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Abstract. Large RNA molecules often carry multiple functional do-
mains whose spatial arrangement is an important determinant of their
function. Pre-mRNA splicing, furthermore, relies on the spatial proxim-
ity of the splice junctions that can be separated by very long introns.
Similar effects appear in the processing of RNA virus genomes. Albeit
a crude measure, the distribution of spatial distances in thermodynamic
equilibrium therefore provides useful information on the overall shape
of the molecule can provide insights into the interplay of its functional
domains. Spatial distance can be approximated by the graph-distance in
RNA secondary structure. We show here that the equilibrium distribu-
tion of graph-distances between arbitrary nucleotides can be computed in
polynomial time by means of dynamic programming. A naive implemen-
tation would yield recursions with a very high time complexity of O(n11).
Although we were able to reduce this to O(n6) for many practical appli-
cations a further reduction seems difficult. We conclude, therefore, that
sampling approaches, which are much easier to implement, are also theo-
retically favorable for most real-life applications, in particular since these
primarily concern long-range interactions in very large RNA molecules.
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1 Introduction

The distances distribution within an RNA molecule is of interest in various
contexts. Most directly, the question arises whether panhandle-like structures
(in which 3’ and 5’ ends of long RNA molecules are placed in close proximity)
are the rule or an exception. Panhandles have been reported in particular for
many RNA virus genomes. Several studies [28,8,2,13] agree based on different
models that the two ends of single-stranded RNA molecules are typically not far
apart. On a more technical level, the problem to compute the partition function
over RNA secondary structures with given end-to-end distance d, usually mea-
sured as the number of external bases (plus possibly the number of structural
domains) arises for instance when predicting nucleic acid secondary structure in
the presence of single-stranded binding proteins [9] or in models of RNA sub-
jected to pulling forces (e.g. in atom force microscopy or export through a small
pore) [10,23,11]. It also plays a role for the effect of loop energy parameters [7].

In contrast to the end-to-end distance, the graph-distance between two arbitrar-
ily prescribed nucleotides in a larger RNA structure does not seem to have been
studied in any detail. However, this is of particular interest in the analysis of single-
molecule fluorescence resonance energy transfer (smFRET) experiments [25]. This
technique allows to monitor the distance between two dye-labeled nucleotides and
can reveal details of the kinetics of RNA folding in real time. It measures the non-
radiative energy transfer between the dye-labeled donor and acceptor positions.
The efficiency of this energy transfer, Efret, strongly depends on the spatial dis-
tance R according to Efret = (1 + (R/R0)

6)−1. The Förster radius R0 sets the
length scale, e.g. R0 ≈ 54 Å for the Cy3-Cy5 dye pair. A major obstacle is that,
at present, there is no general and efficient way to link smFRETmeasurements to
interpretations in terms of explicit molecular structures. To solve this problem, a
natural first step to compute the distribution of spatial distances for an equilib-
rium ensemble of 3D structures. Since this is not feasible in practice despite major
progress in the field of RNA 3D structure prediction [4], we can only resort to con-
sidering the graph-distances on the ensemble ofRNA secondary structures instead.
Althoughacrudeapproximationof reality, our initial results indicate that thegraph
distance can be related to the smFRET data such as those reported by [14]. From
a computer science point of view, furthermore, we show here that the distance dis-
tribution can be computed exactly using a dynamic programming approach.

2 Theory

2.1 RNA Secondary Structures

An RNA secondary structure is a vertex labeled outerplanar graph G(V, ξ, E),
where V = {1, 2, . . . , n} is a finite ordered set (of nucleotide positions) and
ξ : {1, 2, . . . , n} → {A,U,G,C}, i �→ ξi assigns to each vertex at position i (along
the RNA sequence from 5’ to 3’) the corresponding nucleotide ξi. We write
ξ = ξ1 . . . ξn for the sequence underlying secondary structure and use ξ[i . . . j] =
ξi . . . ξj to denote the subsequence from i to j. The edge set E is subdivided into
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backbone edges of the form {i, i + 1} for 1 ≤ i < n and a set B of base pairs
satisfying the following conditions:

1. If {i, j} ∈ B then ξiξk ∈ {GC,CG,AU,UA,GU,UG}.
2. If {i, j} ∈ B then |j − i| > 3.
3. If {i, j}, {i, k} ∈ B then j = k
4. If {i, j}, {k, l} ∈ B and i < k < j then i < l < j.

