Ontology-Based Flexible Multi Agent Systems Design
and Deployment for Vertical Enterprise Integration

Christos Alexakosl, Manos Georgoudakisz, Athanasios P. Kalogerasz,
and Spiridon L. Likothanassis'

" Dept of Computer Engineering and Informatics, University of Patras, Greece
{alexakos, likothan}@ceid.upatras.gr
% Industrial System Institute, Greece
{kalogeras,georgoud}@isi.gr

Abstract. Empowering autonomic control in the enterprise environment highly
contributes in the quest for a higher level of flexibility. Multi-Agent Systems
(MAS) may be utilized to this end along with the enterprise environment model
leading to a decentralization of the manufacturing production processes. The
current work proposes a framework along with the necessary software tools for
the modeling of MAS through ontologies, its design and deployment in the
enterprise / manufacturing environment.

Keywords: ontologies, multi agent systems, vertical enterprise integration.

1 Introduction

The need to increase the competitiveness of enterprises, especially in the manufactur-
ing sector, is profound. Intra-enterprise interoperability is a prerequisite to this end,
making possible the vertical integration of systems / applications residing at different
levels of the classical manufacturing environment hierarchy. This need is especially
felt when modern enterprises have to support such advanced business models as mass
customization that require a robust enough environment that may react effectively and
adapt to unexpected events and uncertain timing. Distributing intelligence and provid-
ing autonomy to different levels in the manufacturing environment hierarchy may
positively contribute to this end. MAS along with a model representation of the enter-
prise environment and the relevant semantics are fundamentals for such an approach.

The proposed framework is based on the concept of simple definition of the
functionalities of an integration MAS that permits system semi-automatic
implementation and deployment, with the following challenges:

e The description of MAS modules, their functionalities, processes and data ex-
change protocols must follow a human understandable way. Model-based design
using UML is a good paradigm for design of systems behavior by engineers.

e The implementation phase of MAS must include the least possible code implemen-
tation, accelerating the deployment procedure and enforcing system re-usability.
The use of modular system architecture, where the modules can be easily
developed and re-used, in combination with code-generation of system main
components can significantly decrease the need for code programming.

C. Emmanouilidis, M. Taisch, D. Kiritsis (Eds.): APMS 2012, Part II, IFIP AICT 398, pp. 80-87] 2013.
© IFIP International Federation for Information Processing 2013

Ontology-Based Flexible MAS Design and Deployment for Vertical Enterprise Integration 81

e System definition must be computer-understandable, allowing computer software
to read MAS description and proceed to the appropriate actions, such as code gen-
eration, agent creation and data mapping. XML and RDF are open standards that
can easily define concepts, be delivered to systems and parsed by them.

e The information integration between heterogeneous systems is a major issue in
enterprise system integration; without the “common understanding” of the data
exchanged between systems the orchestration of the business processes is
meaningless.

In order to face the aforementioned challenges, the proposed framework is
accompanied by a concrete methodology for MAS definition, implementation and
deployment phases based on GAIA [1] agent-oriented software engineering (AOSE)
methodology. Furthermore, a set of tools support the three phases of the methodology
establishing an integrated architecture for the framework.

The rest of the paper is organized as follows: In section 2 a brief presentation of the
related works on ontology-driven design and deployment of MAS is provided.
Section 3 presents the proposed framework methodology and its main components
along with its supporting tools. Finally, some conclusion is given in chapter 4.

2 Related Work

MAS model development is supported by a number of AOSE methodologies and
technologies [2], characterized by different levels of maturity. GAIA methodology is
very popular [3] because it provides a strong design tool for engineers in order to
describe the functionalities of a MAS along with the behavior of the agents acting in
it. According to the GAIA-approach the behavior and interaction of an agent-based
system is described by a set of roles with role related activities and a set of interac-
tions among the roles. GAIA is used in various approaches for MAS design in
enterprise / manufacturing integration [4].

