
Fides: Lightweight Authenticated Cipher

with Side-Channel Resistance
for Constrained Hardware

Begül Bilgin1,2, Andrey Bogdanov3, Miroslav Knežević4,
Florian Mendel5, and Qingju Wang1,6

1 KU Leuven, ESAT/COSIC and iMinds, Belgium
2 University of Twente, EEMCS-DIES, The Netherlands

3 Technical University of Denmark, Department of Mathematics, Denmark
4 NXP Semiconductors, Belgium

5 Graz University of Technology, IAIK, Austria
6 Department of Computer Science and Engineering,

Shanghai Jiao Tong University, China

Abstract. In this paper, we present a novel lightweight authenticated
cipher optimized for hardware implementations called Fides. It is an
online nonce-based authenticated encryption scheme with authenticated
data whose area requirements are as low as 793 GE and 1001 GE for
80-bit and 96-bit security, respectively. This is at least two times smaller
than its closest competitors Hummingbird-2 and Grain-128a. While be-
ing extremely compact, Fides is both throughput and latency efficient,
even in its most serial implementations. This is attained by our novel
sponge-like design approach. Moreover, cryptographically optimal 5-bit
and 6-bit S-boxes are used as basic nonlinear components while paying
a special attention on the simplicity of providing first order side-channel
resistance with threshold implementation.

Keywords: Lightweight cryptography, authenticated encryption, keyed
sponge, glitch-free masking, APN permutation, almost bent permuta-
tion.

1 Introduction

Motivation. Lightweight cryptography is a rapidly growing field, being mo-
tivated by real-world applications with limited budget to spend on crypto-
graphic mechanisms but rather essential demands for security. Though numer-
ous lightweight ciphers have been proposed (including the ISO/IEC standard
present as well as more recent designs such as KATAN [14], LED [20], Pic-
colo [30]), extended security functionalities are being addressed much more rarely
in the lightweight context. Indeed, apart from the cryptographic hash functions
(with the domain quite densely covered by the notable designs of Quark [2],

G. Bertoni and J.-S. Coron (Eds.): CHES 2013, LNCS 8086, pp. 142–158, 2013.
c© International Association for Cryptologic Research 2013

Fides: Lightweight Authenticated Cipher 143

Photon [19] and spongent [7]), almost no other security functionalities have
been intensively analyzed for lightweight applications1.

This situation is rather surprising though, since non-encryption security func-
tionalities are often of much higher value than secrecy, authenticity and authenti-
cated encryption ranking highest among them — emphasized by the recently an-
nounced NIST-funded CAESAR competition for authenticated encryption [10].
Cryptographically speaking, it is rather straightforward to deploy a lightweight
block cipher in a mode of operation to implement an authenticated encryption
scheme. However, this usually requires multiple additional memory states, addi-
tional operations on top of a single block cipher call, or both.

Yet, the landscape of dedicated authenticated encryption targeting lightweight
scenarios remains unexplored to a large extent. While ALE [8] has been re-
cently proposed to address the issue of more lightweight authenticated encryp-
tion across various platforms, it is based on the AES round operation and the
AES-128 key schedule that per se confines its lightweight properties in hardware,
though facilitating a high performance in parallel software implementations, es-
pecially with the Intel AES instruction set. At the same time, Grain-128a [1] and
Hummingbird-2 [17] are among the very small number of truly dedicated designs
aimed at attaining the traditional lightweight design goals such as low area and
low power, yielding estimated area requirements of 2770 GE and 2159 GE, re-
spectively. Though Hummingbird-2 has been recently broken in the related-key
model [29], Grain-128a remains unaffected so far. However, Grain-128a leaves a
lot of room for improvement in terms of area consumption, being comparable to
software-optimized AES-based ALE in this crucial parameter.

In this paper, we aim to address this lack of dedicated lightweight-optimized
authenticated ciphers.

