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Abstract. We present a novel image registration method based on
B-spline free-form deformation that simultaneously optimizes particle
correspondence and image similarity metrics. Different from previous B-
spline based registration methods optimized w.r.t. the control points,
the deformation in our method is estimated from a set of dense unstruc-
tured pair of points, which we refer as corresponding particles. As inten-
sity values are matched on the corresponding location, the registration
performance is iteratively improved. Moreover, the use of correspond-
ing particles naturally extends our method to a group-wise registration
by computing a mean of particles. Motivated by a surface-based group-
wise particle correspondence method, we developed a novel system that
takes such particles to the image domain, while keeping the spirit of the
method similar. The core algorithm both minimizes an entropy based
group-wise correspondence metric as well as maximizes the space sam-
pling of the particles. We demonstrate the results of our method in an
application of rodent brain structure segmentation and show that our
method provides better accuracy in two structures compared to other
registration methods.

1 Introduction

The study of brain changes in rodent models of neuropathology and drug expo-
sure has been of increasing interest to the neuroscience community. In contrary to
human studies, rodent models have several advantages, such as a well controlled
environments and access to genetic modifications as well as shorter lifespan.
Magnetic Resonance Imaging (MRI) has emerged as an important modality to
study such rodent brain morphological changes. Non-rigid registration is a cru-
cial tool to process such MRIs providing structural segmentations and enabling
the analysis of group differences.

Several methods have been proposed for the study of rodent brains. Among
those atlas-based registration methods are popularly used. However, a single
atlas-based method has a disadvantage of the introduction of bias that might
cause poor segmentation and dilute the difference between groups [6]. Group-
wise registration method which deals with every subject together can be an
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alternative to reduce the effects of template selection [2]. Since a group-wise
registration method does not require the choice of a template or reference, it is
expected to produce consistent results which means a consistent comparison of
groups.

Motivated by a particle correspondence algorithm [3], a non-parametric and
group-wise surface correspondence method, we propose a novel group-wise image
registration method guided by particles. These particles are distributed inside
a particular region and directly optimized so that each particle will be placed
at corresponding positions across subjects minimizing a group-wise intensity
metric. During this optimization, a B-spline free-form deformation is estimated
for each subject to constitute a common reference frame. The contributions of
the proposed method are following:

1. Unbiased Group-Wise Registration with Implicit Mean: Instead of
choosing a specific template, a common reference frame is estimated from
dynamic particles distributed inside ROIs, i.e. a brain mask. Using the Eu-
clidean mean of those particles, each subject is efficiently registered into a
common space.

2. Computational Efficiency with Particles: Since the number of parti-
cles is fewer than the number of voxels, a common reference frame is more
efficiently computed than other methods [2]. We compensate this sparsity
by considering a local patch for each particle, which also provides robust
performance than single voxel random sampling strategy.

3. Flexibility in Adaptive Processing: In contrary to a regular control
point grid, particles are unstructured and independent each other so that it
is easy to adopt adaptive strategy depending on local context. For example,
particles can be easily placed more densely in salient ares, i.e. edges, by
controlling a single parameter.

As our work is in an early stage, we demonstrate preliminary results of rodent
brain structure segmentation with comparison to two different registration meth-
ods for humans: the spline-based FFD available in Slicer and to SyN available in
ANTS. We show that our group-wise algorithm performs better in different sizes
as well as produces statistically indifferent results with the comparing methods
otherwise.

2 Methods

We propose a group-wise image registration method guided by dynamic particles.
The structure of our method is similar to the surface-based particle correspon-
dence algorithm [3] and can be thought as an extension of the algorithm. The
application of particles in an image domain, however, has never been attempted.
Our method is also uniquely different from the previous one in that we intro-
duce B-spline free-form deformation to associate different subject spaces as well
as deal with local patch information for robust performance.
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2.1 Particle Correspondence with Local Similarity

The main goal of our method is to drive each particle toward a corresponding
position that satisfies two conditions in the mean space: 1) overlapping of parti-
cles and 2) local intensity similarity. The particles are governed by two forces: a
positional coherence force and a force from local intensity similarity.

To describe the motion of particles, we define the particle system P that
comprises N number of subject volumes V = {V 1, V 2, . . . , V N}. For each subject
j, we sample the same n number of particles P j = {pj1, pj2, . . . , pjn} in which
pi = {p1i , p2i , . . . , pNi } is the corresponding particles from each subject. From
these correspondences, an implicit mean space V̄ is estimated from the mean of
particles P̄ =

¯1
N

∑N
j=1 P

j . Our group-wise registration process is formulated to
find an optimal particle configuration p̌ji that minimizes a positional coherence
metric HP (pi) and a local intensity similarity metric HI(pi). The final dense
deformation field Ťj that maps V j to V̄ is derived by taking P j and P̄ as a set
of correspondences.