The first condition allows base pairs only for Watson-Crick and GU base pairs.
The second condition implements the minimal steric requirement for an RNA
to bend back on itself. The third condition enforces that B forms a matching in
the secondary structure. The last condition (nesting condition) forbids crossing
base pairs, i.e. pseudoknots.

The nesting condition results in a natural partial order in the set of base pairs
B defined as {i, j} ≺ {k, l} if k < i < j < l. In particular, given an arbitrary
vertex k, the set Bk = {{i, j} ∈ B|i ≤ k ≤ j} of base pairs enclosing k is
totally ordered. Note that k is explicitly allowed to be incident to its enclosing
base pairs. A vertex k is external if Bk = ∅. A base pair {k, l} is external if
Bk = Bl = {{k, l}}.

Consider a fixed secondary structure G, for a given base pair {i, j} ∈ B, we
say a vertex k is accessible from {i, j} if i < k < j and there is no other pair
{i′, j′} ∈ B such that i < i′ < k < j′ < j. The unique subgraph Li,j induced by
i, j, and all the vertices accessible from {i, j} is known as the loop of {i, j}. The
type of a loop Li,j is unique determined depending on whether {i, j} is external
or not, and the numbers of unpaired vertices and base pairs. For details, see [26].
Each secondary structure G has a unique set of loops {Li,j |{i, j} ∈ B}, which is
called the loop decomposition of G. The free energy f(G) of a given secondary
structure, according to the standard energy model [20], is defined as the sum of
the energies of all loops in its unique loop decomposition.

The relative location of two vertices v and w in G is determined by the base
pairs Bv and Bw that enclose them. If Bv ∩Bw 
= ∅, there is a unique ≺-minimal
base pair {iv,w, jv,w} that encloses both vertices and thus a uniquely defined loop
L{iv,w ,jv,w} in the loop associated with v and w. If Bv \Bw = ∅ or Bw \Bv = ∅
then v or w is unpaired and part of L{iv,w ,jv,w}. Otherwise, i.e. Bv∩Bw = ∅, there
are uniquely defined ≺-maximal base pairs {kv, lv} ∈ Bv \ Bw and {kw, lw} ∈
Bw \Bv that enclose v and w, respectively. This simple partition holds the key
to computing distance distinguished partition functions below.

It will be convenient in the following to introduce edge weights ωi,j = a if
j = i + 1, i.e., for backbone edges, and ωi,j = b for {i, j} ∈ B. Given a path p,
we define the weight of the path d(p) as the sum of the weights of edges in the
path. The (weighted) graph-distance dGv,w in G is defined as the weight of the
path p connecting v and w with d(p) being minimal. For the weights, we require
the following condition:

(W) If i and j are connected by an edge, then {i, j} ∈ E is the unique shortest
path between i and j.

This condition ensures that single edges cannot be replaced by detours of shorter
weight. Condition (W) and property (ii) of the secondary structure graphs
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implies b < 3a because the closing base pair must be shorter than a hairpin
loop. Furthermore, considering a stacked pair we need b < b+2a, i.e. a > 0. We
allow the degenerate case b = 0 that neglects the traversals of base pairs.

2.2 Boltzmann Distribution of Graph-Distances

For a fixed structure G, dGv,w is easy to compute. Here, we are interested in

the distribution Pr[dGv,w |ξ] and its expected value dv,w = E[dGv,w|ξ] over the
ensemble of all possible structures G for a given sequence ξ. Both quantities can
be calculated from the Boltzmann distribution Pr[G|ξ] = e−f(G)/RT/Q where
Q =

∑
G e−f(G)/RT denotes the partition function of the ensemble of structures.