During the recent years ontologies have been used as tools in model — driven archi-
tectures for defining the detailed functionality of a MAS. The semantic basis is the
frame-based ontology ONTODM. ONTOMADEM [5] is a knowledge-based tool for
designing MAS based on the MADEM MAS design methodology. ONTOMADEM is
using a frame-based ontology constructed with Protégé tool. Bittencourt et al. [6]
propose an ontological model for defining MAS functionalities and components dri-
ven for two ontologies, one describing GAIA methodology agents and one describing
JADE agent implementation. The model uses SWRL rules for mapping GAIA agent
roles and activities to JADE agents and behaviors. Nevertheless, a common denomi-
nator in most of these approaches is the lack of automatic creation of MAS.

In the runtime phase of MAS, ontologies in most approaches are used for support-
ing semantics common understanding of the integrated data exchanged between
agents. Few proposals elaborate ontologies from the MAS design phase to deploy-
ment. O-PRS (Ontology driven Procedural Reasoning System like model) [7] utilizes
OWL ontologies to express the concepts in Believe, Desire, Intention (BDI) agent
architecture. The ontologies add the appropriate semantics to the exchanged messages

82 C. Alexakos et al.

in order for the agents to understand how to act. Nyulas et al. [8] proposed an ontolo-
gy-driven framework for design and deployment of MAS on top of Java Agent DE-
velopment Framework (JADE) framework (http://jade.tilab.com/). The framework is
based on the definition of MAS functionality using three Ontology Web Language
(OWL) ontologies (Data Source, Task-Method and Deployment). For MAS deploy-
ment, special purpose agents (Controller Agent and Configurator Agent) are used in
order to create and monitor task agents according to the semantic configuration.

3 Proposed Integration Framework

3.1 Design to Deployment Methodology

The proposed methodology covers the three phases of system engineering: design,
implementation and deployment. For simplicity, the testing phase is considered as
part of the implementation phase. Figure 1 depicts the major and optional steps of the
methodology in the three phases.

Design Phase

MAS semantically
definition

Implementation Phase

|
| New ontologies
| implementation

» MAS code generation

Deployment Phase

| New modules
| implementation

MAS deployment

Major Steps
—————— Optional Steps

Fig. 1. Design to Deployment Methodology

The core aspect of the proposed methodology is the MAS semantic definition in
terms of ontologies. Ontologies represent powerful tools for defining the knowledge
of a domain. In the case of enterprise system integration knowledge includes the busi-
ness processes, the exchanged information and business logic executed from the par-
ticipating systems. Ontologies describe the concepts in terms of axioms that for the
shake of simplicity can be considered as sentences such as “Agent A executes the
Invoice Procedure”. In modern ontology languages like OWL, a more object oriented
approach is used where entities follow a hierarchical structure enforced by relation-
ships between them. OWL is an ontology language generated on the concept of Se-
mantic Web, thus its main representation format is based on XML and RDF, permit-
ting both human and computer understandability. For this reason, it is used as the
basis for MAS definition in the proposed framework.

OWL Ontologies follow the T-Box and A-Box distinction which is drawn in De-
scription Logics. OWL ontologies are composed of two functional parts, the first part
is the ontology scheme (T-Box) and the second is a set of instances of the ontology
scheme containing the data related to the described domain (A-Box). The proposed
methodology uses as core ontology scheme the OWL-GMO (Gaia MAS Ontology)

Ontology-Based Flexible MAS Design and Deployment for Vertical Enterprise Integration 83

ontology that defines the core entities of MAS system following the widely accepted
GAIA design methodology. Each agent role is depicted as an instance of OWL-GMO.
Furthermore, OWL-GMO provides entities and relations for the definition of agent
behaviors and messages exchanged. Other pre-existing ontologies or newly-composed
ones can be integrated in the core ontology scheme in order to define the information
semantics of the data used by the participating systems and agents.

