image voxel using dual phase CT 
image and incorporate it into the growth model. 

In this paper, we target image driven patient specific tumor modeling using routine 
clinical CT and FDG-PET data. To bridge the gap between the model and the imaging 
data, we introduce energy conservation law into the modeling and developed a reac-
tion-advection-diffusion model to incorporate cell proliferation, infiltration, metabolic 
rate and mass effect. We further incorporate intracellular volume fraction (ICVF) de-
rived from dual phase CT data and glucose metabolic rate from FDG-PET (2-[18F] 
Fluoro-2-deoxyglucose positron emission tomography) to measure model physiologi-
cal parameters. 

We evaluate the proposed model on pancreatic neuroendocrine tumor. The only 
work on the pancreatic tumor modeling that we are aware of is [4], in which the  
authors used a compartment model to divide the cell population into three subpopula-
tions: primary tumor cells, metastasis-enabled cells and metastasized cells. The mi-
gration rate between subpopulations and the growth rate and death rate within each 
subpopulation were estimated based on autopsy data. In this paper, we focus on the 
way to combine routine clinical multimodal images to study the growth of the primary 
solid tumor. 

2 Method 

In this section, we first derive a reaction-advection-diffusion model incorporated with 
cell metabolic rate via energy conservation law, and then describe how to adapt the 
model to associate it with routine dual phase CT and FDG-PET. 

2.1 Tumor Growth Model 

According to the tumor logistical growth law presented in [1], the number of the  
newly created cells can be described by, ݀ܰ݀ݐ ൌ ሺ1ܰߩ െ ሻ (1)ܭܰ

where ܰ is the number of cells, a function of time ߩ .ݐ is spatial-temporal invariant 
proliferation rate. This law describes that the tumor grows exponentially at the begin-
ning and then gradually slows down as approaching the carrying capacity ܭ (N<K).  

As a tumor progresses, the parts with sufficient nutrients and oxygen grow faster, 
and those suffering vascular inefficiencies will develop into necrosis, suggesting a 
heterogeneous or spatial-temporal varying proliferation function ߩሺ࢞, -ሻ. The metaݐ
bolic energy conservation law presented by West et al. [5] quantitatively describes the 
relationship between the metabolic energy and the ontogenetic growth, providing the 
theoretical foundation to explore the heterogeneity of the proliferation rate. The ener-
gy conservation law states that the incoming energy ܤሺݐሻ required for tumor growth is 
allocated to two parts,  ܤ ൌ ௖ܤܰ ൅ ௖ܧ ݐ݀ܰ݀  (2)
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where the first term represents the energy to maintain the existing cells and the second 
term represents the energy to create new cells. ܤ௖ is the metabolic rate of a single cell, 
and ܧ௖ is the energy required to create a cell. Both ܤ௖ and ܧ௖ are assumed constant 

during tumor growth. Replace  
ௗேௗ௧  in equation (2) with ܰߩሺ1 െ ே௄ሻ,  

ܤ ൌ ௖ܤܰ ൅ ܰߩ௖ܧ ൬1 െ ൰ܭܰ ֜ ߩ ൌ ܤܭ െ ܭ௖ܰሺܧ௖ܰܤܭ െ ܰሻ (3)

The proliferation rate ߩ in equation (3) is a function of time t. However, in clinical 
practice, ߩ is only available at specific time points when ܤ and ܰ are measurable. 
Thus, we approximate ߩ at time t between 0 and T through linear interpolation, ߩሺݐሻ ൌ ሺ0ሻߩ ൅ ݐܶ ൫ߩሺܶሻ െ ሺ0ሻ൯ߩ ൌ ௄஻బି௄஻೎ேబா೎ேబሺ௄ିேబሻ ൅ ௧் ሺ௄஻೅ି௄஻೎ே೅ா೎ே೅ሺ௄ିே೅ሻ െ ௄஻బି௄஻೎ேబா೎ேబሺ௄ିேబሻሻ    (4)

where B଴,  ଴ܰ and ்ܰ are the measured metabolic rate and cell numbers at time 0 ,்ܤ

