
C. Emmanouilidis, M. Taisch, D. Kiritsis (Eds.): APMS 2012, Part II, IFIP AICT 398, pp. 144–151, 2013.
© IFIP International Federation for Information Processing 2013

Analyzing IT Supported Production Control by Relating
Petri Nets and UML Static Structure Diagrams

Henk Jan Pels

Technische Universiteit Eindhoven
h.j.pels@tue.nl

Abstract. A method to model the interaction between a production control
process and an information system is presented. Colored Petri Nets are used to
model the process and UML static structure. When the tokens in the internet are
modeled as objects in the data model, the transitions in the process model can
be specified as formal expressions over the data model. Thus the model verifies
the consistency between the process and the information system and can be
used as formal specification for e.g. an ERP implementation.

Keywords: process modeling, data modeling, ERP implementation.

1 Research Problem

Understanding the interaction between a business process and an information system
has always been a difficult issue. When implementing ERP systems the users do not
understand the logic of the Information System and the system integrators do not
understand the business process. This problem calls for a formal technique to model,
understand and discuss the interaction between the business process and the informa-
tion system. Such a technique should enable to discuss the essential requirements for
production control software to support the business strategy.

2 Approach

Petri Nets [Petri, 1962] provide a formal process modeling language. UML Static
Structure diagrams [OMG, 2005] are a formal language to model the information that
is relevant for a specific business process. In colored Petri Nets [Jensen, 1992] the
tokens have attributes, which enables to consider them as objects. If a UML static
structure model is used to specify the types of tokens and their state space, the transi-
tions can be specified as pre- and post-conditions over this state space. Section 3
explains the modeling principles using the example of a simple assemble to order
production situation with a one-level bill of material. In section 4 we demonstrate the
suitability for more complex situations on a manufacture to order with a multi-level
BOM. Then in section 5 we analyze the well-known MRP planning situation with
multilevel BOM and stock of parts. In section 6 the results of the research will be
discussed.

 Analyzing IT Supported Production Control by Relating Petri Nets and UML 145

3 Assemble to Order Process

3.1 Petri Net

We introduce the modeling approach with a relatively simple situation: the Assemble
to Order process. Figure 1 shows the AtO process modeled in a Petri Net, using the
CPN notation [Jensen, 1992]. Places are denoted by ovals, labeled with a unique
name. The label below a place is the class of the tokens in the place. Places essentially
model delays in the process. Consequently their names correspond to states of tokens.
Transitions are modeled as rectangles which correspond to decisions in the business
process. The label on the arrow is used as identifier for the selected or created tokens
in the pre and post conditions. Transitions model decisions to be taken in the process.

The basic principle of Petri Nets is that a transition fires if a token is present in
each of its input places. This means that transitions with multiple input arrows model
synchronization points. If more than one token is present in a place, the selection is
arbitrary. In colored Petri Nets the firing of a transition also requires that the selected
set of tokens satisfies the precondition. The post-condition specifies the change of
state of the system. In particular it specifies which output arrow a token will follow.
Every token is always in one and only one place.

Fig. 1. Petri Net for Assemble to Order process

The process in figure 1 starts in the place New. Transition Plan moves the sales or-
der to the Planned place. At the same time for each material as required for assem-
bling the ordered product, a purchase order is created and moved to the Ordered
place. The Release transition fires if it finds a Received purchase order that matches a
Planned sales order. Release checks whether all required materials for the sales order
have been received. If so it moves the sales order to place Released, else it places the
sales order back in the Planned place. The purchase order is moved to place Con-
sumed. Transition Produce takes orders from place Released and moves them to place
Finished. Note that the transition Finished models the decision to accept an assembled
product as finished. During actual production the sales order remains in state ‘Re-
leased”. The Petri Net models the process control decisions and the delays between
them, not the process activities, like e.g. the assembly work.

146 H.J. Pels

3.2 The Data Model

The purpose of the model is to analyze the control decisions to be taken to create the
desired behavior of the business process. The evolving state of the system is recorded
as the arrival periods in the places. Figure 2 shows the UML static structure diagram
(further referred to as data structure) for the AtO process.

Fig. 2. Data structure for Assemble to Order process.

Relationships are represented as links, which are in fact attributes with objects as
value. For the precise interpretation of the data model we refer to [OMG, 2005] and
[Pels, 2006]. We just mention the derived attribute, indicated with a ‘/’ before the
name, meaning that the value of this attribute can be calculated from the current state
of the total set of objects. The formula for calculation is specified outside the diagram.

In specifying constraints, pre- and post-conditions the dot notation from UML con-
straint language allows readable formal expression. If e.g. s1 is a SalesOrd object,
then s1.Product is the ordered product.

In specifying constraints, pre- and post-conditions the dot notation from UML con-
straint language allows readable formal expressions. If e.g. s1 is a SalesOrd object,
then s1.Product is the ordered product.