Our Contributions. We propose Fides — an online single-pass nonce-based
authenticated encryption algorithm with either 80-bit or 96-bit key, Fides-80
and Fides-96. We report the area consumption of 793 GE and 1001 GE cor-
respondingly, which is about 2 times smaller than Hummingbird-2 and about
3 times more compact than Grain-128a, though for a slightly different security
level. Fides has a highly competitive throughput, even in most serial implemen-
tations. It comes with a built-in efficient dedicated masking scheme to thwart ba-
sic side-channel attacks. The gate count for the protected ASIC implementation
of Fides-80 and Fides-96 is 2876 and 4792, respectively, which is comparable to
the plain implementation of AES-based authenticated encryption schemes such
as ALE.

While basing upon well-established security principles to account for security,
Fides attains its efficiency by a bunch of innovative means including:

– Novel Design Approach: Like SHA-3, Fides alternates message input and
unkeyed permutations. However, unlike sponge, it inputs message chunks
in every round. As opposed to ASC-1 and ALE though, the rounds in our

1 All these successful and sound lightweight primitives mentioned here – with the sole
exception for Photon – have been proposed at CHES from 2007 to 2011.

144 B. Bilgin et al.

construction are not keyed. The original sponge construction is rather redun-
dant which is needed for the so called hermetic sponge claim. So we employ
an automated technique for lower-bounding the number of active S-boxes
which allows us to choose the positions and number of message injections in
a way being both efficient and secure, by taking exactly as many security as
we need.

– Usage of Optimal S-Boxes With Respect to Differential and Linear Crypt-
analysis: Fides is the first symmetric-key design — to the best of our knowl-
edge — to use S-boxes optimal with respect to differential and linear crypt-
analysis. Namely, in two variants of our design, we use the 5-bit AB (al-
most bent) and the 6-bit APN (almost perfect nonlinear) invertible S-boxes.
The AB permutations have the optimal differential and linear properties for
S-boxes and exist only in odd dimensions. The 6-bit APN permutation is
optimal towards differential properties in even dimensions. The permutation
we use is the only (up to extended affine equivalence) permutation in even
dimension known to be APN and is due to Dillon [15].

– Off-the-Shelf Glitch-Free Side-Channel Masking: Fides offers off-the-shelf
glitch-free secret-sharing based masking. This is also the first effort as regards
the side-channel resistant sharing of optimal S-boxes. Moreover, we offer the
first systematic treatment of shared S-box implementations in dimensions
larger than 4-bit. In fact, we searched in the class of 5-bit AB and 6-bit
APN permutation for the S-box instances with lowest area requirements.
So the efficient side-channel resistance is offered by the very design of our
construction.

Thus, following these approaches, we are able to construct Fides — an au-
thenticated encryption scheme particularly suitable for constrained hardware
implementations. It is the authenticated encryption design with the smallest
footprint at both around 80 and 100 bits of security level available. At the same
time, more in the spirit of the recent low-latency considerations [9, 22], we have
made every effort to ensure its time efficiency at the same time. It is the ad-
vantage of our novel design approach that allows us to attain both – a highly
competitive footprint and a time-efficient implementation – simultaneously.

Organization. Section 2 specifies the design of Fides and provide some basic
design rationale. Section 3 provides a more detailed security analysis of Fides.
In Section 4, both lightweight and protected threshold implementations of Fides
are elaborated and a detailed comparison to the existing designs is given.

2 The Design

Fides is an online single-pass nonce-based authenticated encryption algorithm.
Its structure is similar to the duplex sponge construction [4] and follows the
design principles of the Rijndael block cipher [13]. As Rijndael-256, Fides is
designed according to the wide trail strategy and operates on 4 × 8 internal
state. We propose two variants of Fides with two different security levels:

Fides: Lightweight Authenticated Cipher 145

b k n t r security(bit)

(bit) (bit) (bit) (bit) (bit) key recovery state recovery forgery

Fides-80 160 80 80 80 10 80 80 80

Fides-96 192 96 96 96 12 96 96 96

The encryption/authentication procedure of Fides accepts a key K with k
bits, a message m, associated data a and a nonce N with n bits. The encryp-
tion/authentication procedure outputs the ciphertext c of exactly the same bit
length as the message m and the authentication tag T of t bits for both the mes-
sage m and associated data a. Its decryption/verification procedure accepts key
K, ciphertext c, associated data a, nonce N and tag T . It returns the decrypted
message m if the tag is correct or ⊥ otherwise.