As first shown in [21], Q and related quantities can be computed in cubic time.
A crucial quantity for our task is the restricted partition function

Zv,w[d] =
∑

G with dG
v,w=d

e−f(G)/RT

for a given pair v, w of positions in a given RNA sequence ξ. A simple but tedious
computation (Appendix A 1) verifies that the Pr[dGv,w = d|ξ] = Zv,w[d]/Q and

dv,w = E[dGv,w|ξ] =
∑

d(Z
v,w[d]/Q)d. Hence it suffices to compute Zv,w[d] for

d = 1, . . . , n. In sections 2.3-2.5 we show that this can be achieved by a variant
of McCaskill’s approach [21].

For the ease of presentation we describe in the following only the recursion for
the simplified energy model for the “circular maximum matching” matching, in
which energy contributions are associated with individual base pairs rather than
loops. Our approach easily extends to the full model by using separating the parti-
tion functions into distinct cases for the loop types. We use the letter Z to denote
partition functions with distance constraints, while Q is used for quantities that
appear in McCaskill’s algorithm and are considered as pre-computed here.

Before we continue with the calculation of the partition function, let’s first
look into problem formulation in more detail. For the FRET application, it is
well-known that the rate which with FRET occurs is correlated with the dis-
tance. Therefore, only a limited range of distance changes (e.g. 20Å− 100Å for
Cy3-Cy5) can be reported by the FRET experiments. Thus the more useful for-
mulation of our problem is not to use the full expected quantity for all positions.
Instead, we are interested in the average for all distances within some threshold
θd. As the space and time complexity will depend on the number of distances
we consider, we will parametrise our complexity by the number of nucleotides n
and the number of overall distances considered D = θd + 1, as well.

2.3 Recursions of Zv,w[d]: v and w Are External

An important special case assumes that both v and w are external. This is case
e.g. when v and w are bound by proteins. In particular, the problem of computing

1 The Appendix A-D of our paper are available from http://www.rna.uni-jena.de/

supplements/RNAgraphdist/supplement.pdf

http://www.rna.uni-jena.de/supplements/RNAgraphdist/supplement.pdf
http://www.rna.uni-jena.de/supplements/RNAgraphdist/supplement.pdf
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end-to-end distances, i.e., v = 1 and w = n, is of this type. Assuming (W), the
shortest path between two external vertices v, w consists of the external vertices
and their backbone connections together with the external base pairs. We call
this path the inside path of i, j since it does not involve any vertices “outside”
the subsequence ξ[i..j].

For efficiently calculating the internal distance between any two vertices v, w,
we denote by ZI

i,j [d] the partition function over all secondary structures on ξ[i..j]

with end-to-end distance exactly d. Furthermore, let QB
i,j denote the partition

function over all secondary structures on ξ[i..j] that are enclosed by the base pair
{i, j}. We will later also need the partition function Qi,j over the sub-sequence
ξ[i..j], regardless of whether {i, j} is paired or not.

Now note that any structure on ξ[i..j] starts either with an unpaired base or
with a base pair connecting i to some position k satisfying i < k ≤ j. In the first
case, we have dGi,j = dGi,i+1 + dGi+1,j where dGi,i+1 = a. In the second case, there

exists dGi,j = dGi,k + dGk,k+1 + dGk+1,j with dGi,k = b and dGk,k+1 = a. Thus, ZI
i,j[d]

can be split as follows,

This gives the recursion

ZI
i,j [d] = ZI

i+1,j [d− a] +
∑

i<k≤j

QB
i,kZ

I
k+1,j [d− b− a] (1)

with the initialization ZI
ii[0] = 1 and ZI

ii[d] = 0 for d > 0. For consecutive vertices
we have ZI

i,i+1[a] = 1 and ZI
i,i+1[d] = 0 for d 
= a. These recursions have been

derived in several different contexts, e.g. force induced RNA denaturations [10],
the investigate of loop entropy dependence [7], the analysis of FRET signals in
the presence of single-stranded binding proteins [9], as well as in mathematical
studies of RNA panhandle-like structures [2,13].