and ܶ, respectively. Apply model (1) to each voxel (millions of cells within 1݉݉ଷ) at 
position ࢞, and add a diffusion term as that in the reaction-diffusion model [1] to ac-
count for cancerous cell infiltration into surrounding tissues, leading to a reaction-
diffusion model, ߲߲ܰݐ ൌ ଶܰ׏ܦ ൅ ሺ1ܰߩ െ ሻ (5)ܭܰ

where the first term is the diffusion term, and the second term is the reaction (prolifera-
tion) term. ܦ is the diffusivity or infiltration rate. Equation (5) describes that the rate of 
cell number change equals the sum of the net dispersal of cancerous cells and the net 
proliferation of cancerous cells. Note that both ܰ and ߩ are a function of position  ࢞ and 
time ݐ. The cell number at position ࢞ is not only affected by the proliferation and diffu-
sion (Brownian movement) but also affected by the underlying mechanical deformation 
(so-called mass effect), which is caused by the growing cells impacting on the extracel-
lular matrix. An advection term is added into model (5) to account for the tumor cells 
being displaced as a consequence of the underlying mechanical deformation [3], ߲߲ܰݐ ൌ ଶܰߘܦ െ ׏ · ሺܰ࢜ሻ ൅ ܰߩ ൬1 െ ൰ܭܰ ݊݋݅ݐܿܽ݁ݎ   െ ݊݋݅ݐܿ݁ݒ݀ܽ െ ׏ ݊݋݅ݏݑ݂݂݅݀ · ࣌ ൅ ࢈ ൌ ૙                                                             ݉࣌ ݉ݑݐ݊݁݉݋ ൌ ሺ׏ߣ · ሻ࢛ ൅ ࢛׏ሺߤ ൅ ࢜ ݁ݒ݅ݐݑݐ݅ݐݏ݊݋ܿ                                ሻ்࢛ߘ ൌ ݐ߲࢛߲  ݏܿ݅ݐܽ݉݁݊݅݇                                                                        

           

(6)

where the tumor cell drift velocity ࢜ depends on the displacement vector ࢛ induced by 
the balance between Cauchy stress tensor ો and body force ߣ .࢈ and ߤ are unknown 
Lame’s coefficients in linear elasticity. The body force ࢈ originated from the growing 
cells is proportional to the local gradient of the tumor cell density, ࢈ ൌ െ(7) ܰ׏݌

where ݌ is an unknown positive constant. 
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Model (6) allows the incorporation of cell metabolic rate and accounts for cell pro-
liferation, infiltration, metabolism and mass effect, but not directly connected to clini-
cal imaging data. We will further develop model (6) in the following two sections in 
order to associate the model parameters with measurements from CT and FDG-PET. 
The proposed model accounts for the cell metabolic rate and directly connects to rou-
tine CT and FDG-PET, which makes our model fundamentally novel and different 
from the model in [3].  

2.2 Associate the Model with Dual Phase CT 

Tissues within a voxel are considered to be made of three well known compartments: 
(1) a vascular space through which the blood flows; (2) an extravascular extracellular 
space (EES) which provides the supporting structure of the tissues; and (3) the cellular 
space. The extracellular volume fraction (ECVF) of the studied voxel at position ࢞ and 
time t can be estimated by equation (8) using dual phase CT [6], ܨܸܥܧሺ࢞, ሻݐ ൌ ,࢞௣௢௦௧ሺܷܪ ሻݐ െ ,࢞௣௥௘ሺܷܪ ௣௢௦௧_௣௟௢௢ௗ௣௢௢௟ܷܪሻሺݐ െ ௣௥௘_௣௟௢௢ௗ௣௢௢௟ሻ/ሺ1.0ܷܪ െ ௕௟௢௢ௗሻ (8)ݐܿܪ

where the numerator is the HU enhancement brought by the contrast distributed in the 
extracellular space (EES plus vascular space) of the studied voxel, and the denomina-
tor is the HU enhancement brought by the contrast distributed in the whole space (EES 
plus vascular space plus cellular space) of the reference blood pool voxel. The ratio of 
the HU enhancement is a measure of the fraction of the extracellular space, i.e., ECVF 
because the HU enhancement is proportional to the volume of the space, in which the 
contrast reaches equilibrium. ܷܪ௣௢௦௧ and ܷܪ௣௥௘ are HU of the post-contrast CT image 
and the pre-contrast CT image, respectively. ܷܪ௣௢௦௧_௣௟௢௢ௗ௣௢௢௟ and ܷܪ௣௥௘_௣௟௢௢ௗ௣௢௢௟ are 
average HU of the blood pool of the post-contrast CT and pre-contrast CT, respective-
ly. The hematocrit ݐܿܪ௕௟௢௢ௗ is the volume percentage (%) of red blood cells in blood, 
which varies from patient to patient, but can be measured by the blood sample.  

