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Abstract. We address the problem of dynamic CT reconstruction from 
parsimoniously sampled sinograms.  In this paper we propose a novel approach 
to solve the aforesaid problem by modeling the dynamic CT sequence as a low-
rank matrix. This dynamic CT matrix is formed by stacking each frame as a 
column of the matrix. As these images are temporally correlated, the dynamic 
CT matrix would therefore be of low-rank as its columns are not independent. 
We exploit the low-rank information to reconstruct the CT matrix from its 
parsimoniously sampled sinograms. Mathematically this is a low-rank matrix 
recovery problem, and we propose a novel algorithm to solve it. Our proposed 
method reduces the reconstruction error by 50% or more when compared to 
previous recovery techniques. 

1 Introduction 

Traditional knowledge dictates that in order to get a good quality high resolution  
X-Ray CT image, the sinogram should be densely sampled. Dense sampling  
of a sinogram requires higher CT dosage than parsimonious sampling. CT 
reconstruction researchers have been looking for ways to parsimoniously sample the 
sinogram (thereby reducing the radiation dosage) and to reconstruct a good quality 
image from it. 

Recently, Compressed Sensing (CS) based techniques have shown how transform 
domain sparsity of the underlying CT image can be exploited in order to recover it 
from parsimoniously sampled sinogram [1-3]. These studies have shown that CS 
techniques can indeed be used to cut the CT radiation dose by more than 50% for 
static CT imaging.  

In this work we address the problem of reconstructing dynamic CT images.  CS 
based techniques have also been used in the past to reconstruct the dynamic image 
sequence for parsimoniously sampled sinograms. In this paper we propose a novel 
formulation to solve this problem where we model the image sequence as a low-rank 
matrix. The reconstruction problem is thus recast as a low-rank matrix recovery 
problem from its parsimoniously sampled sinograms. We also propose a new 
algorithm to solve the low-rank matrix recovery problem. 
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The rest of the paper is organized into several sections. The following section 
briefly reviews the prevalent CS based recovery algorithms in dynamic CT imaging. 
In section 3, we briefly discuss the similarity between dynamic CT and dynamic 
magnetic resonance imaging (MRI). We formulate the problem in section 4 and 
propose a new algorithm to solve it. The experimental results are shown in section 5. 
Finally the conclusions of this work and future directions of research are discussed in 
section 6. 

2 Compressed Sensing in Dynamic CT 

In CT, the data acquisition model can be expressed as follows: 

y Ax=  (1)

Here x is the underlying image (to be reconstructed), y is the sampled sinogram and A 
is the X-ray transform.  

For dynamic CT, the sinogram is sampled in an interleaved fashion, so the A 
matrix changes with time. The data acquisition model for the tth frame is as follows: 

t t ty A x=  (2)

This is an inverse problem; one is supposed to reconstruct xt given At and yt. For 
non-iterative reconstruction using Filtered Back Projection (FBP), the sinogram needs 
to be densely sampled; dense sampling translated to higher ionizing radiation for the 
subject. Researchers in CT reconstruction aim to reconstruct the image from smaller 
number of sinogram samples. CS based techniques are useful to achieve this goal; CS 
exploits the sparsity of the image in order to reconstruct it from a smaller number of 
sinogram samples than was deemed necessary previously [1-3].  

Recent papers however have shown how CS techniques can be used for dynamic 
CT reconstruction [4, 5]. The first step is to generate a static FBP reference image (x0) 
from the interleaved projections. Once this reference image is computed, the 
reconstruction of the tth frame is solved via the following optimization problem,  

 1 0 2min ( ) (1 )  subject to 
p p

t t t t tp px
x x x y A xα αΨ − + − Ψ =  (3)

whereΨ1 and Ψ2 are sparsifying transforms (wavelet or gradient). The lp-norm 
(0<p≤1) is the sparsity promoting objective function. There are two sparsity 
promoting terms. The first term assumes that the difference between the current frame 
and the reference image is sparse in Ψ1. The second term assumes the tth frame is 
sparse in Ψ2. The scalar α controls the relative importance of the two sparsity 
promoting terms.   