In the following it will be convenient to define also a special terms for the
empty structure. Setting ZI

i,i−1[−a] = 1 and ZI
i,i−1[d] = 0 for d 
= −a allows

us to formally write an individual backbone edge as two edges flanking the
empty structure and hence to avoid the explicit treatment of special cases. This
definition of ZI also includes the case that i and j are base paired in the recursion
(1). This is covered by the case k = j, where we evaluate ZI

j+1,j [d− b− a]. Since

d = b is the only admissible value here, this refers to ZI
j+1,j [−a], which has the

correct value of 1 due to our definition. Later on, we will also need ZI under
the additional condition that the path starts and end with a backbone edge. We
therefore introduce ZI′

defined as
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Fig. 1. Inside and outside paths.
The shortest path (violet arrows)
from v (green) to w (blue) is not
an inside path: inside emphasizes
that, in contrast to the shortest
path (cyan arrows) between the
red region and w, it is not con-
tained in the interval determined
by its end points.

By our initialization of ZI , we can simply define ZI′
by

ZI′
i,j [d] = ZI

i+1,j−1[d− 2a] (2)

Note that if ZI′
i,j [d] is called with j = i+1, then we call ZI

i+1,i[d− 2a]. The only
admissible value again is the correct value d = a.

This recursion requires O(Dn3) time and space. It is possible to reduce the
complexity in this special case by a linear factor. The trick is to use conditional
probabilities for arcs starting at i or the conditional probability for i to be single-
stranded, which can be determined from the partition function for RNA folding
[2], see Appendix B.

2.4 Recursions of Zv,w[d]: The General Case

The minimal distance between two positions that are covered by an arc can
be realized by inside paths and outside paths. This complicates the algorithmic
approach, since both types of paths must be controlled simultaneously. Consider
Fig. 1. The shortest path between the green and blue regions includes some
vertices outside the interval between these two regions. The basic idea is to
generalize Equation (1) to computing the partition function Zv,w[d]. The main
question now becomes how to recurse over decompositions of both the inside
and the outside paths.

Fig. 1 shows that the outside paths are important for the green region, i.e., the
region that is covered by an arc. Hence, we have to consider the different cases
that the two positions v and w are covered by arcs. The set Ω of all secondary
structures on ξ can be divided into two disjoint subclasses that have to be treated
differently:

Ω0 v and w are not enclosed in a common base pair, i.e., Bv ∩Bw = ∅.
Ω1 there is a base pair enclosing both v and w, i.e., Bv ∩Bw 
= ∅.
Note that this bipartition explicitly depends on v and w. In the following, we
will first introduce the recursions that are required in Ω0 structures to compute
Zv,w[d].
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Contribution of Ω0 structures to Zv,w[d] One example of this case is given
in Fig. 1 with the red and blue region, where v (vertex in green region) is covered
by an arc, and w (vertex in blue region) is external. Denote the ≺-maximal base
pair enclosing v by {i, j}. Since at most one of v and w is covered by an arc, we
know that j < w. Hence, every path p from v to w, and hence also the shortest
paths (not necessarily unique) must run through the right end j of the arc {i, j}.
More precisely, there must sub-paths p1 and p2 with d(p) = d(p1) + d(p2) + a

such that v
p� w → v

p1� j − (j + 1)
p2� w, where i

p� j denotes that p is a
shortest path from i to j and − denotes a single backbone edge. For the shortest

path from v to j, it consists either of a shortest path v
p′
� i and the arc {i, j},

or it goes directly to j without using the arc {i, j}.
How does this distinction translate to the partition function approach? If we

want to calculate the contribution of this case to the partition function Zv,w[d],
we have to split both the sequence ξ[i, w] and distance d as follows

a.)

where ZI′
j,w[d2] is the partition function starting and ending with a single-stranded

base as defined in Equation (2), and ZB,v
i,j [d�, dr] is the partition function con-

sisting of all structures of ξ[i, j] containing the base pair {i, j} with the property
that the shortest path from v to i has length d� and the shortest path from v to
j has length dr. In addition, d, dr and d2 must satisfy d = dr + d2.