ECVF’s complement ICVF can be calculated by, ߠሺ࢞, ሻݐ ൌ 1.0 െ ,࢞ሺܨܸܥܧ ሻ (9)ݐ

In equation (6), the cell number ܰ is difficult to be directly measured by CT im-
age. We adapt the reaction-advection-diffusion equation by replacing ܰሺ࢞, ,࢞ሺߠܭ ሻ withݐ ݐߠ߲߲ ,ሻ based on the assumption that all cells have similar volumesݐ ൌ ߠଶߘܦ െ ׏ · ሺ࢜ߠሻ ൅ ሺ1ߠߩ െ ሻ (10)ߠ

where (replace ଴ܰ and ்ܰ in (4) with ߠܭ଴ and ்ߠܭ, respectively) 

ߩ ൌ ଴ܤ െ ଴ߠ଴ܾߠܽ െ ଴ଶߠܾ ൅ ݐܶ ሺ ்ܤ െ ்ߠ்ܾߠܽ െ ଶ்ߠܾ െ ଴ܤ െ ଴ߠ଴ܾߠܽ െ ଴ଶሻ (11)ߠܾ

where ܽ ൌ ܾ ௖ andܤܭ ൌ -௖. Both parameters ܽ and ܾ have specific biological meanܧܭ
ings, representing the energy to maintain ܭ cells and create ܭ cells, respectively.  
Similarly, replacing ܰ in (7) with ߠܭ leads to ࢈ ൌ െߠ׏ܭ݌ ൌ െߠ׏ݍ. 
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2.3 Associate the Model with FDG-PET 

Normally, when the scanning time is longer than 45 min post-injection, the glucose 
metabolic rate ܴܯ௚௟௖ or ܤ can be approximated by [7], 

ܤ ൌ ௚௟௖ܴܯ ൌ 100.0݈ܿܩ · ሻ/ሺݐሺܶܧܲ ݕ݀݋ܾ݁ݏ݋݀ ܥܮሻݐ݄݃݅݁ݓ · ݇/100.0 ֜ ܤ ൌ ௚௟௖ܴܯ ൌ ܿ ൈ ܷܸܵሺݐሻ (12)

where ݈ܿܩ is the glucose concentration in arterial plasma. ܲܶܧሺݐሻ denotes the radioactive 
tracer FDG18 concentration in tissue at time ݐ that is measurable from PET. k is a constant 

that is not dependent on the particular subject being studied. ܿ ൌ ଵ.଴௅஼·௞/ଵ଴଴.଴, a lumped 

unknown parameter. The numerator in (12) is widely used as standardized uptake value 
(SUV), which is proportional to ܴܯ௚௟௖ since both k and LC are constants [7].  

Replace ܤ଴ ܽ݊݀ ்ܤ in equation (11) with ܿ ൈ ܷܵ ଴ܸ and ܿ ൈ ܷܵ ்ܸ, respectively, ߩ ൌ ܷܵߙ ଴ܸ െ ଴ߠ଴ߠߚ െ ଴ଶߠ ൅ ݐܶ ሺ்ܸܷܵߙ െ ்ߠ்ߠߚ െ ଶ்ߠ െ ܷܵߙ ଴ܸ െ ଴ߠ଴ߠߚ െ ଴ଶߠ ሻ (13)

