
C. Emmanouilidis, M. Taisch, D. Kiritsis (Eds.): APMS 2012, Part I, IFIP AICT 397, pp. 397–404, 2013. 
© IFIP International Federation for Information Processing 2013 

A Stochastic Formulation of the Disassembly Line 
Balancing Problem 

Mohand Lounes Bentaha, Olga Battaïa, and Alexandre Dolgui 

École Nationale Supérieure des Mines, EMSE-FAYOL,  
CNRS UMR6158, LIMOS, F-42023 Saint-Étienne, France 

{bentaha,battaia,dolgui}@emse.fr 

Abstract. The disassembly line balancing problem is studied under uncertainty. 
Disassembly task times are assumed random variables with known probability 
distributions. An AND/OR graph is used to model the precedence relations 
among tasks. The goal is to assign the disassembly tasks to workstations while 
respecting precedence and cycle time constraints. The objective is to minimize 
the total line cost including the incompletion cost arising from task 
incompletion within the cycle time. A stochastic linear mixed integer 
programming formulation is developed. 
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1 Introduction 

The growing amount of postconsumer products poses challenges for business and 
society at large [7]. To decrease the amount of waste to be sent to landfills, more and 
more manufacturers turn to end-of-life processing of products [6]. The selective 
separation of desired parts and materials, executed by disassembly, is a mandatory 
step before recycling or remanufacturing [8]. As a consequence, disassembly systems 
tend to play an important role in industry.  Since their design results in complex 
optimization problems, including disassembly planning, balancing and sequencing, 
efficient mathematical tools are needed in order to improve their performances and 
their cost effectiveness. Such tools must take into account the high degree of 
uncertainty in the structure and the quality of the products to be disassembled because 
of varying conditions affecting them before they arrive in a disassembly system. This 
paper deals with the uncertainty related to the disassembly task times and proposes a 
new mathematical formulation for the stochastic disassembly line balancing problem 
(DLBP) as well as an exact method to solve it efficiently.   

2 Problem Formulation 

The Disassembly Line Balancing Problem considered here aims to assign a given  
set of disassembly tasks I ൌ ሼ1,2, … , ܰሽ  to an ordered sequence of workstations 
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ܬ ൌ ሼ1,2, … ,  ሽ under precedence and cycle time constraints. A task cannot be splitܯ
between two workstations. Disassembly task times ݐ௜ are assumed random variables 
with normal probability distributions having known mean ߤ  and variance ߪଶ, ݅. ௜ݐ .݁ ൌ ,௜ߤሚ௜~ࣨሺߞ ,ሚ௜ߞ ௜ݐ ,௜ሻߪ ൐ 0, ݅ א  The task times of set I are modeled .[13-12] ,[5] ,ܫ
by random vector ߦሚ ൌ ൫ߞሚଵ, ,ሚଶߞ … , ሚே൯ varying over a set Ξߞ ؿ Ըାே in given probability 
space ሺΞ, ࣠, ܲሻ. Random variables ߞሚ௜, ݅ א  .are assumed to be mutually independent ܫ
Let ߞሚ௜ ൌ ,ሚ൯ߦ௜൫ߙ ݅ א  . ܫ

The precedence relations among tasks are given by an AND/OR Graph (AOG), [2], 
[10], see Fig. 1. Each subassembly of the product to be disassembled is represented by 
an auxiliary node A௞, ݇ א ,in the AOG. Each disassembly task gives a basic node  B௜ ܭ ݅ א  Two types of arcs define the precedence relations between the subassemblies ܫ
and the disassembly tasks. AND-type arcs (in bold) dictate the normal precedence 
relation. OR-type arcs (remaining arcs) permit the selection of any of the successors. 
A dummy task ܵ is introduced into the precedence graph as a sink node, see the 
figure below.  

 

Fig. 1. AND/OR precedence graph 

The following notations have to be introduced. 