The remaining cases for the contribution of the class Ω0 to Zv,w[d] are given
by all other possible combinations of v and w being single-stranded or being
covered by an arc, i.e.,

To simplify, we extend the definition of ZB,v
i,j [d�, dr] by setting ZB,v

v,v [0, 0] = 1 and

ZB,v
v,v [d�, dr] = 0 for d� + dr > 0. This allows us to conveniently model all cases

where either v or w are external, i.e., a.), b.), and d.), as special cases of c.).
In case c.) we have to split the distance d into four contributions and we

require two splitting positions for the sequence for all combinations of i, j, v, w.
This would result in an O(n6D5) algorithm. A careful inspection shows, however,
that the split of the distances for the arcs into d� and dr is unnecessary. Since we
want to know only distance to the left/right end overall, we can simply introduce

two matrices ZB,v,�
i,j [d] and ZB,v,r

i,j [d] that store these values. These matrices can

be generated from ZB,v
i,j [d�, dr] as follows:

ZB,v,�
i,j [d] =

∑

dr
dr+b≥d

ZB,v
i,j [d, dr] +

∑

d�
d�>d

ZB,v
i,j [d�, d− b]

Analogously, we compute ZB,v,r
i,j [d].
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Overall, the contribution to Zv,w[d] for structures in Ω0 is given by

Zv,w
0 [d] =

∑

d1,d2

d1+d2≤d

∑

i,j,k,l
i≤v≤j<k≤w≤l

⎛

⎜
⎝

Q1,i−1 · ZB,v,r
i,j [d1]

·ZI′
j,k[d− (d1 + d2)]

·ZB,w,�
k,l [d2] ·Ql+1,n

⎞

⎟
⎠ (3)

Note that for splitting the distance, we reuse the same indices (e.g., the j in

ZB,v,r
i,j [d1] ·ZI′

j,k[d− (d1 + d2)], where as for the remaining partition function, we

use successive indices (e.g.,the i in Q1,i−1 ·ZB,v,r
i,j [d1]). This difference comes from

the fact that splitting a sequence into subsequences is done naturally between two
successive indices, whereas splitting a distance is naturally done by splitting at
an individual position. We have only to guarantee that the substructures which
participate in the split do agree on the structural context of the split position.
This is guaranteed by requiring that ZI′

starts and ends with a backbone edge.
We note that the incorporation of the full dangling end parameters makes is
more tedious to handle the splitting positions.

This results in a complexity of O(n6D3) time and O(n3D) space. However,
we do not need to split in i, j, k, j simultaneously. Instead, we could split case
(c) at position j and introduce for all v ≤ j and k ≤ w the auxiliary variables

ZB,v,r
1,j [d1] =

∑

i≤v

Q1,i−1 · ZB,v,r
i,j [d1] ZB,w,�

k,n [d2] =
∑

w≤l

ZB,w,�
k,l [d2] ·Ql+1,n

ZIB,w,�
j,n [d′] =

∑

k>j

∑

d2≤d′
ZI′
j,k[d

′ − d2] · ZB,w,�
k,n [d2].

Finally, we can replace recursion (3) by

Zv,w
0 [d] =

∑

v≤j

∑

d1≤d

ZB,v,r
1,j [d1] · ZIB,w,�

j,n [d− d1] (4)

We thus arrive at O(n4D2) time and O(n3D) space complexity for the con-
tribution of Ω0 structures to Zv,w[d], excluding the complexity of computing

ZB,v
i,j [d�, dr].

