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Abstract. The introduction of energy efficiency as a new goal into already com-
plex production plans is a difficult challenge. Decision support systems can help 
with this problem but these systems are often resisted by end users who ulti-
mately bear the responsibility for production outputs. This paper describes the 
design of a decision support tool that aims to increase the interpretability of deci-
sion support outputs. The concept of ‘grey box’ optimisation is introduced, 
where aspects of the optimisation engine are communicated to, and configurable 
by, the end user. A multi-objective optimisation algorithm is combined with an 
interactive visualisation to improve system observability and increase trust. 
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1 Introduction 

Energy efficient manufacturing is a key research challenge for both industry and aca-
demia. Systemic energy waste is closely tied to strategic production decisions and 
therefore poses a complex operations-research problem. An example of this involves 
switching idle machine into a low-power mode. While this strategy is an effective 
way to save energy, it is not a straightforward task in many industrial environments. 
Energy savings are often subservient to production targets and decisions about chang-
ing machine states involve weighing up a complex set of goals and constraints. These 
include hard metrics such as production capacity, predicted inventory and product 
priorities as well as soft constraints such as technician skill level, engineering requests 
and machine recovery risks. Operations managers currently apply human expertise to 
cope with this complexity. In high product mix factories this problem can become 
very challenging and even before energy-saving is considered. Optimisation algo-
rithms can be applied to reduce the problem space associated with this decision and to 
highlight energy saving opportunities; however an algorithmic approach is challenged 
by soft constraints and unpredictable changes in goals. In addition operations manag-
ers tend to be wary of decision support tools due to their perceived brittleness and 
lack of transparency [1]. 
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A potential solution to this is to treat the human operators and automated systems 
not as autonomous agents but as team members in a joint-cognitive system [2]. Joint 
cognitive systems, where responsibility for control is shared between human and ma-
chine 'intelligence', are becoming increasingly important in all modern workplaces. 
System observability plays a critical role in the success of joint cognitive control as it 
ensures that human and automated agents can co-ordinate their actions and collabo-
rate effectively [3]. This paper describes the design of a Decision Support System 
(DSS) using “grey box” optimisation and an interactive visualisation to ensure ob-
servability. This approach aims to expose aspects of an optimisation engine to in-
crease flexibility in terms of goal and constraint settings and to communicate outputs 
in a manner that are easily interpretable to the end user. In this manner end user trust 
and the overall effectiveness of the system will be improved.  

2 Applied Use Case 

An individual operation within a manufacturing production process was selected for 
this research. This operation supports multiple products and involves a large fleet of 
parallel machines. Each machine requires a manual product configuration (a set-up) 
before processing can occur. This means that the production capacity for each product 
can be changed in response to demand. As well as set-ups and processing, machines 
may be in idle, maintenance, engineering, down or powersave states. The optimisation 
problem investigated here involves allocating machines to states over time under  
multiple constraints.  

Some constraints are hard e.g. meeting production targets by specified date, while 
others are soft, e.g. technician skill level. An adaptation of the Cognitive Work 
Analysis framework [4] was used as a requirements engineering technique to under-
stand how operations managers currently access information, prioritise goals and 
communicate decisions. Initially the supervisors answered questionnaires, followed 
by interviews and observations. Additional questionnaires were provided to further 
analyse the work flow and to complete task analyses. Supervisors decision making 
strategies were analysed using the think-aloud protocol [5] and the supervisors actions 
and thoughts were saved for extended analysis using audio and screen capture soft-
ware. During interviews and observations three critical requirements of the solution 
were identified.  

1. Trust 
A key challenge with any automated support system is that the final responsibility 
lies with the human agent. As a result an end user may not respond to a suggestion 
that they do not fully understand if the possible consequences are severe. Trust in 
automated systems is a well-known challenge in DSS and observability of system 
constraints is of key importance to increase user’s confidence in the system. The 
representation of optimisation outputs in a relevant, interpretable format will be 
critical. In addition, to overcome the perceived brittleness of optimisation engines 
it is important that the end user can view, assess and edit goals, constraints and 
rules that act as inputs to the system. 
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2. Speed 
Responsiveness is another key factor [6]. If a user is to interact and modifying 
goals and constraints it is important that they can get feedback on the impact of 
these changes without a prolonged waiting period. Furthermore, as this tool aims to 
optimise a current schedule it is critical that responses are provided before the cur-
rent state changes.  

3. Accuracy  
The nature of this dynamic scheduling problem favours a satisficing [7] approach 
over maximal optimisation. On top of the speed requirement, it is important to real-
ise that goals can change, different scheduling strategies can be used to arrive at 
the same outputs and some constraints may not be available to the system and will 
require adjustments by the end user.   

