Skip to main content

Role of Phenazine-1-Carboxamide Produced by Pseudomonas chlororaphis PCL1391 in the Control of Tomato Foot and Root Rot

  • Chapter
  • First Online:
Microbial Phenazines

Abstract

Tomato foot and root rot (TFRR) is a tomato root disease caused by the fungus Fusarium oxysporum f. sp. radicis-lycopersici (Forl). No chemicals are available which efficiently suppress TFRR. In this chapter we show that the bacterium Pseudomonas chlororaphis strain PCL1391 is able to suppress the disease. To this end it uses antibiosis as its (major) disease-suppressing mechanism. The produced antibiotic was identified as phenazine-1-carboxamide (PCN). In contrast to the PCN-producing bacterium, pseudomonads which produce the PCN biosynthetic precursor phenazine-1-carboxylic acid (PCA) as their major phenazine were not active in disease suppression. However, when PCA was converted to PCN by complementing these strains with the phzH gene, which encodes an amidotransferase, the complemented strains produced PCN and controled TFRR. In order to be effective in disease control, strain PCL1391 should be able to produce PCN under a variety of environmental conditions. We therefore studied the regulation of PCN production under various environmental factors, by regulatory genes, by the plant, and by the pathogenic fungus. Special attention was paid to the secondary metabolite fusaric acid secreted by the fungus. Fusaric acid is detected by the bacterium as a chemo-attractant to reach the fungus, to colonize its surface and to finally use it as a food source. Conversely, fusaric acid is used by the fungus to inhibit the production of PCN and to reduce the bacterial growth rate. It is clear that during disease control the PCN-producing bacterium wins this battle. The result of the evaluation of the described studies is that we can understand in quite some detail how P. chlororaphis strain PCL1391 acts as a disease control agent and also why it is not active under all environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAS:

Casamino acids

CLSM:

Confocal laser scanning microscopy

C6-HSL:

N-hexanoyl-L-homoserine lactone

Forl :

Fusarium oxysporum f. sp. radicis-lycopersici

gfp :

Gene encoding green fluorescent protein

PCA:

Phenazine-1-carboxylic acid

PCN:

Phenazine-1-carboxamide

TFRR:

Tomato foot and root rot

References

  • Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587

    Article  PubMed  CAS  Google Scholar 

  • Benhamou N, Lafontaine PJ, Nicole M (1994) Induction of systemic resistance to Fusarium crown and root rot in tomato plants treated with chitosan. Phytopathol 84:1432–1444

    Article  CAS  Google Scholar 

  • Bloemberg GV, O’Toole GA, Lugtenberg BJJ et al (1997) Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microbiol 63:4543–4551

    PubMed  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2004) Bacterial biofilm on plants: relevance and phenotypic aspects. In: Ghannoum M, O’Toole GAO (eds) Microbial biofilms. ASM Press, Washington DC, pp 141–159

    Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AHM et al (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 16:983–993

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, de Priester W, Van der Bij AJ, Lugtenberg BJJ (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol Plant Microbe Interact 10:79–86

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Van der Bij AJ et al (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:1069–1077

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM et al (2000) Root colonization is essential for biocontrol of tomato foot and root rot by the phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391. Mol Plant-Microbe Interact 13:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, van den Broek D, de Voer G et al (2001a) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant-Microbe Interact 14:969–979

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJJ et al (2001b) Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp Strains. Mol Plant-Microbe Interact 14:1006–1015

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003a) Mechanisms of biological control of phytopathogenic fungi by Pseudomonas spp. In: Stacey G, Keen NT (eds) Plant-microbe interactions, Am Phytopathol Soc 6:173–224, St. Paul, MN

    Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003b) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TFC, van den Broek D, Lugtenberg BJJ et al (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253

    Article  PubMed  CAS  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IHM et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • De Weert S, Kuiper I, Lagendijk EL et al (2003) Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f.sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Mol Plant-Microbe Interact 16:1185–1191

    Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Geels FP, Schippers B (1983) Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. J Phytopathol Z 108:193–206

    Article  Google Scholar 

  • Ghysels B, Dieu BT, Beatson SA et al (2004) FpvB, an alternative type I ferripyoverdine receptor from Pseudomonas aeruginosa. Microbiology 150:1671–1680

    Article  PubMed  CAS  Google Scholar 

  • Girard G, Barends S, Rigali S et al (2006a) Pip, a novel activator of phenazine biosynthesis of Pseudomonas chlororaphis PCL1391. J Bacteriol 188:8283–8293

    Article  PubMed  CAS  Google Scholar 

  • Girard G, van Rij ET, Lugtenberg BJJ et al (2006b) Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. Microbiology 152:43–58

    Article  PubMed  CAS  Google Scholar 

  • Girard G, Rigali S (2011) Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis. Microbiology 157:398–407

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Jarvis WR (1988) Fusarium crown and root rot of tomatoes. Phytoprotection 69:49–64

    Google Scholar 

  • Kamilova F, Validov S, Azarova T et al (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI et al (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256

    Article  PubMed  CAS  Google Scholar 

  • Lagopodi AL, Ram AFJ, Lamers GE et al (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant Microbe Interact 15:172–179

    Article  PubMed  CAS  Google Scholar 

  • Leeman M, van Pelt JA, Den Ouden FM et al (1995) Induction of systemic resistance of Fusarium wilt of radish by lipopolysaccharide of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJJ, Bloemberg GV (2004) Life in the rhizosphere. In: Ramos JL (ed) Pseudomonas, vol 1. Kluwer Academic/Plenum Publishers, New York, pp 403–430

    Chapter  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp.: biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    Article  PubMed  CAS  Google Scholar 

  • Notz R, Maurhofer M, Dubach H et al (2002) Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 68:2229–2235

    Article  PubMed  CAS  Google Scholar 

  • Ochsner UA, Wilderman PJ, Vasil AI et al (2002) GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Palma M, Worgall S, Quadri LE (2003) Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Arch Microbiol 180:374–379

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS, Thomashow LS (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol Plant Microbe Interact 5:330–339

    Google Scholar 

  • Pliego C, Kamilova F, Lugtenberg B (2011) Plant growth-promoting bacteria: fundamentals and exploitation. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Germany, pp 295–343

    Chapter  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P et al (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent Pseudomonas and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    PubMed  CAS  Google Scholar 

  • Steinkellner S, Mammerler R, Vierheilig H (2005) Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. J Plant Interact 1:23–30

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller D (1988) Role of phenazine antibiotics from Pseudomonas fluorescens in biological control of Gueumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    PubMed  CAS  Google Scholar 

  • Van Rij ET, Wesselink M, Chin-A-Woeng TFC et al (2004) Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 17:557–566

    Article  PubMed  Google Scholar 

  • Van Rij ET, Girard G, Lugtenberg BJJ et al (2005) Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology 151:2805–2814

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thomas Chin-A-Woeng performed most of the work described here. Guido Bloemberg, Annouschka Bolwerk, Anastasia Lagopodi, and Tjeerd van Rij are among the other colleagues who carried out crucial parts of the work. This research was supported by Leiden University as well as by numerous grants, especially from the European Commission, EET, INTAS as well as from the NWO departments of ALW, CW, and STW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Lugtenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lugtenberg, B., Girard, G. (2013). Role of Phenazine-1-Carboxamide Produced by Pseudomonas chlororaphis PCL1391 in the Control of Tomato Foot and Root Rot. In: Chincholkar, S., Thomashow, L. (eds) Microbial Phenazines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40573-0_8

Download citation

Publish with us

Policies and ethics