Contribution of Ω1 Structures to Zv,w[d] Ω1 contains all cases where v
and w are covered by a base pair. In the following, let {p, q} be the ≺-minimal
base pair covering v and w. In principle, this case looks similar to the overall
case for Ω0. However, we have now to deal not only with an inside distance, but
also with an outside distance over the base pair {p, q}. Thus, we need to store
the partition function for all inside and outside for each ≺-minimal arc {p, q}
that covers v and w, which we will call Y B,v,w

p,q [dO, dI ]. In principle, a similar
recursion as defined for Z0 in equation (3) can be derived, with the additional
complication since we have to take care of the additional outside distance due
to the arc (p, q). Thus, we obtain the following splitting:



120 R. Backofen et al.

Again we can avoid the complexity of simultaneously splitting at {i, j} and
{k, l} by doing a major split after j. Thus, we get the equivalent recursions as
in eqns.(5–7):

Y B,v,r
p,j [d, dr] =

∑

p<i≤v

∑

d′
O≤d

ZI′
p,i[d

′
O] · ZB,v

i,j [

=̂ d�
︷ ︸︸ ︷
d− d′O, dr] (5)

Y B,w,�
k,q [d′�, d] =

∑

w≤l<q

∑

d′′
O≤d

ZB,w
k,l [d′�,

=̂ d′
r

︷ ︸︸ ︷
d− d′O] · ZI′

l,q[d
′′
O] (6)

Y IB,w,�
j,q [d′I , d] =

∑

j<k<q

∑

d′
�≤d′

I

ZI′
j,k[d

′
I − d′�] · Y B,w,�

k,q [d′�, d] (7)

Overall, we get the following recursion:

Zv,w
p,q [dO, dI ] =

∑

v≤j

∑

dr≤dI

d≤dO

Y B,v,r
p,j [d, dr] · Y IB,w,�

q,j [dI − dr, dO − d] (8)

Overall, we can now define Zv,w[d] by

Zv,w[d] = Zv,w
0 [d] +

∑

{p,q}�={v,w}
dI≥d+b

Zv,w
p,q [d, dI ] +

∑

{p,q}�={v,w}
d<dO+b

Zv,w
p,q [dO, d]

This part has now a complexity of O(n4D2) space and O(n5D4) time. For practi-
cal applications, however, we do not need to consider all possible {p, q}. Instead,
there are only few base pairs that are likely to form and that cover v, w, espe-
cially for v, w where the internal distance of v, w is large enough such that an
outside path has to be considered at all. If we assume a constant number of such
long-range base-pairs, then the complexity is reduced by an n2-factor. For the
complexity in terms of distance, recall that D is typically small.

2.5 Recursions for ZB,v
i,j [d�, dr]

So far, we have used ZB,v
i,j [d�, dr] as a black box. In order to compute these terms,

we distinguish the limiting cases a.) v = i, b.) v = j, c.) is external from the
generic case d.):
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Starting from the limiting cases, we initialize ZB,v
v,j [0, dr] as follows:

ZB,v
v,j [0, dr] =

⎧
⎪⎨

⎪⎩

ZI′
v,j [dr] for a ≤ dr < b

∑
d′≥b Z

I′
v,j [d

′] for dr = b

0 otherwise

and analogously for ZB,v
i,v [d�, 0]. Furthermore, ZB,v

i,j [0, 0] = 0 for i 
= v 
= j.
Finally, we have the following recursion for i 
= v 
= j, d� > 0 and dr > 0:

ZB,v
i,j [d�, dr] = Q̂b

i,j ·
∑

k �=l
i<k≤v
v≤l<j

∑

d′
�≤d�

d′
r≤dr

ZI′
i,k[d� − d′�] · ZB,v

k,l [d′�, d
′
r] · ZI′

l,j[dr − d′r] (9)

where Q̂b
i,j is the external partition function over all structures on the union

of the intervals ξ[1..i] ∪ ξ[j..n] so that {i, j} is a base pair. This is equivalent

to Q̂b
i,j = Pr({i, j}) × Q/Qb

i,j. The base pair probability Pr({i, j}), and the

partition functions Q and Qb
i,j are computed by means of McCaskill’s algorithm.