The implementation phase includes the code generation of the components defined
by OWL-GMO followed by the packaging of external modules that execute specific
business logic functionalities. Agents and their functionalities (behaviors and message
exchanged) are implemented following the specification of agent implementation of
JADE. JADE supports the implementation of distributed software agent systems
where software agents are running in different hosts. Moreover, the agent instances
are managed according to globally accepted FIPA specifications. Finally, JADE
agents follow Agent Communication Language (ACL), a well-structured schema for
message exchange.

The specific business logic or functionalities that have to be executed by the agents
must be implemented as modules providing specific APIs for invocation by the core
agent implementation. In this case, the binaries or java code of these modules will be
included in the core generated code. Finally, the code will be compiled and ready for
deployment to the real enterprise environment.

3.2 Architecture Components

Each distinct step of the aforementioned methodology is supported by software tools
either providing graphical user interface to the users or automatically executing tasks.
Figure 2 depicts the system components of framework methodology software
realization. The architectural components are:

e Ontology Editor. It is GUI for composing and instantiating the ontologies used in
the concept of the framework. Protégé tool (http://protege.stanford.edu/) is used for
this purpose.

e Ontology Importer. It is a module that manages the OWL ontology files composed
by the Ontology Editor for a specific project (MAS definition). Furthermore, it
keeps versions of the ontologies for potential use.

e Code Generator is the component responsible for the transformation of the MAS
definition to code running on top of JADE MAS platform. The Code Generator
uses an OWL Ontology Reasoner for the conceptualization —i.e. the identification
of hierarchy and relations - of the imported ontologies. JENA semantic framework
(http:// jena.apache.org) with Pellet (http://clarkparsia.com/pellet) reasoning
support is used for this purpose.

e External Module Importer is a GUI responsible for collecting the external modules
(binaries or code) needed for MAS implementation.

e Packaging Manager is responsible for managing the generated code and the
imported modules and creating the final application package for compilation.

84 C. Alexakos et al.

e Binary Builder is the tool that builds the final MAS system. Binary Builder can
be directly connected to the deployment or testing environment in order to
automatically deploy the binary code.

Ontology Editor

Ontology
Reasoner

Packaging
Manager

»

Binary Builder

y

A
A

A

Ontology
Importer

Code Generator

External Module
Importer

Fig. 2. Framework Methodology Software Realization Architectural Components

3.3 OWL-GMO

As aforementioned, OWL-GMO is the core ontology of the proposed framework used
to define the agents and their behavior in MAS. OWL-GMO entities come from the
terms defined in the GAIA methodology. The ontology is based on two super-classes:

o AgentSystemEntity which abstractly defines the entities used by GAIA methodolo-
gy to define a MAS.

e AbstractConcept which defines supporting entities used to define concepts of the
behavior and functionality of the MAS (data, processes, APIs, etc).

According to GAIA, each agent system comprises a set of agent roles. Each role is
defined by four attributes: responsibilities, permissions, activities, and protocols.
Responsibilities determine functionality and, as such, are perhaps the key attributes
associated with a role. Responsibilities are divided into two types: liveliness
properties and safety properties. In order to realize responsibilities, a role has a set of
permissions. Permissions are the rights associated with a role. Therefore, the
permissions of a role identify the resources that are available for that role in order to
realize its responsibilities. In the kind of system that has been typically modeled in
this work, permissions tend to be information resources. Activities are actions
associated with the role and are carried out by the agent without interacting with other
agents. Finally, a role is also identified with a number of protocols which define the
way that it can interact with other roles. Each protocol is defined by its initiator role,
the responder roles, input data, output data and the process executed.