This technique (3) is called Prior Image Constrained Compressed Sensing 
(PICCS). This was originally developed with convex sparsity promoting l1-norm [4] 
but was later shown to yield even better results with non-convex lp-norm (NCPICCS) 
[5]. It should be noted that even though the frames are reconstructed separately, this is 
an offline technique because the reference image x0 can only be generated after the 
full sequence has been collected. 
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3 Compressed Sensing in Dynamic MRI 

In MRI, the data acquisition model is the same as the CT for both static (1) and 
dynamic (2) scenarios. For MRI, the matrix A is the Fourier transform and the y is the 
sampled Fourier coefficients (called K-space in MRI). In MRI the challenge is 
different from CT. For MRI the challenge is to reduce the data acquisition time. Thus 
A or At is not the full Fourier transform (F), it is an under-sampled Fourier transform 
( A RF= ); where R is the sampling mask.  

Even though the challenges in CT and MRI are different, the fundamental 
mathematical problem remains the same. When the K-space is parsimoniously 
sampled, the inverse problems represented by (1) and (2) become under-determined. 
CS is used to reconstruct the MR images by exploiting their sparsity in a domain such 
as the wavelet or gradient.  

In dynamic MRI reconstruction the main idea is to maximally exploit the spatio-
temporal redundancies of the dynamic MRI sequence. The CS based techniques 
reconstruct the dynamic MRI sequence by solving an optimization problem of the 
following form [6, 7]: 

1 2 1
min ( ')  subject to ' ' '

x
x y A xΨ ⊗ Ψ =  (4)

where y’ is the vector formed by concatenating all the acquired vectors yt’s, similarly 
x’ is the vector formed by concatenating all the unknown xt’s and A’ is a block 
diagonal matrix formed by At’s as the blocks. Ψ1 is the sparsifying transform along the 
temporal direction and Ψ2 is the sparsifying transform along the spatial direction. 

CS based sparsity promoting techniques are not the only solution for dynamic MRI 
reconstruction. In general, one can use a different sampling mask for each frame. But 
if the sampling mask is the same for all the frames, i.e. if At=A for all t’s, then (2) can 
be expressed as 

Y AX=  (5)

where Y is a matrix formed by stacking the yt’s as columns, similarly X is formed by 
stacking the xt’s as columns.  

In [8] it is argued that the matrix X is rank deficient; this is because the MRI time-
frames are correlated with each other. Thus the columns of X are therefore not 
independent and thus X can be modeled as a low-rank matrix [8]. Therefore X can be 
recovered by solving the following problem, 

 min ( ) such that 
X

rank X Y AX= (6)

In general, minimizing the rank is a combinatorial problem and it is thus not 
feasible for large scale systems such as (6). Thus a matrix factorization based 
approach was proposed in [8] in order to recover X. 
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4 Proposed Solution 

In this work, we propose to solve the dynamic CT reconstruction problem (2) by 
modeling the sequence of CT images as a low-rank matrix. Our work is motivated by 
the studies in dynamic MRI reconstruction [8]. In the dynamic CT sequence, the 
frames are correlated temporally. When the frames from the sequence (xt’s) are 
stacked as columns of a matrix (X), the resulting matrix (X = [x1|…|xt|…|xN], 
assuming N frames in all) is rank-deficient; this is because the columns are correlated. 
We propose to recover this matrix by exploiting its rank-deficiency. 

For dynamic CT, the sinograms for different time-frames are sampled in an 
interleaved fashion. The data acquisition model is expressed as follows: 

' ' 'y A x=  (7)

where y’ is the vector formed by concatenating all the (acquired) yt’s, similarly x’ is 
the vector formed by concatenating all the (unknown) xt’s and A’ is a block diagonal 
matrix formed by At’s as the blocks. 