where ߙ ൌ ܿ/ܾ, ߚ ൌ ܽ/ܾ.  
Equation (6) with its reaction-advection-diffusion equation replaced with equation 
(10) constitutes our proposed model (or state equations from an optimal control 
standpoint [8]). The proposed model constitutes the forward problem with unknown 
control parameter ࢍ ൌ ሺߙ, ,ߚ ,ܦ , ߣ ,ߤ  ሻ, which can be estimated by fitting the modelݍ
predicted ICVF ߠ (a function of ࢍ) with the observed ICVF ்ߠ, ࣤሺࢍሻ ൌ න ൫ߠሺ࢞ሻ െ ఆ࢞ሻ൯ଶ݀࢞ሺ்ߠ ൅ ࢍሺߛ െ ሻ࢘ࢍ · ሺࢍ െ ሻ (14)࢘ࢍ

where the first term measures the degree of similarity, and the second term is Tikho-
nov regularization term to recover a locally unique solution close to a reference solu-
tion ࢘ࢍ ൌ ሺݎߙ, ,ݎߚ ,ݎܦ , ݎߣ ,ݎߤ ௥ߙ :ሻ defined asݎݍ ൌ 2.3 ൈ 10ିଷ݃ିଵ · ݈݉ · ௥ߚ ,ଵିݕܽ݀ ൌ 1.9 ൈ10ିଶ݀ܽିݕଵ, ܦ௥ ൌ 0. 13݉݉ଶ/݀ܽߣ ,ݕ௥ ൌ 9310ܲܽ, ௥ߤ  ൌ ௥ݍ ,1034ܲܽ ൌ 200ܲܽ. The refer-
ence solution was derived from literature and was just a rough estimation of the real 
solution. It is not necessary to be accurate since it is only used to define a region in 
which the real solution is located.  ߛ controls the balance of these two terms, which is 
obtained by a trial-and-error strategy. Functional (14) along with model (state) equa-
tions constitutes a coupled PDE-constrained optimization problem, which is solved by 
the one-shot method presented in [8]. 

3 Results 

To study tumor growth, we have developed a dedicated protocol spanning for several 
years to collect patients with pancreatic tumors. The desirable longitudinal data needs 
to satisfy the requirements: 1) the tumor should be big enough (volume > 20mm3) to 
allow us to ignore the error induced by segmentation and registration, 2) at least three 
time points and each time point includes both dual-phase CT and FDG-PET, and 3) 
without any treatments. Usually, a tumor will be surgically removed when it becomes 
sufficiently big. The contradictive requirements 1) and 3) lead to the difficulty to 
obtain desirable data.  
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We evaluate the proposed model by comparing the predicted ICFV and tumor with 
the measured ICVF and tumor at the 2nd follow-up. The predicted ICVF was produced 
by growing the ICVF (using model equation) from the 1st follow-up for the period 
between the 1st and 2nd follow-up with the parameters estimated from the longitudinal 
data at the baseline and the 1st follow-up. The predict tumor is an isosurface extracted 
from the predicted ICVF based on a threshold. Six patients with pathologically con-
firmed untreated pancreatic neuroendocrine tumors were enrolled in our experiment. 
Fig.1 shows the longitudinal post-contrast CT, fused PET/CT, estimated SUV map 
(with decay correction) and the ICVF maps (only the relative heterogeneous ICVF 
region is shown).   

 

Fig. 1. Longitudinal original and intermediate results. The rows correspond with baseline (T=0 
day), 1st follow-up (T=248 days), and 2nd follow-up (T=606 days) and the columns correspond 
with post-contrast CT, fused PET/CT, estimated SUV and ICVF maps. The white bounding 
box highlights the tumor. 

Fig.2 shows the comparison between the reference results of the 2nd follow-up and 
the prediction results of two patients. The first row demonstrates a similar distribution 
of the ICVF map between the reference and the prediction results for both two pa-
tients: cell number decreases from the center to the rim of the tumor. The predicted 
center region (blue) is more homogeneous than the reference part, which might be 
caused by the exclusion of the complex heterogeneous tumor microenvironment in 
our model. The comparison of the isocontours of the ICVF map is shown in the 
second row. The inner most contour shows larger discrepancy, but the outer contours 
agree well with each other, suggesting a more heterogeneous cell distribution in the 
center region of the reference tumor, which also can be observed in the gray scale 
ICVF (the last column of Fig.1). In the third row, we compare the ICVF on the surface 
of the segmented tumor in post-contrast CT of the 2nd follow-up. We focus on this 
surface because it is one that can be identified in the image data with our naked eyes. 
Both patients show similar ICVF distribution and the second patient demonstrated a 
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more homogeneous ICVF distribution on the tumor surface than the first patient. We 
assume the average ICVF on the tumor surface to be the threshold that defines the 
detectable tumor boundary, which makes sense since ICVF is a main factor affecting 
HU of CT. We use this threshold to extract the isosurface (predicted tumor) from the 
predicted ICVF map to compare with the segmented tumor in terms of average surface 
distance and relative volume difference.  