16
R

K||N 1R

K||0

1R
 . . .

1R

1R

A1 A2 Av

1R
 . . .

1R

C1

16
R

Cu Mu

T

M1

a

Fig. 1. The encryption/authentication operation of Fides

The encryption/authentication operation of Fides is given in Figure 1 and
can be described in five steps:

Padding: The padding of Fides is very simple. It appends a single “1” and the
smallest number of zeroes to the messagem such that the length of the result
is a multiple of the required block length. The resulting padded message is
split into u blocks of r bits each, M1‖ . . . ‖Mu. Note that for associated data
the same padding method is used and the padded associated data is split
into v blocks of again r bits each, A1|| . . . ||Av.

Initialization: The initialization of Fides is based on the Even-Mansour con-
struction [18]. The 4× 8 internal state is initialized with the key K and the
nonce N . Then the internal state of b = k + n bits is updated by applying
the Fides round transformation 16 times. Finally, the key K is xored to the
internal state again. Now the internal state is initialized.

Processing Associated Data: If there is only one padded associated data
block, then A1 is xored to the internal state in row 3 at positions 0, 2 and
one proceeds with processing the padded message immediately. Otherwise,
if there are at least two padded associated data blocks, associated is pro-
cessed block by block: The internal state is updated using the Fides round

146 B. Bilgin et al.

transformation and then the next block is xored to the internal state in row
3 at positions 0 and 2.

Processing Message: The padded message is processed block by block: The
internal state is updated using the Fides round transformation. Then two
elements of the internal state in row 3 at positions 0 and 2 are xored to
the current block of the message to produce the according ciphertext block.
Finally, the current block of the message is also xored to the internal state
at the same positions.

a3,0

a2,0

a1,0

a0,0

a3,1

a2,1

a1,1

a0,1

a3,2

a2,2

a1,2

a0,2

a3,3

a2,3

a1,3

a0,3

a3,4

a2,4

a1,4

a0,4

a3,5

a2,5

a1,5

a0,5

a3,6

a2,6

a1,6

a0,6

a3,7

a2,7

a1,7

a0,7

a3,2a3,0

Fig. 2. The injection layer of Fides

Finalization: The internal state is updated by applying the Fides round trans-
formation 16 times. The output is truncated to 80 (resp. 96) bits and returned
as the authentication tag T for the message and associated data.

The decryption/verification procedure is defined correspondingly. The only two
differences are that one works with the ciphertext c = C1|| . . . ||Cu instead of the
message m while xoring with the stream and that the supplied tag value T is
compared to the one computed by the algorithm. We want to stress that only if
the tag is correct the decrypted message is returned.

2.1 The Round Transformations of Fides

In the following, we briefly describe the round transformations of Fides. It is
designed according to the wide trail strategy [12] and its structure is very similar
to the Rijndael block cipher [13]. It operates on a 4× 8 state of 5 (resp. 6) bits
and updates the internal state by means of the sequence of transformations

CA ◦MC ◦ SR ◦ SB .

SubBytes (SB). The SubBytes step is the only non-linear transformation of the
algorithm. It is a permutation consisting of an S-box applied to each element of
the 4×8 state. This permutation is an almost bent (AB) permutation (Table 2) in
Fides-80 and almost perfect nonlinear (APN) permutation (Table 1) in Fides-
96.

Fides: Lightweight Authenticated Cipher 147

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

ai,j bi,jS-box

AB permutations which are a subset of APN permutations provide optimum
security against linear and differential cryptanalysis [11]. Unfortunately, they
only exist if the size of the S-box is odd and there are only four 5-bit vectorial
AB function known so far. On the other hand, APN permutations exist even
if the size is even but they provide optimum security only against differential
cryptanalysis and there is only one vectorial function known so far. For both
S-boxes the differential and linear probability is 2−4, which is optimal.