Correspondence Formulation. By the transform Tj, a particle pji is mapped
to qji ∈ V̄ . Ideally, it is assumed that q1i � q2i � · · · � qNi . Therefore, each
particle of pi should move to the direction where the variance of qi is minimized
as depicted in Figure 1a. In the mean time, if there is local differences in intensity
values, the particles are allowed to deviate from the overlapping position so that
the local variance of intensity values are minimized such that I1(q1i ) � I2(q2i ) �
· · · IN (qNi ) where Ij = Vj(T

−1
j (qi)). To compare similarity among a group, [3]

and [2] approach in similar using entropy. The entropy of a random variable q
with a given p.d.f f(q) is minimized when there is less information in q and
formulated H(q) = − ´ f(q) log(f(q))dq. Denoting the random variable as qi
and Ii respectively for qji and Ij(qji ), the goal is to find the optimal particle
configuration P̂ such that

P̂ = arg min
P j∈Ωj

S(P ) = λP

n∑

i=1

HP (qi) + λI

n∑

i=1

HI(Ii). (1)

Since the number of particles is much smaller than the number of voxels, we
sample a local patch near by a particle qji so that Ij

i = {Iji (1), Iji (2), . . . , Iji (M)},
where M is the number of neighborhoods of qji .

Correspondence Optimization. Given covariance matrices of Σ and Λ that
follows N , we derive HP and HI analytically [7] so that

HP (qi) = −r +
1

2
ln (2π)

r |Σ| , HI(Ii) = −M +
1

2
ln(2π)M |Λ|, (2)

where r is the dimension of q and |Σ| and |Λ| are the determinants. The
gradient of HP and HI in the space of V are given ∂HP

∂p = JT−1
j

p̌′ (Σ + αI)
−1 and
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(a) (b)

Fig. 1. Schematic diagram of (a) overlapping particles and local intensity similarity
in correspondence across subjects. Colored in blue, green, and red, each particle has
correspondence across subjects and attracts together minimizing HP . At the same time,
the entropy of local intensities sampled in colored squares is also minimized so that the
particles stay at a locally similar position. (b) a repulsion force uniformly distributes
in-subject particles to fill a given region.

∂HI

∂p = JT−1
j

I ′(Λ + β)−1 ∂I
∂p̂ , respectively. where p̌′ and I ′ are displacement from

the mean and α, β is a relaxation factor to avoid degenerative cases.
From the particle perspective, the negative gradient direction, −∂HP

∂p and
−∂HI

∂p can be interpreted as two different forces: a positional coherence force and
an intensity force as depicted in Fig. 1.

2.2 Particle Sampling in a Volume

Corresponding particles across subjects are attracted together to be overlapped
at a locally similar position. Without an appropriate repulsion force, the particles
would degenerate to a single point. Moreover, since we sample local intensity
values nearby a particle, a repulsion force is required to uniformly sample a
given image domain. In order for that, we extend the surface-based particle
correspondence algorithm [3] to the image domain to uniformly sample a set of
particles in a volume. In the algorithm, each particle position is rendered as a
random variable with regard to a particular region and iteratively optimized to
maximally contain the spatial information of the region.

Problem Definition. Given a bounded region of interest Ω in a volume V , we
sample n number of points X =

(
xT
1 , x

T
2 , . . . , x

T
n

)T ∈ Ωn where xi = (x, y, z).
By letting X be a random variable of X , the goal is to find an instance X̃ such
that

X̃ = arg max
X̃∈Ωn

HS [X ] = arg min
X̃∈Ωn

n∑

i=1

ˆ

xi∈Ω

p(xi) log p(xi)dxi, (3)

where HS is the differential entropy

HS(X ) = −
ˆ

X∈Ωn

p(X) log p(X)dX, (4)
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f j
i = λR

∂HS

∂p
+ λP

∂HP

∂p
+ λI

∂HI

∂p

Update the system
pji (t+ 1) = pji − dtf j

i

Compute P̄ =
1

N

N∑

j=1

P j

Estimate Tj : Pj → P̄

−∂HS

∂p

Initial Particle Placement

Fig. 2. Overall algorithm flow. The registration process is finished when the system
stabilizes, and images are registered with the estimated Tj .

and p(X) is the p.d.f of X . Assuming xi is i.i.d, HS(X ) can be decomposed into
the sum of the spatial entropy HS(xi). From the definition, X̃ contains maximal
information of Ω.

SamplingOptimization. Akey step to computeHS[X ] is the density estimation
of p(x). The density for a particle is estimated as p(xi)=

1
n(n−1)

∑n
j=1,j �=i G(xi −

xj , σi) using a nonparametric, Parzen windowing estimation[3] with the assump-
tion of Gaussian. The negative gradient of HS [X ] to maximize the cost function
is

− ∂HS

∂xi
=

1

σ2
i

∑n
j �=i(xi − xj)G(xi − xj , σj)
∑n

j �=i G(xi − xj , σj)
= σ−2

i

n∑

j �=i

(xi − xj)wij . (5)

For the optimization, we employ a standard gradient descent optimization
via Euler scheme, xt+1 = xt − α∂HS

∂x . The control of adaptivity is achieved by
assigning different σj for each particle [5].