Figure 3 depicts the OWL-GMO visualization. The classes AgentRole,
RoleResponsibility, RolePermission, RoleProtocol and RoleActivity are the subclasses
of the class AgentSystemEntity and define the main entities of GAIA methodology.
For RoleResponsibility there are two subclasses, LivenessProperty and SafetyProperty
following GAIA specifications. These classes following by relationships expressing
specific concepts and restrictions (i.e. AgentRole accessResourcesAccordingTo
RolePermission) are used for the definition of the MAS.

Ontology-Based Flexible MAS Design and Deployment for Vertical Enterprise Integration 85

FunctionMethod|

‘ some Literal
executesA

connectionUsesOperator|

hasInputs

yrer-rrpran A
_ DataObject [Sisuaccess

hasInputs| hasOutput

denyAccess

onnectsTo

ExpressionSegment indicatesA | ROleACtivity |

startsWith actsAccordingTo| accessResourceAccording

indicates. RoleProtocol
<purpose exactly 1 Literall

asProcess | interactsAccordingTo asinitiator |hasResponder
Expression AgentRole l
isExpressBy| isExpressBy I |
AgentSystemEntity ‘
consistsOf S
tem
_SafetyProperty |
functionsAccordingTo
|_RoleResponsiity
LivenessPi | <CivenessProperty

or SafetyProperty

Fig. 3. OWL-GMO Ontology

Furthermore, OWL-GMO uses the subclasses DataObject, FunctionMethod,
Expression, ExpressionSegment and ExpressionOperator to express additional
concepts reading data, operations and processes. DataObject class is used to define
the used data, usually enriched with external ontologies describing the information
data used for a specific project. Expression denotes a concept that consists of
ExpressionSegments which indicate either an activity or a protocol.
ExpressionSegments are connected via ExpressionOperator in order to compose a
flow of actions that define the activity. FunctionMethod is designed in order to be
instantiated as a method from software libraries. It is mapped to the external modules
API methods for executing specific business logic functionalities.

3.4 MAS Implementation

The outcome of the design phase is the instantiated OWL-GMO where individuals are
depicted by the agents and their functionalities. At the next step, being MAS
implementation, the relative code of the agents will be generated according to JADE
agent framework guidelines. In order to generate code, sets of “transformation”
scripts are executed, which logic follows the main principles presented by
Spanoudakis and Moraitis [9].

In order to manage the data used by the agent system and depicted in the imported
ontologies extending Data Object, the function createDataObjects() generates java
classes based on the heredity feature which is supported by both OWL and Object
oriented program languages. The create_literal_var() function creates a class public
property of java common data type (String, int, etc) associated to DataProperty range
type. The create_object_var() function creates a public property of the corresponding

86 C. Alexakos et al.

java class to ObjectProperty range ontology class. Java cardinality is defined by an
array if there are multiple values. This transformation allows Java classes to be used
in the generated code associated with the MAS definition.

Function createDataObjects():
foreach (OWL Class) C
if (OWL Class) C is subclass of (OWL Class) C1
create_java_class_extends (C.name, Cl.name)
else
create_java_class (C.name)
endif
for each (OWL DataTypeProperty) DP of (OWL Class) C
cardinality = getPropertyCardinality (DP)
create_literal_var (DP.name, C.name,cardinality)
endforeach
for each (OWL ObjectProperty) OP of (OWL Class) C
cardinality = getPropertyCardinality (OP)
create_object_var (OP.name, C.name, cardinality)
endforeach
endforeach

Having generated the Java data object classes, the next step is the creation of the
agents. In JADE framework agents are realized as extensions of jade.core.Agent and
their tasks (activities or protocols) are implemented as a JAVA classes extending the
jade.core.behaviours.Behaviour class. The received / sent messages for each agent are
implemented using the jade.lang.acl. ACLMessage class. Function createAgents()
depicts the code generation script for agents and their behaviors.