Table 1. 6-bit S-box

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 54 0 48 13 15 18 35 53 63 25 45 52 3 20 33 41

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 8 10 57 37 59 36 34 2 26 50 58 24 60 19 14 42

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
S(x) 46 61 5 49 31 11 28 4 12 30 55 22 9 6 32 23

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
S(x) 27 39 21 17 16 29 62 1 40 47 51 56 7 43 38 44

Table 2. 5-bit S-box

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 1 0 25 26 17 29 21 27 20 5 4 23 14 18 2 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 15 8 6 3 13 7 24 16 30 9 31 10 22 12 11 19

For this work, we exhaustively searched through the affine equivalent class of
quadratic AB and APN permutations paying a special attention to fix points.
We synthesized possible candidates with and without threshold implementation
to see their area requirements. We chose FidesS-boxes so that the area of both
plain and shared implementation provide a good tradeoff.

ShiftRows (SR). The ShiftRows step is a byte transposition that cyclically shifts
the rows of the state over different offsets. Row i is shifted left by si = {0, 1, 2, 7}
positions. Since ShiftRows is only wiring in hardware, its overall cost is negligible.

148 B. Bilgin et al.

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7

ai,0 ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7 bi,0 bi,1 bi,2 bi,3 bi,4 bi,5 bi,6 bi,7≪ si

MixColumns (MC). The MixColumns step is operating on the state column by
column. To be more precise, it is a left-multiplication by a 4 × 4 matrix over
F25 (resp. F26). The main design goal of the MixColumns transformation is to
follow the wide trail strategy and that it can be implemented efficiently. On one
hand by restricting the coefficients of the matrix to 0 and 1 MixColumns can be
implemented with only a few XOR operations, but on the other hand there does
not exist a matrix of this form that is also MDS. Therefore, we use in Fides a
matrix that is almost-MDS and has a branch number (the smallest nonzero sum
of active inputs and outputs of each column) of 4.

a3,0 b3,0

a2,0 b2,0

a1,0 b1,0

a0,0 b0,0

a3,1 b3,1

a2,1 b2,1

a1,1 b1,1

a0,1 b0,1

a3,2 b3,2

a2,2 b2,2

a1,2 b1,2

a0,2 b0,2

a3,3 b3,3

a2,3 b2,3

a1,3 b1,3

a0,3 b0,3

a3,4 b3,4

a2,4 b2,4

a1,4 b1,4

a0,4 b0,4

a3,5 b3,5

a2,5 b2,5

a1,5 b1,5

a0,5 b0,5

a3,6 b3,6

a2,6 b2,6

a1,6 b1,6

a0,6 b0,6

a3,7 b3,7

a2,7 b2,7

a1,7 b1,7

a0,7 b0,7a0,j

a1,j

a2,j

a3,j

b0,j

b1,j

b2,j

b3,j

⊗

⎡
⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦

ConstantAddition (CA). In this transformation the state is modified by com-
bining it with a predefined constant by a bitwise xor operation. The purpose of
adding round constants is to make each round different and to break the symme-
try of the other transformations. Furthermore, it provides a natural opportunity
to make the parts for processing associated data and message different from each
other. The hardware implementation of ConstantAddition is in fact very cheap
since it consists of wires and invertors only.

2.2 Security Assumptions and Claims

The security analysis of the algorithm starts from the following assumptions.

Assumption 1 (Nonce-respecting adversary). A nonce value is only used
once with the same master key for encryption.

This assumption is quite common among nonce-based designs. Note that on most
platforms, this assumption can be easily satisfied by implementing the nonce as
a counter.

Fides: Lightweight Authenticated Cipher 149

Assumption 2 (Abort on verification failure). If the verification step of the
algorithm reveals that the ciphertext has been tampered with, then the algorithm
returns no information beyond the verification failure. In particular, no plaintext
blocks are returned.

This assumption significantly reduces the impact of chosen-ciphertext attacks,
since the adversary obtains very little information from a chosen-ciphertext
query. We feel that this assumption is quite natural for authenticated encryption
modes. After all, when the verification fails, we know that the integrity of the
plaintext has been jeopardized, and there is no reason to output it.

Under these assumptions, the security claims for the Fides are as follows.

Claim 1 (Resistance against key recovery). Any key recovery with com-
plexity equivalent to processing Z data blocks has a success probability at most
Z2−k, even if the internal state has been recovered.

Claim 2 (Resistance against state recovery). Any internal state recovery
with complexity equivalent to processing Z data blocks not involving key recovery
has a success probability at most Z2−t.