The quantitative evaluation regarding the root mean square difference (RMSD) of 
ICVF map, the average ICVF difference (AICVFD) of tumor surface, the average  
surface distance (ASD) between the predicted tumor surface and the segmented (refer-
ence) tumor surface, and the relative tumor volume difference (RVD, ratio of the vo-
lume difference and the volume of the reference volume) are listed in Table 1, in 
which the RMSD is 4.3േ0.6%, the AICVFD is 2.6േ0.8%, the ASD is 2.5േ0.7 mm, 
and the RVD is 7.7േ1.9%. The predicted ICVF value is slightly large, but the boun-
dary prediction (clinically relevant) is very promising with an average error around 
2.5mm. In fact, there is no work to compare with our work regarding ICVF because 
we are the first to introduce ICVF into the modeling. 

We conducted the global nonlinear non-monotonic sensitivity analysis using ex-
tended Fourier Amplitude Sensitivity Test (eFAST). Both the first order (Si) and total 
order (STi) sensitivity indexes show the biological parameters: ܦ, -are consis ߚ and ߙ
tently higher than the three biomechanical parameters: ߤ,   which suggests the ,ݍ and ߣ
biological parameters affect the ICVF more than the biomechanical parameters. In the 
biological parameters, the diffusion ܦ is highest (Si=0.4206, STi=0.7422), probably 
disclosing the aggressive infiltration of the pancreatic tumor. In the biomechanical 
parameters, ߤ and ߣ dominate the explanation of the variation, which makes sense 
since these two parameters control the stiffness and incompressibility of the tissue. 

 

Fig. 2. Comparison between the reference (the 2nd follow-up) and the prediction of two patients 
regarding ICVF map, isocontour and ICVF of tumor surface 
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Table 1. Quantitative evaluation. ICVF ([min%, max%]), RMSD (%), AICVFD (%), ASD (mm), 
RVD (%).The value in the parenthesis of the ASD is the threshold to extract the predicted tumor 
from predicted ICVF map. ߛ ൌ 0.6. 

Id ICVF Predicted ICVF RMSD AICVFD ASD RVD 

1 [0,73] [0,81] 4.3 2.9 2.1(42.8) 8.3 
2 [0,75] [0,88] 5.2 2.4 2.5(38.1) 7.6 
3 [0,69] [0,65] 4.6 3.1 3.3(34.0) 10.4 
4 [0,75] [0,79] 3.7 1.2 3.1(41.5) 8.2 
5 [0,79] [0,77] 3.8 3.5 1.5(39.2) 4.5 
6 [0,66] [0,78] 4.1 2.2 2.4(32.2) 7.1 ݉݁ܽ݊ േ ݀ݐݏ [0,73േ5] [0,81േ4] 4.3േ0.6 2.6േ0.8 2.5േ0.7 7.7േ1.9 

4 Conclusions and Future Work 

In this paper, we presented a tumor growth model, which is characterized by incorpo-
rating cell metabolic rate into the reaction-diffusion model and being driven by rou-
tine clinical imaging data based on ICVF and SUV. The experiment on pancreatic 
neuroendocrine tumors demonstrated the promise of the proposed model. Other than 
the characteristics of tumor itself such as the aggressiveness measured by the meta-
bolic rate, tumor microenvironment is also essential for the tumor growth. In the fu-
ture, besides dual phase CT and FDG-PET, we will introduce DCE-MRI to measure 
vasculature/perfusion region and FMISO-PET to measure hypoxia region in order to 
capture some parts of the complex tumor microenvironment. 
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