Object class Product models the products that can be ordered. Attribute ProdLdTm
records the production lead time. Part models the parts used in the products. Each part
has SuppLdTm for supplier lead-time. Material specifies the use of a specific part in
a specific product. Attribute Q is the quantity used. The common properties of sales
orders and purchase orders are modeled in class Order as generalization of SalesOrd
and Purchord. Q is the quantity ordered, New the period of creation and Due the
period due to be delivered. SalesOrd and PurchOrd have similar attributes for the
period where phases start. Classes Token and Place connect the data structure to the
Petri Net. Since they are common for this way of process-data modeling, they will be
supposed to be implicitly specified in all further data structures.

 Analyzing IT Supported Production Control by Relating Petri Nets and UML 147

3.3 The Transitions

Transitions are specified in terms of pre- and post-conditions. The precondition speci-
fies which tokens are selected from the input places. The post-condition specifies the
state changes caused by the transition. Since the post condition must reason over the
old as well as over the new state, some special operators must be added to standard
predicate logic:

• The <- operator is used to move tokens. The left operand specifies the output place,
the right operand the token to be moved. If the right operand is not the label of one
of the input arcs, a new token is created,

• The := operator is used to specify that in the new state the left operand has the
value resulting from the right operand. All variables in the right operand refer to
the new state, unless they are preceded by a ~, in which case they refer to the old
state,

Below we specify transitions Plan and Receive in terms of the data model.

Plan %for each material create a purchase order%

POST Planned <- so ∧ ∀ m ∈ so.Product.Material [Ordered <- po ∧
po.SalesOrd := so ∧ po.Material := m ∧ po.Q := m.Q * po.SalesOrd.Q ∧
po.Ordered := so.New ∧ po.Due = so.New + m.Part.SupLdTime];
Receive %purchase orders are processed in order of delivery%

PRE po.Due = Min(n.Due: n ∈ Ordered.Token)%Ordered is a Place object,
so Ordered.Token is the set of tokens in this place%

POST Received <- po;

The formulas above show how the full behavior of the process can be specified in
formal language. It verifies that process and data model are consistent. Note that the
names of products and parts appear to be not relevant for the process. However, they
are relevant in the user interface.

3.4 Discussion of the Modeling Approach

The colored Petri Net brings a process model that clearly shows the main characteris-
tics of the process. It shows two parallel process lines for the sales order and the pur-
chase order, that come together in the release transition. The data model enables an
abstract, complete and unambiguous specification of control decisions in terms of
information needed. So a consistent model verifies that the data model fits the
process. If the systems integrator is ordered to implement the software system consis-
tent with the data model, it is guaranteed that it will support the business process.
Using this approach can reduce the risk and the cost for ERP implementation
dramatically.

148 H.J. Pels

4 Manufacture to Order Process

4.1 MtO Process Model

The process model in Figure 3 shows that the MtO process has a third process line:
the manufacturing process. A new sales order generates a manufacturing order for the
product. The Plan transition not only creates purchase orders, it also creates manufac-
turing orders for non-purchased materials. A manufacturing order is released when all
required materials, purchased and manufactured, are available. Production will start
only when sufficient capacity is available. If not the InWork period is incremented
and the manufacturing order is fed back to the Released place. Finished manufactur-
ing orders are fed back to Received, unless their product is a customer ordered prod-
uct. In that case it proceeds to Delivered. The sales order waits in Accepted until the
end product has been manufactured and is then expedited to the customer.

Fig. 3. MtO process

Fig. 4. MtO data structure

 Analyzing IT Supported Production Control by Relating Petri Nets and UML 149

4.2 MtO Data Structure

In figure 4 object class MfgOrd represents the manufacturing orders with their specif-
ic states. Material now records the multi-level BOM by connecting the Child Product
to the Parent Product. The set of Material objects linked to the same Parent is the
What (used), while the set of material objects linked to the same Child is the Where
(used). New is the class Capacity, to specify capacity limits.

The MtO process as modeled above is perfectly just in time: materials are pro-
duced or purchased only when needed for a sales order and production and purchase
orders are always uniquely linked to a sales order. The question now is what happens
if the concept of stock is introduced is discussed in the next section.

5 MRP Process

5.1 MRP Process Model

Material Requirements Planning was introduced by APICS as a concept for computer
aided production control. Manufacture to stock was still the most usual way of pro-
duction, making stock control the central issue of production planning. APICS
explained the MRP principles using the concepts of Net Requirements, Gross Re-
quirements, Scheduled Receipts, Available Balance, Planned Orders Due and Planned
Release [Bertrand, Wijngaard, Wortmann, 1990]. These concepts are rather abstract
and difficult to understand, so let us try to achieve better understanding by extending
the MtO model with stock. For simplicity we use unlimited capacity.