Claim 3 (Resistance against forgery w/o state recovery). Any forgery
attack not involving key recovery/internal state recovery has a success probability
at most 2−t.

3 Security Analysis

3.1 Differential and Linear Cryptanalysis

Bounds for the Initialization and Finalization. The round transformation
of Fides has diffusion properties according to the wide trail design strategy.
Since the MixColumns transformation has branch number 4, and ShiftRows is
diffusion optimal (moves the elements in each column to four different columns),
it is guaranteed that there are at least 42 = 16 active S-boxes in any four-
round differential trail (see the left side of Table 3). Note that this bound is
tight. To obtain better bounds for Fides we adopt the mixed-integer linear
programming (MILP) technique proposed in [6] and [24] to find the minimum
number of differentially and linearly active S-boxes of the target ciphers. Using
this technique and the optimizer CPLEX [21], we obtained the differentially and
linear bound up to 8 rounds Initialization and Finalization of Fides. The results
are listed in the left part of Table 3.

As shown in the table, there are at least 48 active S-boxes for eight-round
differential and linear trail, therefore for sixteen-round of Initialization and Fi-
nalization, there are at least 2 · 48 = 96 active S-boxes. This, combined with the
maximum differential and linear probability of the S-box of 2−4 for both Fides-
80 and Fides-96, means that the probabilities of any differential and linear trail
(assuming independent rounds) is 2−384 for any sixteen-round differential (and
linear) trail. Therefore, there is only a very small chance that a standard differ-
ential or linear attack would lead to a successful attack on the Initialization or
Finalization of Fides.

150 B. Bilgin et al.

Table 3. Bounds for differential and linear trails in Fides. On the left side the bounds
are shown for trails in the Initialization/Finalization and on the right side the bounds
are shown for collision producing trails in the message processing part.

Round Active S-box

1 0

2 4

3 7

4 16

5 22

6 32

7 42

8 48

Round Active S-box

1 -

2 -

3 -

4 -

5 -

6 52

7 49

8 48

Bounds for Collision Producing Trails. Assume we have a certain difference
for the message that may result in a zero difference in the state with a high
probability after the difference has been injected. Then this can be used in a
forgery attack on Fides. Note that a linear trail of a similar shape might be
used for a distinguish attack on the keystream of Fides.

However, the simple design of Fides allows to prove also good bounds against
this kind of differential and linear attacks. In more detail, using again the mixed-
integer linear programming (MILP) technique and the optimizer CPLEX we
could show that any collision producing differential or linear trail for Fides has
at least 48 active S-boxes. In more detail, we found that for 5 and less rounds,
there does not exist such trails. For 6, 7 rounds, only trails with at least 52
respectively 49 active S-boxes can result in a collision. For 8 and more rounds,
only trails with at least 48 active S-boxes can result into a collision, resulting in
an upper bound for the differential probability of 2−384.

Note that these bounds depends on the choice of the injection layer. For the
design of Fides we have tested several different injection layers and choose the
one that resulted in the best bound.

3.2 Impossible Differential Cryptanalysis

In this section, we will discuss the application of impossible differential crypt-
analysis to Fides. However, first we will introduce some properties of the matrix
M used in MixColumns we need in the analysis. In the following let “∗” denote
the nonzero element (difference) and “0” denote a zero element.

Property 1. If there is only one nonzero element in the input vector X , then
after the MixColumns operation there will be three nonzero elements in the out-
put vector Y = MX . Additionally, the positions of the nonzero elements are
determined by the matrix M .

Assume that the input vector is X = (∗, 0, 0, 0)T , the output vector is de-
termined as Y = (0, ∗, ∗, ∗)T . Similarly, we get M(0, ∗, 0, 0)T → (∗, 0, ∗, ∗)T ,
M(0, 0, ∗, 0)T → (∗, ∗, 0, ∗)T and M(0, 0, 0, ∗)T → (∗, ∗, ∗, 0)T .

Fides: Lightweight Authenticated Cipher 151

Property 2. If there are two nonzero elements in the input vector X , then the
number of the nonzero elements in the output vector Y will be 2 or 4, and the
positions of the nonzero elements are again fixed by the matrix M .