At a high level the main objectives are to optimise energy efficiency by maximising 
the time that machines can remain in power-save state, without compromising  
production goals. The impact of the system will be to optimise for these key perform-
ance indicators resulting in maximised output, minimised cost and increased machine 
utilisation. 

3 Optimisation Approach 

3.1 Optimisation Engine Design and User Interaction 

The optimisation engine has been designed to allow for a close integration with the 
final user. The visualisation and user interaction requirements have heavily affected 
the design approach taken for the optimisation engine. 

One of these main requirements is increasing the trust from the user in the results 
obtained from the optimisation engine. This has been addressed in two different ways, 
affecting several basic components of the optimiser. First, the user is able to influence 
the solution selection by inputting his preferences, because depending on the dynamic 
situation at the plant the user will prefer different alternatives. To provide these op-
tions, the optimisation engine follows 2 different algorithms. In the first one the user 
provides his preferences “a priori”, before the optimisation starts. This input will then 
be used by the algorithms as parameters that will guide the search for the optimum 
solution that best uses it. 

The second approach does not need this prior info. In this case the optimisation al-
gorithm will search for different solutions, together forming what is known as a 
“Pareto front” (the set of all solutions that are nondominated with respect to each 
other [8]). In this set of solutions, no one can be selected as better than another until 
the user selects one of them, based on his current preferences. This selection involves 
a certain amount of decrease in optimality in one objective to achieve a gain in an-
other. The maximum number of solutions presented should be limited so as not to 
overload the supervisor and allow him to concentrate on a few possibilities. The user 
interview has shown that a maximum of 3 options is needed. The optimisation engine 
uses this requirement to select 3 solutions among the whole Pareto front that are dif-
ferent enough to provide a significant diversity of options to the user. The algorithm 
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that it makes possible to provide the final user with increased environment descrip-
tiveness, increasing the trust.  

• Integration of PPIs (Production Performance Indicators) that act as goals and 
evaluation criteria for both the optimisation engine and the end user. PPIs are con-
textual information that provides common ground for human and automated 
agents. 

• The user–defined constraints pose a problem of dynamic rescheduling, with the 
added difficulty that the time to get a solution adapted to the new scenario is limited.  

To provide a solution to the new problem, the initial solution used for the reschedul-
ing problem is obtained from the last solution generated for the old problem. This new 
starting solution must be first updated to the new problem, by deleting the operations 
already started. Starting with an already “good” solution, together with the reduction 
in the search space, will decrease the runtime needed to provide the new solution [11]. 
It is also necessary to adjust different algorithm parameters, like for example cross-
over operator and mutation rate in the case of genetic algorithms, to adapt to the new 
situation. 

3.2 Multi-Objective Optimisation 

This problem is defined as a multi-objective optimisation problem (MOO). There is 
no single global optimum solution in MOO problems. Instead of a single solution, 
there are a set of optimal valid solutions with different objectives magnitudes (fitness 
values) [12]. 

A general MOO problem can be defined as: 

 Minimise:  ܨሺݔሻ ൌ ሾ ଵ݂ሺݔሻ, ଶ݂ሺݔሻ… ௡݂ሺݔሻሿ   

 Subject to: ܩ௝ሺݔሻ ൑ 0, ݆ ൌ 1, 2…݉  

where Fሺxሻ is the set of n objective functions, x is the vector of decision variables 
and ܩ௝ are the m independent constraints. 

In this use case the two following objectives are considered: 

• Maximise duration in power saving state. 
• Minimise the number of machine setups. 

Multiple constraints are present in the model. Among the most important we can list 
the following: 

• Meet production target. This is the hardest constraint in the model, involving a 
given number of different product types at a predefined time. 

• Inventory arrival time. 
• Machine setups require product-specific collateral equipment, of which there is a 

limited amount. 
• User-Defined constraints: the user is able to change constraints online through the 

visualisation, such as fixing the state of a machine in a specified time. 
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The constraints impose limits in what is called the “feasible space”, or the set of valid 
solutions that meet all constraints. The optimisation algorithms then try to find the 
Pareto front that optimises all objectives subject to those constraints.  

In addition, the optimisation engine should be able to suggest maintenance timing 
within a defined window.  