It must be understood by now that x’ and X are just two different ways to represent 
the same group of vectors xt’s. In x’ they are concatenated one after the other, and in X 
they are stacked as its columns. To exploit the prior information that X is low-rank, 
we exploit the rank deficiency of X in order to recover it: 

min ( ) subject to ' ' '
X

rank X y A x=  (8)

This is an NP hard problem. There are two solutions – i) replace the rank by its 
nearest convex or non-convex surrogate (i.e. nuclear norm or the Schatten-p norm); 
or, ii) use matrix factorization.  

The second approach is computationally faster but does not provide any recovery 
guarantees. The first approach that recovers the low-rank matrix via nuclear norm 
minimization [9] provides theoretical recovery guarantees for solving problems like 
(8). In practice however, it has been found that the non-convex Schatten-p norm 
minimization yields even better results than the nuclear norm minimization [10].  

Our work is motivated by the smoothed l0-minimization (SL0) [11] algorithm in 
CS; SL0 is faster and more accurate than most state-of-the-art l1-minimization 
algorithms. SL0 approximately solves the l0-norm minimization, i.e. it does not 
substitute the NP hard l0-norm by its convex (l1-norm) or non-convex (lp-norm) 
surrogates. In this work we propose to approximately solve the rank-minimization 
problem (8) by a similar approach. 

The matrix X can be expressed in terms of its singular value decomposition (SVD): 
TX U V= Σ  , where U and V are the left and right singular vectors and Σ is the 

diagonal matrix consisting of the singular values σj’s. The rank of a matrix is the 
number of non-zero singular values. We define a function for every singular value, 

1 when 0
( )

0 when 0

σ
γ σ

σ
>

=  =
 (9)
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Based on the above definition, the rank is expressed as ( ) ( )j
j

rank X γ σ= . The 

function γ(σj) is spiky; i.e. it has the value 0 or 1. Following [11] we replace the spiky 
function by a smooth zero-mean Gaussian whose spread can be varied by changing its 

standard deviation (θ) – 
2 2( /2 )( )f e σ θ

θ σ −=  

The function is wide when θ is large and becomes narrow when its value reduces. 
In the limit that the θ is zero, the above function has the following property,  

0

1 when =0 
lim ( )

0 when >0
fθθ

σ
σ

σ→


= 


 (10)

Therefore,
0

lim ( ) 1 ( )fθθ
σ γ σ

→
= − . This allows for approximating the rank by 

0
1 1

lim ( ) ( ) 1 ( ) ( )
n n

j j
j j

F x f n rank Xθ θθ
σ γ σ

→
= =

= = − = −  , (where n is the minimum of 

the number of rows or the number of columns in X). Therefore the rank 
minimization problem (8) can be recast as follows, 

max (x) subject to ' ' '
X

F y A xθ =  (11)

Since the objective function is smooth, it is easy to solve (11) by gradient based 
methods. The main idea behind the algorithm proposed below is that at each iteration, 
(11) is solved for a particular value of θ; then in the following iteration the value of θ 
is decreased and (11) is solved again. This continues till the solution converges (i.e. 
when there is no significant change in the solution). 
 
Algorithm for Smoothed Rank Minimization 

Initialization – Obtain the initial solution
2(0)
2

ˆ ' min ' ' '
x

x y A x= − . Rearrange 

(0)ˆ 'x in matrix form (0)X̂ . Compute the SVD, (0) (0) (0) (0)ˆ TX U V= Σ  

At iteration k – Continue the following steps till solution is reached (i.e. till θ is 
greater than a specified value) 

1. Choose 1,  where c > 4cθ σ= .  

2. Maximize (11) for the current value of θ. The Steepest Ascent method is 
used to achieve this. 

a. Initialize, ( 1)( )ks diag −= Σ . Here diag() operator forms a vector from 
the diagonal elements 

b. Let
2 22 2

1 /2/2
1[ ,..., ]nss T

ns s e s e σθ −−Δ = ⋅ ⋅  .  

c. Update: s s sμ← − Δ , where μ is a small constant. 
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Express ( )ˆ ( )k diag sΣ = . Here diag() generates a matrix with diagonal 
elements. 

d. Generate the matrix ( ) ( 1) ( ) ( 1)ˆ ˆk k k k TX U V− −= Σ and ( ) ( )ˆˆ ' ( )k kx vec X=  . 

e. Project the solution back to the feasible set by 
( ) ( ) 1 ( )ˆ ˆ' ' ' ( ' ' ) ( ' ' ')k k T T kx x A A A A x y−← − − .  