Assume the input vector is X = (∗, ∗, 0, 0)T , then the output vector Y can be
(∗, ∗, 0, 0)T or (∗, ∗, ∗, ∗)T . The other five patterns can also result in the outputs
in a similar way.

Property 3. If there are three nonzero elements in the input vector X , then the
number of the nonzero elements in the output vector Y might be 1, 3 or 4, and
the positions of the nonzero elements are fixed by the matrix M in some cases.

Assume the input vector is X = (∗, ∗, ∗, 0)T , and if there is only one nonzero
element in the output, from Property 1, we already know the output vector Y
is (0, 0, 0, ∗)T . If the value is 3, then any three of the elements in the output are
possible. The case for 4 is obvious.

SB SR

MC

SR
−1

SB SR MC

SB SR MC

SB SR MC

SB
MC

2R

8R

6R

9R

7R

5R

4R

3R

SR

?

?

1R

?

?

?

?

?

?

?

?

?

SR
−1

SR
−1

SR
−1 MC

−1

MC
−1

MC
−1

SB
−1

SB
−1

SB
−1

SB
−1 MC

−1

CA

CA

CA

CA

CA

CA

CA

CA

CA

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ?

? ? ?

? ? ?

? ? ? ??

?

?

?? ? ? ?

? ? ?

? ? ?

? ? ? ??

?

?

??

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ? ?

? ? ?

? ? ?

? ? ? ??

?

?

? ?

? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ??? ? ? ??

? ? ? ??

? ? ? ??

? ? ? ??

? ? ? ??

? ? ? ??

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ?

? ? ? ?

? ?

?

?

? ? ? ??

Fig. 3. 9 Rounds Impossible Differential

152 B. Bilgin et al.

Property 4. If all the four elements in the input vector X are nonzero, then the
number of the nonzero elements in the output vector Y might be 2, 3 or 4 at
arbitrary positions.

Note that the number of nonzero elements before and after the MixColumns oper-
ation can never be five. Based on these properties, we constructed an impossible
differential for 9 rounds of Fides, which is depicted in Figure 3. Assume we start
from the first round, if the difference is at position (0,0) of the state, then after
4.5 rounds transformation of Fides encryption, the vector in column 1 before
the MixColumns operation in the fifth round is (∗, ∗, 0, ?)T , whereas “?” denotes
an indeterminate difference. Given the difference at position (3,2) at the bot-
tom of the distinguisher, decrypt 4.5 rounds of the transformation of Fides the
output vector in column 1 after MixColumns in the fifth round is (0, 0, 0, ?)T .
This means that M(∗, ∗, 0, ?)T → (0, 0, 0, ?)T , from Property 3 in the above,
there is an contradiction before and after the MixColumns operation. Therefore,
a 9-round impossible differential has been constructed.

Therefore, for Fides-80 and Fides-96, based on Claim 1, it should be difficult
to recover the key using these impossible differentials even if the internal state
(right after the state initialization) has been recovered.

4 Hardware Implementations and Comparison

In this section, we describe four different architectures of Fides-80 and Fides-96.
Firstly, we explore a round-based implementation, which completes one round
in a single clock cycle. This architecture is straightforward for implementation
and its area is mainly occupied by the 32 instances of S-box, 4 instances of
MixColumns and the state register file.

���
���

��

���
���

���

�	�
��	

���

�	�
���

��� ��	 ��� ���

��

���
��

��� ���

����

��� �	� ��� ���

�������������

��������

������������

�

	