Recursion (9) apparently has complexity O(n5D4) in time and O(n3D2) in
space. This can be reduced due to the strong dependency between d� and dr,
however. By construction we have |d�−dr| ≤ b since we can always use the bond
{i, j} to traverse from one end to the other. Furthermore, assuming integer values
for a and b, we can have only cb = 2b/ lcd(a, b) + 1 different values for (d� − dr)

This implies that the space complexity of ZB,v
i,j [d�, dr] is O(n3Dcb). Instead of

ZB,v
i,j [d�, dr], we store ZB,v

i,j [d�, d� + dadd] for the cb possible values of dadd.
The dependency between d� and dr can also be used to reduce the time com-

plexity in Equ.(9). The problematic case is (d). Instead of using the variables d�
and dr in ZB,v

i,j [d�, dr] we use the pair d�, dadd in ZB,v
i,j [d�, d� + dadd]. Similarly,

we use d′�, d
′
add instead of d′�, d

′
r for the inner base pair, which then determines

completely the splitting the distances. The details are relegated to Appendix
C. Overall, this results in an recursion for ZB,v

i,j [d�, d� + dadd] with complexity

O(n5c2b) time and O(n3Dcb) space.

3 Discussion and Applications

The theoretical analysis of the distance distribution problem shows that, while
polynomial-time algorithms exist, they probably cannot the improved to space
and time complexities that make them widely applicable to large RNA molecules.
Due to the unfavorable time complexity of the current algorithm and the associ-
ated exact implementation in C, a rather simple and efficient sampling algorithm
has been implemented. We resort to sampling Boltzmann-weighted secondary
structures with RNAsubopt -p [17], which uses the same stochastic backtracing
approach as sfold [5]. As the graph-distance for a pair of nucleotides in a given
secondary structure can be computed in O(n log n) time, even large samples can
be evaluated efficiently2.

2 The C++ program RNAgraphdist is available from http://www.rna.uni-jena.de/

supplements/RNAgraphdist/RNAgraphdist1.0.tar.gz

http://www.rna.uni-jena.de/supplements/RNAgraphdist/RNAgraphdist1.0.tar.gz
http://www.rna.uni-jena.de/supplements/RNAgraphdist/RNAgraphdist1.0.tar.gz
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Fig. 2. Relation between graph distance distribution and smFRET data. (A) The graph
distance distribution of a Diels-Alderase ribozyme at temperature 37◦C.. Structures
(a), (b) and (c) are the top three secondary structures considering their free energy. In
which, the minimum free energy structure is showed in (a), (c) is the real secondary
structure which is ranked as the 3rd best sub-optimal structure with RNAsubopt -e.
he graphic representations of these structures are produced with VARNA [3]. (B) The
corresponding smFRET efficiency (Efret) histograms are reported in [14]. From these
data, three separate states of the DAse ribozyme can be distinguished, the unfolded
(U), intermediate (I) and folded (F) states. (C) The graph distance distribution in the
ensemble which is approximated with RNAsubopt -p at temperature 50◦C.

As we pointed out in the introduction, the graph distance measure introduced
in this paper can serve as a first step towards a structural interpretation of
smFRET data. As an example, we consider the graph distance distribution of a
Diels-Alderase (DAse) ribozyme (Fig. 2 (A)). Histograms of smFRET efficiency
(Efret) for this 49 nt long catalytic RNA are reported in [14] for a large number of
surface-immobilized ribozyme molecules as a function of the Mg2+ concentration
in the buffer solution. A sketch of their histograms is displayed in Fig. 2 (B). The
dyes are attached to sequence positions 6 (Cy3) and 42 (Cy5) and hence do not
simply reflect the end-to-end distance, Fig. 2 (A)(c). In this example, we observe
the the expected correspondence small graph distances with a strong smFRET
signal. This is a particular interesting example, since the minimal free energy
(mfe) structure (Fig. 2 (A)(a)) predicted with RNAfold is not identified with
the real secondary structure (Fig. 2 (A)(c)). In fact, the ground state secondary
structure is ranked as the 3rd best sub-optimal structure derived via RNAsubopt

-e. The free energy difference between these two structures is only 0.1kcal/mol.
However, their graph distances show a relatively larger difference. The 2nd best
sub-optimal structure (Fig. 2 (A)(b)) looks rather similar with the 3rd structure,
in particular, they share the same graph distance value.