3. Rearrange ( )' kx  in matrix form and compute the SVD, ( ) ( ) ( ) ( )k k k k TX U V= Σ  
and return to step 1 until convergence. 

5 Experimental Evaluation 

We compared the above proposed technique with the Non-convex Prior Image 
Constrained Compressed Sensing (NCPICCS) method [7] since this method [7] yields 
the best reconstruction for dynamic CT when α = 0.7 and p = 0.7 (refer to problem 
formulated in (3)). The reconstruction accuracy in our study is measured in terms of 
Relative Mean Squared Error (RMSE) as this metric has been used previously for the 
same purpose [5].  

   

Fig. 1. Variation of RMSE with time. Blue plot represents error from NCPICCS and red plot 
represents error from proposed method. 

We use a portion of the experimental data used in [5]. The reconstructions were 
carried out on a synthesized Shepp Logan phantom and on an in-vivo animal kidney 
perfusion CT scans. The Shepp Logan phantom was modified in [5] such that the 
uppermost ellipses in the simulated original object changed attenuation through time 
as follows: 

( )exp /br at t c= −  (12)
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where t is the time and the parameters a, b, and c control the amplitude, width, and 
speed of decay of the gamma-variate function. The values, a=.05, b=7, and c=2 were 
used to simulate tissue perfusion. A total of 20 time points were simulated, with time 
steps t=0.5 s. 

The in-vivo study scans were performed at 80 kV, using 160 mA s, with 24X1.2 
mm collimation and 0 mm table feed. Using a 0.33 sec. gantry rotation time, 70 
exposures (images) were acquired with 0.67 sec interval between consecutive  frames. 

For the simulated Shepp Logan, the reconstruction was carried using 4 and 6 
projections (with parallel beam geometry). For the in-vivo experiment the number of 
projections were 16 and 22. These values were suggested in [5]. The frame-by-frame 
RMSE’s are plotted in Fig. 1. Owing to limitations in space, we only show the results 
for the in-vivo data. 

We see that our proposed method (red plot) reduces the RMSE by 50% or more. 
Also the variation in error from our proposed method is less compared to NCPICCS. 
Both of these observations stem from the same fact. NCPICCS and other PICCS 
based methods reconstruct the images frame-by-frame, whereas our method 
reconstructs all the frames simultaneously. During reconstruction, our method makes 
better use of the spatio-temporal redundancy compared to PICCS. That is why our 
proposed method yields more stable (less variation in time) and better reconstruction 
results.  

To corroborate the numerical results, we show the ground truth, reconstructed and 
difference (between ground truth and reconstructed) images. Owing to limitations in 
space, we only show one frame from each of the datasets. The contrast of the 
difference images is magnified 10 times for visual clarity. From the difference 
images, it is clearly seen that our proposed method is better than PICCS; the 
difference images are darker. The improvement from our proposed method is better 
evident from the phantom. The PICCS reconstructed phantom image clearly shows 
reconstruction artifacts; the artifacts are absent in our proposed method. 

    

    

Fig. 2. Left to right: Ground truth, Difference image from NCPICCS, Reconstructed image 
from NCPICCS, Difference image from proposed method, Reconstructed image from proposed 
method 
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6 Conclusion 

In this work we propose a novel technique to reconstruct dynamic CT image 
sequences. The temporal correlation of the CT images allows us to model the entire 
sequence as a low-rank matrix. We exploit this low-rank structure of the matrix while 
reconstructing the sequence. The proposed method yields considerably better results 
than the well known PICCS based technique for reconstructing dynamic CT images 
from parsimoniously sampled sinograms.   

In the future, we want to combine the sparsity promoting reconstruction with the 
proposed low-rank model to achieve even better reconstruction.   
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