Function createAgents():
foreach (AgentRole as Agent)
create_Agent (Agent)
foreach (AgentActivity(Agent actsAccordingto)as
Activity)
Behaviour = create_Behaviour (Activity)
attach_Behaviour_to_Agent (Behaviour, Agent)
endforeach
foreach (RolePermission(Agent interactsAccordingTo)as
Permission)
DataObject = getDataObject_isAllowed(RolePermission)
attach_Data_Object_to_Agent (DataObject,Agent)
endforeach
foreach (AgentProtocol (Agent hasInitiator ||
interactsAccordingTo|| hasResponder)as Protocol)
Expression = getExpression_hasProcess (Protocol)
attach_protocol_behaviour (Expression, Agent)
endforeach
endforeach

Ontology-Based Flexible MAS Design and Deployment for Vertical Enterprise Integration 87

For the agent protocols that are released by attach_protocol_behaviour() function, the
corresponding behaviors and ACL messages are generated according to the process
flow defined by the related Expression. In each transformation the input and output
data of behaviors are mapped according to Java data objects created by the function
createDataObjects().

The next step is the gathering of all the external modules/java classes and adding
them to the project classpath. The final step comes with the compiling and building of
agent executable code that will run on top of an installed JADE platform at the
enterprise environment.

4 Conclusion

The paper presents a framework relevant to the modeling, design, implementation and
deployment of a MAS for the enterprise environment allowing the increase of its
flexibility and decision making autonomy. In this context production process may be
easier and more effectively decentralized. The different software tools are presented
that make it possible to model the MAS in terms of ontologies, implement it and
deploy it to the enterprise environment through Java code generation.

References

1. Zambonelli, F., et al.: Developing Multiagent Systems: The Gaia Methodology. ACM
Transactions on Software Engineering and Methodology 12(3), 317-370 (2003)

2. Akbari, O.Z.: A survey of agent-oriented software engineering paradigm: Towards its in-
dustrial acceptance. International Journal of Computer Engineering Research 1(2), 14-28
(2010)

3. Leitdo, P., Vrba, P.: Recent Developments and Future Trends of Industrial Agents. In:
Maiik, V., Vrba, P., Leitdo, P. (eds.) HoloMAS 2011. LNCS, vol. 6867, pp. 15-28. Sprin-
ger, Heidelberg (2011)

4. Girardi, R., Leite, A.: A knowledge-based tool for multi-agent domain engineering. Know.-
Based Syst. 21(7), 604-661 (2008)

5. Bratukhin, A., Sauter, T.: Functional Analysis of Manufacturing Execution System Distri-
bution. IEEE Transactions on Industrial Informatics 7(4), 740-749 (2011)

6. Bittencourt, LI, Bispo, P., Costa, E., Pedro, J., Véras, D., Dermeval, D., Pacca, H.: Model-
ing JADE Agents from GAIA Methodology under the Perspective of Semantic Web. In: Fi-
lipe, J., Cordeiro, J. (eds.) ICEIS 2009. LNBIP, vol. 24, pp. 780-789. Springer, Heidelberg
(2009)

7. Mousavi, A., Nordin, M., Othma, Z.A.: An Ontology Driven, Procedural Reasoning Sys-
tem-Like Agent Model, For Multi-Agent Based Mobile Workforce Brokering System. Jour-
nal of Computer Science 6, 557-565 (2010)

8. Nyulas, C., et al.: An Ontology-Driven Framework for Deploying JADE Agent Systems. In:
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Tech-
nology, pp. 573-577. IEEE Press, New York (2008)

9. Spanoudakis, N., Moraitis, P.: Gaia Agents Implementation through Models Transforma-
tion. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009. LNCS,
vol. 5925, pp. 127-142. Springer, Heidelberg (2009)

	Ontology-Based Flexible Multi Agent Systems Design
and Deployment for Vertical Enterprise Integration
	1 Introduction
	2 Related Work
	3 Proposed Integration Framework
	3.1 Design to Deployment Methodology
	3.2 Architecture Components
	3.3 OWL-GMO
	3.4 MAS Implementation

	4 Conclusion
	References