Parameters ܫ ൌ ሼ1,2, … , ܰሽ, disassembly tasks’ index set, ܰ א Գܬ ;כ ൌ ሼ1,2, … , ܯ ,ሽ, workstations’ index setܯ א Գכ; 
ܭ  ൌ ሼ0,1, … , ܩ െ 1ሽ , index set of the AND/OR precedence graph’s auxiliary 

nodes, ܩ א Գכ; A௞ : Auxiliary node of the AND/OR graph, ݇ א ݅ ,B௜ : Disassembly task ; ܭ א ௌݐ ,The AND/OR graph’s sink node : ܵ ; ܫ ൌ ,௧ܥ ௝: cost per unit time of exceedingݍ ;௖ : Fixed cost per unit time of operating the workstationsܨ ;0 ݆ א ௧ܥ ,௧ : Cycle timeܥ ;ܬ ൐ 0; 
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,ሚ൯ : Random task time of B௜ߦ௜൫ߙ ݅ א ݇ ,Pሺ݇ሻ : Predecessors index set of A௞ ; ܫ א i.e. Pሺ݇ሻ ܭ ൌ ሼ݅|B௜ precedes A௞ሽ; Sሺ݇ሻ : Successors index set of A௞, ݇ א Sሺ݇ሻ ,ܭ ൌ ሼ݅|A௞ precedes B௜ሽ. 

Decision Variables ݔ௜௝ ൌ ቄ1    if task from ܤ௜ is assigned to workstation ݆,0    otherwise.                                                               ݔௌ௝ ൌ ቄ1    if  sink  task ܵ is assigned to workstation ݆,0    otherwise.                                                               ݖ௝ ൌ ൜ܥ௧   if ݔௌ௝ ൌ 1,   0    otherwise.                                                            
The objective considered in this paper is to minimize the line cost including fixed 
workstation operating costs and recourse costs caused by exceeding ܥ௧. A recourse 
variable ݕ௝൫ߦሚ൯, ݆ א   .௧ if there is anyܥ measures the amount of time exceeding ,ܬ

The following model is used for the problem presented. 

Stochastic MIP Formulation (SMIP I) 

min ቐܨ௖  ෍ ௃א௝௝ݖ ݆ ൅ ॱక෨ ቎෍ ௃אሚ൯௝ߦ௝൫ݕ ௝ݍ ቏ቑ                                                  
s.t. ݖ௝ ൌ ,ௌ௝ݔ ௧ܥ ݆ ׊ א ∑ (1)                                                                    ܬ ∑ Sሺ଴ሻא ௃௜א௜௝௝ݔ ൌ 1                                                                     (2) ∑ ௃א௜௝௝ݔ ൑ 1, ݅ ׊ א ∑ (3)                                                                     ܫ ∑ Sሺ௞ሻא௃௜א௜௝௝ݔ ൌ ∑ ∑ Pሺ௞ሻא௃௜א௜௝௝ݔ , ݇ ׊ א ∑ ሼ0ሽ                               (4)\ܭ Sሺ௞ሻא௜௩௜ݔ ൑ ∑ ∑ Pሺ௞ሻא௜௝௩௝ୀଵ௜ݔ , ݇ ׊ א ,ሼ0ሽ\ܭ ݒ ׊ א ∑ (5)                      ܬ ௃אௌ௝௝ݔ ൌ 1                                                                              (6) ∑ ௃א௜௝௝ݔ ݆ ൑ ∑ ௃אௌ௝௝ݔ ݆ , ݅ ׊ א ∑ (7)                                                         ܫ ூא௜௝௜ݔ ሚ൯ߦ௜൫ߙ െ ሚ൯ߦ௝൫ݕ ൑ C୲, ݆ ׊ א ௝ݖ (8)                                            ܬ ൒ 0, ݆ ׊ א ,ௌ௝ݔ (9)                                                                                  ܬ ௜௝ݔ א ሼ0,1ሽ, ݅ ׊ א ,ܫ ݆ ׊ א ሚ൯ߦ௝൫ݕ (10)                                                  ܬ ൒ 0, ݆ ׊ א  (11)                                                                         ܬ
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The objective function includes fixed and recourse costs, where ॱక෨  stands for the 

expected value with the respect to the distribution of the random vector ߦሚ: 
              ॱక෨ ൣ∑ ௃אሚ൯௝ߦ௝൫ݕ ௝ݍ ൧ ൌ ׬ ൫∑ ௃אሚ൯௝ߦ௝൫ݕ ௝ݍ ൯ dܲ௜ஆ                                  (12) 