2.3 B-spline Deformation Driven by Corresponding Particles

An improved FFD B-spline is proposed by [9]. In [9], the authors show that the
straightforward optimization of B-spline control points is suboptimal and pro-
pose a fitting-based strategy that directly manipulates free-form deformations.
In the same regard, we estimate the deformation Tj directly from the set of cor-
responding particles interpolating B-spline deformation in Least Squares sense.
[8] gives a solution for the interpolation generalized to n-dimensional scattered
data. The overall algorithm flow of our method is shown in Fig. 2.

2.4 Particle Initialization

Since the registration is performed by iterative particle optimization, the initial
particle placement is important to achieve good registration results. Assuming
that a basic preprocessing such as the rigid or affine registration is performed,
we compute the initial particle placement as following:
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1. Compute the intersection ΩM of a set of given ROIs Ω1, Ω2, · · · , ΩN

2. Choose random particle samples X, inside of the intersection ΩM

3. Uniformly distribute the sampled particles X inside ΩM

4. Transfer X into each subject i and distribute Xi inside Ωi

We rely on this heuristic to set up particles. By gradually distributing particles,
the corresponding particles will be located at similar position inside each mask
Ω. This strategy is specifically useful for rodent brain where the volume of each
subcortical structure is proportional to whole brain.

3 Experimental Results

3.1 Data Set

The data set acquired post mortem, at 3 age groups across adolescence (postna-
tal days 28 through 80). MR images of each animal using a Bruker BioSpec 9.4T
horizontal bore MRI system (Bruker, Billerica, MA). Images were acquired using
a 4-channel phase-array surface coil with the rat in supine position. 3D MDEFT
sequence was used for T1-weighted image acquisition with the following parame-
ters: TE=6.7 ms, TR=4000 ms, NEX=4; matrix size of 320× 210, and the voxel
size of 0.1mm isotropic, and acquisition time was 6 hours. To improve signal-to-
noise-ratio (SNR), two images were acquired immediately following each other
for each animal, and these two were averaged together following rigid registra-
tion. Total imaging time was 12 hours.

3.2 Evaluation

For the preliminary results of our method, we compared the results of our method
with two popularly used non-rigid registration methods using cross correlation
as a similarity metric: the non-rigid FFD B-spline image registration method
packaged in Slicer3, and the SyN image registration method implemented in
ANTS [1]. To study the performance of our group-wise registration, we warped
manual regions of interests of brain structures, Thalamus and Cerebellum, of
each subject to every other subject with each method. We included all 17 subjects
ranging from postnatal days 28 to postnatal days 72 and computed total 272
pairs. We then computed Dice overlap ratios (2|A∩B|/(|A|+ |B|)) between the
manual and automatic structural segmentations. For the proposed method, we
sampled 2048 particles from each volume and used 7 × 7 × 7 intensity regions
per each particle. For B-spline displacement field interpolation, we used 8×8×8
control points grid with the order of 3 splines. Each compared method was
applied with its default settings except the number of B-spline control points
matched with ours. The average Dice ratios of two ROIs for post-mortem rat
images for each method are shown in Table 1.

From the results, the proposed method showed higher Dice coefficients than
other two methods. Our method showed better performance in Dice coefficients
than the FFD B-spline implementation and ANTS tool in the manually seg-
mented regions.



Particle-Guided Image Registration 209

Table 1. Overall Dice coefficients and its standard deviation of Thalamus and Cere-
bellum, by the proposed group-wise method, Symmetric Diffeomorphic Mapping in
ANTS, and FFD B-spline registration

Methods Thalamus Cerebellum

The proposed method 86% (±8%) 87.8% (±6%)
ANTS 81% (± 6%) 84% (± 14%)

B-spline 81% (± 6%) 79% (± 11%)

a) Target Image
b) Group-wise

Proposed Method
d) B-spline

Deformation
c) Pair-wise

Proposed Method
e) ANTS

Coronal 
Slice

Zoomed 
External 
Capsule

Zoomed 
Corpus 

Callosum

Sagittal
Slice

Target Image Moving Image
Warped Image
by Group-wise 

Proposed Method

Fig. 3. Visual comparison of segmentation results. From left to right, the moving, fixed,
result of proposed method, B-spline, and ANTS respectively in the first three rows.
The bottom row shows sagittal slices of the fixed image, the result of the proposed
image, and the moving image. The intensity scale was inverted during the acquisition
but corrected in the experiments.

4 Conclusion

We proposed a novel image registration method that is guided by dynamic par-
ticles. Having correspondences each other, those particles are driven to locally
similar positions in the mean space. By computing an implicit mean rather
than an explicit image, our method was efficiently performed group-wise im-
age registration in a linear time with respect to the number of subjects. Our
method can be immediately applied to for example the multi-atlas joint regis-
tration/segmentation, the detection of outliers in a large data study, the inclu-
sion of statistical shape information during registration, etc. Since the proposed
method stays at a very early stage of research, future work will include thor-
ough validation for its accuracy and robustness as well as comparison to other
group-wise registration method [2,4,10].
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