4 Visualisation Approach 

The output of the optimisation algorithm is a schedule of machines transitioning be-
tween states across a production period. This schedule is presented to the user in the 
form of a run-plan (outline shown in Figure 1). Different machine are listed top to 
bottom on the left of the display. Machine states are shown over time from left to 
right and are colour coded so that idle states are highly salient and demand attention. 
The user can zoom into different time periods to assess production schedules across a 
shift, a day or an entire week. The current time is clearly marked and past events are 
shaded out to indicate that they are non-editable. On loading the screen, the user is 
presented with the current schedule but this may be manually edited or re-optimised 
by clicking on the appropriate function buttons located above and below the runplan. 
User defined rules may be generated based on an expert users knowledge. For exam-
ple a user may wish to spread out machine setups due to an unexpected resource con-
straint. This is achieved by simply dragging the setup event forward or backward 
 

 

Fig. 2. Run plan Visualisation 
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in time. Similar actions can also be carried out to input or modify maintenance or 
power saving states. The panels on the right of the run-plan communicate important 
production performance indicators. These are updated as the user modifies the run 
plan in order to allow them to assess the impact of their actions. Following updates 
the end user can commit the run plan or may choose to re-optimise with their newly 
defined constraints. The tabbed menu at the top of the screen allows the user to try out 
multiple runplans to assess which strategy best suits their needs. 

5 Conclusions 

This paper describes a decision support system (DSS) for improving the energy effi-
ciency of production plans. The research aims to improve trust in DSS, and in turn its 
overall effectiveness, by combining an optimisation engine with a dynamic visualisa-
tion that: 

• Communicates the rules and results of an optimisation engine in an intuitive 
manner  

• Allows end-users to generate dynamic constraints using simple drag and drop 
actions  

• Supports experimentation using what-if scenario planning 
• Generates a production plan incorporating energy saving opportunities 

This concept applies principles from joint cognitive system research to support com-
plex decision making through the combination of human flexibility with computa-
tional power. A functional prototype has been developed and future work will focus 
of improving the performance of the algorithms, integration with a live production 
system and evaluation with end users.  

 
Acknowledgements. The presented work has been funded by the European Union 
FP7 “Factories of the Future” research project “KAP: Knowledge, Awareness and 
Prediction”. The authors would like to acknowledge the support and contributions of 
KAP industrial and academic partners in the development of this work. We also  
extend our thanks to the Irish Centre for Manufacturing Research (www.icmr.ie) 
which is supported by Enterprise Ireland and the Industrial Development Authority of 
Ireland. 

References 

1. Carlsson, C., Turban, E.: Introduction: DSS: Directions for the next decade. Decision Sup-
port Systems 33(2), 105–110 (2002) 

2. Hollnagel, E., Woods, D.D.: Joint cognitive systems: Foundations of cognitive systems 
engineering. Taylor and Francis, Boca Raton (2005) 

3. Christoffersen, K., Woods, D.: How to make automated systems team players. Advances 
in Human Performance and Cognitive Engineering Research 2(1), 12 (2002) 



 Energy Efficient Production Planning 95 

4. Vicente, K.J.: Cognitive Work Analysis: Toward Safe, Productive, and Healthy Computer-
Based Work. Erlbaum and Associates, Mahwah (1999) 

5. Lewis, C.: Using the ’thinking-aloud’ method in cognitive interface design, IBM Research 
Report RC 9265, 2/17/82 IBM T. J. Watson Research Center, Yorktown Heights, NY 
(1982) 

6. Shneiderman, B.: Computing Surveys, vol. 16(3) (1984) 
7. Simon, H.A.: Rational choice and the structure of the environment. Psychological Re-

view 63(2), 129–138 (1956) 
8. Martínez-Iranzo, M., Herrero, J.M., Sanchis, J., Blasco, X., García-Nieto, S.: Applied Pa-

reto multi-objective optimization by stochastic solvers. Engineering Applications of Artifi-
cial Intelligence 22, 455–465 (2009) 

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic 
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002) 

10. C.B., Beham, A., Heavey, C.: A comparative study of genetic algorithm components in 
simulation-based optimisation. In: Winter Simulation Conference 2008, pp. 1829–1837 
(2008) 

11. Bierwirth, C., Mattfeld, D.C.: Production scheduling and rescheduling with genetic algo-
rithms. Evolutionary Computation 7, 1–17 (1999) 

12. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. 
Structural and Multidisciplinary Optimization 26(6), 369–395 (2004) 


	Energy Efficient Production Planning
	A Joint Cognitive Systems Approach
	1 Introduction
	2 Applied Use Case
	3 Optimisation Approach
	3.1 Optimisation Engine Design and User Interaction
	3.2 Multi-Objective Optimisation

	4 Visualisation Approach
	5 Conclusions
	References