Note that the integral (12) makes the model nonlinear one.  
Constraints (1) ensure the value of ݖ௝ to be ܥ௧ when dummy task ܵ is assigned to 

station ݆. Constraint (2) imposes the selection of only one disassembly task (OR-
successor) to begin the disassembly process. Constraint set (3) indicates that a task is 
to be assigned to at most one workstation. Constraints (4) and (5) define OR- and 
AND-precedence relations, respectively. Constraint (6) imposes the assignment of the 
dummy task  ܵ to one station. Constraints (7) ensure the precedence relations for 
dummy task ܵ. The constraints (8) force the respect of the cycle time limitations. Sets 
(9)-(11) represent the trivial constraints. 
Let ܺ ൌ { ݔ | constraints (1)-(7), (9)-(10) are satisfied} and  ܮ ൌ ሼ1,2, … , Lሽ, L א Գכ. 
If ߦሚ  has a finite discrete distribution ሼሺߦ௟, ,௟ሻ݌ ݈ א ,ሽܮ ௟݌ ൐ 0, ݈ ׊ א ܮ  ( ௟݌  is the 
realization probability of ߦ௟  of ߦሚ), then the model presented is an ordinary linear 
program with a so-called dual decomposition structure. 

Deterministic Equivalent (I’) 

min ቐܨ௖  ෍ ௃א௝௝ݖ ݆ ൅ ෍ ௟݌ ෍ ௃א௟ሻ௝ߦ௝ሺݕ ௝ݍ
L

௟ୀଵ ቑ                                            
s.t. ෍ ூא௜௝௜ݔ ௟ሻߦ௜ሺߙ െ ௟ሻߦ௝ሺݕ ൑ C୲, ݆ ׊ א ,ܬ ݈ ׊ א                                    ܮ

ݔ א ܺ, ௟ሻߦ௝ሺݕ ൒ 0, ݆ ׊ א ,ܬ ݈ ׊ א                                                       ܮ
Depending on the number of realizations of ߦሚ, i. e.  L , this linear mixed integer 
program, may become very large in scale, but its particular block structure can be 
exploited by specially designed algorithms such as the L-shaped method, [1], [3-4], 
[9], [11] which will be developed in the next section. 

3 Solution Method    

The L-shaped Method 
The main idea of the L-shaped method is to approximate the nonlinear term in the 
objective function of the two-stage stochastic problems [3]. Assume a finite 
realizations set Ξ of the stochastic vector ߦሚ such as |Ξ| ൌ L. The L-shaped method 
for the DLBP can be written as follows.  
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L-shaped Algorithm 
Step 0. Set ॥ ൌ ज़ ൌ ߭ ൌ 0. 
Step 1. Set ߭ ൌ ߭ ൅ 1. Solve the following LP: minሼ்ܿݔ ൅ ߮ሽ                                                                           

s.t. ݔ ܣ ൌ ܾ                                                                                       ࣞఔݔ ൒ ࣸఔ, ߥ ൌ 1, … , ॥                                                   (13) ࣟఔݔ ൅ ߮ ൒ Ղఔ, ߥ ൌ 1, … , ज़                                           (14) ݔ binary, ߮ ൒ 0                                                                       
Let ሺݔజ, ߮జሻ be an optimal solution. 
 
Step 2. For ݈ ൌ 1, … , L solve the following LP: min    ࣴ ൌ ାݑ்ࣵ ൅                                                              ିݑ்ࣵ

s.t. ܹ ݕ ൅ ାݑܫ െ ିݑܫ ൌ ݄௟ െ ௟ܶݔజ                                                   ݕ ൒ 0, ାݑ ൒ 0, ିݑ ൒ 0                                                                 ࣵ ൌ ሺ1, … ,1ሻ், until for some ݈ the optimal value ࣴ ൐ 0. In this case, let ߪజ be the 
associated simplex multipliers, define ࣞ॥ାଵ ൌ ሺߪజሻ் ௟ܶ  
and ࣸ॥ାଵ ൌ ሺߪజሻ்݄௟  
in order to generate a constraint called a feasibility cut of type (13). Set ॥ ൌ ॥ ൅ 1, add 
constraint type (13) and return to Step 1. If for all ݈ א ࣴ ,ܮ ൌ 0 , go to Step 3. 
 