The smFRET data of [14] indicate the presence of three sub-populations,
corresponding to three different structural states: folded molecules (state F),
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intermediate conformation (state I) and unfolded molecules (state U). In the
absence of Mg2+, the I state dominates, and only small fractions are found in
states U and F. Unfortunately, the salt dependence of RNA folding is com-
plex [15,19] and currently is not properly modeled in the available folding pro-
grams. We can, however, make use of the qualitative correspondence of low salt
concentrations with high temperature. In Fig. 2 (C) we therefore re-compute
the graph distance distribution in the ensemble at an elevated temperature of
50◦C. Here, the real structure becomes the second best structure with free en-
ergy −10.82kcal/mol and we observe a much larger fraction of (nearly) unfolded
structures with longer distances between the two beacon positions. Qualitatively,
this matches the smFRET data showed in Fig. 2 (B).

Long-range interactions play an important role in pre-mRNA splicing and
in the regulation of alternative splicing [1,22], bringing splice donor, acceptor,
branching site into close spatial proximity. Fig. 3(A) shows for D. melanogaster
pre-mRNAs that the distribution of graph-distances between donor and accep-
tor sites shifted towards smaller values compared to randomly selected pairs of
positions with the same distance.3 Although the effect is small, it shows a clear
difference between the real RNA sequences and artificial sequences that were
randomized by di-nucleotide shuffling.

The spatial organization of the genomic and sub-genomic RNAs is important
for the processing and functioning of many RNA viruses. This goes far beyond
the well-known panhandle structures. In Coronavirus the interactions of the 5’
TRS-L cis-acting element with body TRS elements has been proposed as an
important determinant for the correct assembly of the Coronavirus genes in the
host [6]. The matrix of expected graph-distances in Fig. 3(B) shows that TRS-
L and TRS-B are indeed placed near each other. More detailed information is
provided in Appendix (D).

Our first results show that the systematic analysis of the graph-distance dis-
tribution both for individual RNAs and their aggregation over ensembles of
structures can provide useful insights into structural influences on RNA func-
tion. These may not be obvious directly from the structures due to the inherent
difficulties of predicting long-range base pairs with sufficient accuracy and the
many issues inherent in comparing RNA structures of very disparate lengths.

Due the complexity of algorithm we have refrained from attempting a direct
implementation in an imperative programming language. Instead, we are aiming
at an implementation in Haskell that allows us to make use of the framework
of algebraic dynamic programming [12]. The graph distance measure and the
associated algorithm can be extended in principle to of RNA secondary struc-
tures with additional tertiary structural elements such as pseudoknots [24] and
G-quadruples [18]. RNA-RNA interaction structures [16] also form a promising
area for future extensions. We note finally, that the Fourier transition method
introduced in [27] could be employed to achieve a further speedup.

3 Due to the insufficiency of the spacial-distance information of structural elements in
the secondary structures, we artificially choose a = b = 1 in our experiments.
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Fig. 3. (A): Distribution of graph-distances (a = b = 1) in Drosophila melanogaster
pre-mRNAs between the first and last intron position. To save computational re-
sources, pre-mRNAs were truncated to 100 nt flanking sequence. The black curve
shows the graph-distance distribution computed for the corresponding pairs of positions
on sequences that were randomized by di-nucleotide shuffling. (B): Graph-distances
(a = b = 1) within and between the 5’ and 3’ regions of the genomic RNA of human
Coronavirus 229E computed from a concatenation of position 1–576 and 25188–25688.
Secondary structures bring the 5’ TRS-L and 3’ TRS-B elements into close proxim-
ity. More detailed information related to this example can be found in Supplemental
Material D.
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