Figure 5 shows the process model. Sales planning transforms proposed sales plans
into confirmed and generates a manufacturing order for the product. When MfgOrd’s

Fig. 5. MRP process

Plan

so

po

Releasemo mo mo Finishmo mo

Receivepo po

mo

MfgOrd MfgOrd

PurchOrd PurchOrd

Accept

mo

mo

SalesOrd SalesOrd

MfgOrd MfgOrd

nmo

expeditso

so

so

SalesOrd

sp PlanSales sp

Salesplan Salesplan

Propose
d

Confirme
d

Required Planned Released

Accepted
Expedite

d

Finished

Ordered Received

New so

150 H.J. Pels

are planned the BOM is exploded, PurchOrd’s are generated for purchased materials
and new Required MfgOrd’s are generated for other materials. Planned MfgOrd’s are
released for production when sufficient stock of materials is available. New Sale-
sOrd’s are accepted unconditionally and expedited if sufficient stock of the end prod-
uct is found. If not the expedited period is incremented and the order is returned to
accepted.

5.2 MRP Data Structure

The datamodel In figure 6 shows the MRP concept as class MRP.

Fig. 6. MRP data structure

Each MRP object specifies two stock-levels for each period: Stock for the stock
level that results from the planning and FreeStock the stock level taking sales orders
into account. If sales orders are different from sales plan FreeStock differs from
Stock. Stock levels are derived attributes since they can be calculated as inflow
minus outflow.

5.3 MRP Transitions

The transition Plan is most specific for MRP, since it generates manufacturing or
purchase orders only if the stock would get below zero. Also orders are planned
backward, meaning that order period is the plan period minus the product lead-time.

Plan

POST Plan <- mo ∧ mo.Planned := mo.Required ∧ ∀ m ∈ mo.Product.What:
IF ~mo.Stock < mo.Q THEN IF m.Child.What = {} %purchase part% Then po <-

Ordered ∧ po.Q = mo.Q * m.Q ∧ po.Due := mo.Due ∧ po.Ordered := mo.Due –
m.Child.ProdLdTm ELSE %mfg part% MfgOrd <- nmo ∧ nmo.Q := mo.Q * m.Q ∧
nmo.Due := mo.Due ∧ nmo.Ordered := mo.Due – m.Child.ProdLdTm ENDIF
ENDIF;

 Analyzing IT Supported Production Control by Relating Petri Nets and UML 151

5.4 MRP Analysis

Now comparing the MRP process with the MtO process, the striking difference is that
any synchronization between the three process lines has disappeared. This is because
stock eliminates the direct links between the different order types, as can be seen in
the data structure. As a result an expensive process is needed to control stock: the
FreeStock levels must be monitored frequently in order to adapt plans to actual sales.
However, stock causes longer lead-times and thus delay between a change in plan and
the change of stock. From control theory it is known that such a delay may cause
oscillations, increasing uncertainty and again increasing stock levels. This is a very
strong argument to outsource the stock control problem to the suppliers and to apply
MtO where possible.

Another surprise is that that original APICS concepts are not explicitly in the data
structure, but boil down to just Stock and FreeStock. This means that they are not
essential for understanding, indicating that our modeling approach leads to easier
understanding of the problem. This does fear that MRP software designers, systems
integrators and users may have very different and even conflicting understandings of
the logic, without being able to discuss or detect these conflicts.

6 Results

The contribution of the modeling approach is demonstrated in that it enables us to
explain and discuss production control processes in relation to the IT support. Even a
complex process like MRP can be explained with a relatively simple process and data
structure. A surprising result is that the analysis generates critics to a long established
and extensively published mechanism like MRP. The method has been applied in
ERP selection and implementation projects and appeared to contribute considerably to
smooth and effective implementation.

References

1. [Aalst ea, 2002] van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models,
Methods,and Systems. MIT Press, Cambridge (2002)

2. [Bertrand, Wijngaard, Wortmann, 1990] Bertrand, J.W.M., Wijngaard, J., Wortmann, J.C.:
Production control: A structural and design oriented approach. Elsevier (1990)

3. [Jensen, 1992] Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. EATCS, Monographs on Theoretical Comp. Science. Springer, Berlin (1992)

4. [OMG, 2005] Object Management Group (OMG), OCL 2.0 Specification. OMG document
ptc/2005-06-06 (June 2005)

5. [Pels, 2006] Classification hierarchies for product data modelling. Production Planning and
Control 17(4), 367–377 (2006)

6. [Pels ea, 2007] Pels, H.J., Goossenaerts, J.: A conceptual modeling technique for discrete
event simulation of operational processes. In: Olhager, J., Persson, F. (eds.) APMS 2007.
IFIP, vol. 246, pp. 305–312. Springer, Boston (2007)

7. [Petri, 1962] Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Institut für instru-
mentelle Mathematik, Bonn (1962)

	Analyzing IT Supported Production Control by Relating
Petri Nets and UML Static Structure Diagrams
	1 Research Problem
	2 Approach
	3 Assemble to Order Process
	3.1 Petri Net
	3.2 The Data Model
	3.3 The Transitions
	3.4 Discussion of the Modeling Approach

	4 Manufacture to Order Process
	4.1 MtO Process Model
	4.2 MtO Data Structure

	5 MRP Process
	5.1 MRP Process Model
	5.2 MRP Data Structure
	5.3 MRP Transitions
	5.4 MRP Analysis

	6 Results
	References