Step 3. For ൌ 1, … , L , solve the LP: min  ࣱ ൌ q௟் ݕ ܹ                                                                 ݕ ൌ ݄௟ െ ௟ܶݔజ                                                            ݕ ൒ 0                                                                               
Let ߱௟జ be the simplex multipliers associated with the optimal solution of problem ݈ 
above and define 
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ࣟज़ାଵ ൌ ෍ ௟ሺ߱௟జሻ்݌ ௟ܶ௟א௅  

and Ղज़ାଵ ൌ ෍ ௅א௟ሺ߱௟జሻ்݄௟௟݌ . 
Let ߠజ ൌ Ղज़ାଵ െ ࣟज़ାଵݔజ. If ߮జ ൒  జ is an optimal solution. Else, generateݔ ;జ, stopߠ
a constraint called optimality cut of type (14), set ज़ ൌ ज़ ൅ 1, add constraint type (14) 
and return to Step 1. 

This method approximates ॱక෨ ൣ∑ ௃אሚ൯௝ߦ௝൫ݕ ௝ݍ ൧ ൌ ׬ ൫∑ ௃אሚ൯௝ߦ௝൫ݕ ௝ݍ ൯ dܲ௜ஆ  using an outer 

linearization.   

Two types of constraints are sequentially added: 

• feasibility cuts (13) determining ൛ݔ|ॱక෨ ൣ∑ ௃אሚ൯௝ߦ௝൫ݕ ௝ݍ ൧ ൏ ൅∞ൟ; 

• optimality cuts (14), which are linear approximations to ॱక෨ ൣ∑ ௃אሚ൯௝ߦ௝൫ݕ ௝ݍ ൧. 
4 Example 

The method presented has been applied to the compass example illustrated in Fig. 2. 
It is made of seven components: (1) wheel, (2) left leg, (3) right leg, (4) left fixation 
screw, (5) lead, (6) tip and (7) right fixation screw. The AOG for this example is 
shown in Fig. 1. The input data for the DLBP is presented in Table 1. 
 

 

Fig. 2. The Compass example 
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Table 1. Input data 

Task ߪ ߤ Subassembly Component  
1 0.21 0.05 1:5 6;7 |Ξ| ൌ 1024 
ܬ 5;4 1:3,6,7 0.05 0.21 2 ൌ ሼ1,2,3ሽ 
ܭ 3;1 2,4,5 0.10 0.50 3 ൌ ሼ0,1, … ,5ሽ 
௖ܨ 5;4 1:3 0.05 0.21 4 ൌ 5 
௝ݍ 1 2,4,5/3,6,7 0.10 0.50 5 ൌ 7, ݆ א  ܬ
௧ܥ 7;6 1:3 0.05 0.21 6 ൌ 0.51 
7 0.50 0.10 3,6,7 1;2  
8 0.21 0.05 -- 2;4;5  
9 0.50 0.10 -- 1;2;3  
10 0.21 0.05 -- 3;6;7  

 
The L-shaped method was implemented in Microsoft Visual C++ 2008. ILOG 

CPLEX 12.4 was used to solve the model on a PC with Pentium(R) Dual-Core CPU 
2.30 GHz and 3Go RAM. The optimal solution contains 2 workstations. Task 5 is 
assigned to the 1st workstation and tasks {8,10} to the second one. The total line cost is 
5.342 when the recourse cost is 0.242. The resolution time was 58 s. The overall idle 
time of the disassembly line, if mean time of each task selected is considered, is 0.10. 

5 Conclusion and Perspectives 

The disassembly line balancing problem was formulated under uncertainty. A two-
stage stochastic linear mixed integer program with fixed recourse was developed to 
solve it. The formulation presented can be easily adapted for the stochastic assembly 
line balancing problem as well. Then, the model can be considered for the 
disassembly task times given by, for example, triangular distribution.  

Further research work should be done in order to refine the proposed mathematical 
model and solution method in order to approach real-world problems where 
uncertainty does not only concern the disassembly task times but the quantity and the 
quality of the inputs and outputs of the disassembly line as well.  
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