�

�

��� ��	 ��� ��� ��� ��� ��� ���

�	�

���

���

�		 �	� �	� �	� �	� �	� �	�

��	 ��� ��� ��� ��� ��� ���

��	 ��� ��� ��� ��� ��� ���

��

Fig. 4. Serial architecture

Fides: Lightweight Authenticated Cipher 153

The second architecture is implemented in a serial fashion (see Figure 4). Its
control logic comprises a simple finite state machine, which orchestrates the data
flow within the datapath. The state is stored inside a fully-serial register file and
its 32 elements are wired in a single shift register. When SubBytes operation
is performed, the output from SBOX is through MUX3 fed into S37 and inputs
S30, S20, and S10 are active in MUX2, MUX1, and MUX0, respectively. After
32 clock cycles the finite state machine enters the ShiftRows operation, which
consumes 7 clock cycles in total. The inputs S30, S20, and S10 are active inMUX3,
MUX2, MUX1, respectively. Except the first one, other rows of the register file
are shifted simultaneously, while the glitch-free clock gating logic ensures the
correct schedule. Namely, when the registers in a single row need to keep their
value, the clock gating logic disables their clock, which is a considerably cheaper
solution than the usage of additional feedback multiplexers or scan registers.
Finally, when performingMixColumns, our architecture receives an input column-
wise which is, from the MC block, injected into the state through S07, S17, S27,
and S37. Including 8 cycles of the MixColumns operation, one round of Fides
consumes 47 clock cycles in total.

S1
00

S1
10

S1
20

S1
30

State Reg.

1st share

S2
00

S2
10

S2
20

S2
30

State Reg.

2nd share

S3
00

S3
10

S3
20

S3
30

State Reg.

3rd share

S4
00

S4
10

S4
20

S4
30

State Reg.

4th share

MC

MC

MC

MC

S1
00

S1
10

S1
20

S1
30

S2
00

S2
10

S2
20

S2
30

S3
00

S3
10

S3
20

S3
30

S4
00

S4
10

S4
20

S4
30

S1
00 d in1

S1
00 ⊕ d in1

S2
00 d in2

S2
00 ⊕ d in2

S3
00 d in3

S3
00 ⊕ d in3

S4
00 d in4

S4
00 ⊕ d in4

S-Box with 4 shares

mask

SB1 SB2 SB3 SB4 mask xor

SB1

SB2

SB3

SB4

mask xor

Fig. 5. Threshold implementation

To have a more complete overview of the overall hardware performance, we
also implement an architecture with 4 S-boxes. The only difference from the fully
serial version is the SubBytes operation which now is performed within 8 clock
cycles only. At the expense of some additional hardware, this way we manage to
reduce the latency for more than two times.

Finally, the fourth explored architecture is a threshold implementation (TI)
[26], which is depicted in Fig. 5. It benefits from a secret-sharing based mask-
ing countermeasure against first order side-channel analysis. Being secure even
against the leakage caused by the presence of the glitches, TI provides a relatively
cheap countermeasure.While protecting linear functions is trivial [27], it becomes

154 B. Bilgin et al.

a challenging task to properly address the security of non-linear functions such
as S-boxes [5, 23]. As mentioned in Section 2.1, we pay special attention while
choosing the S-box such that it can be securely implemented in a single clock
cycle, yet having a small area footprint. In order to have a threshold sharing of
a 5-bit S-box, fulfilling all the properties, it is sufficient to use 4 shares.

m1

a1

a2

a3
b2
b1

a4 b4
b3

∑
mi

m2

m3

Fig. 6. Re-masking of 4 shares

We further observe that for any 6-bit optimal S-box, which is affine equivalent
of our selection, uniformity property is satisfied with more than 5 shares which
contradicts with the lightweight philosophy of Fides. Therefore, we aim to use
re-masking over 6-bits as suggested in [23] in order to achieve uniformity at the
output of the S-box. Details of the re-masking are shown in Fig. 6 as well as in
Fig. 5 (dotted lines). We are given 4 uniform shares where a simple XOR provides
the unshared value and we store each share in a different storage element. The
threshold implementation of MixColumns or ShiftRows can be simply seen as 4
instances of those functions working in parallel, each using one share only. The
S-box absorbs all shares and outputs 4 shares such that the each output share
is independent of one input share.

Table 4 gives a complete overview of our results. The smallest amongst all
is a serial architecture of Fides-80 (denoted as Fides-80-S), which consumes
only 793 GE in 90 nm CMOS library. We furthermore implement a round based
architecture, which at the cost of 3.5 times larger area achieves 47 times higher
throughput. Note here that due to the initialization phase, the additional latency
per message is 16 clock cycles for round-based and 752 clock cycles for serial
implementation, respectively. TI consumes roughly 3.5 − 4.5 times more area
than the ordinary serial implementation.

The RTL code of our architectures has been written in Verilog and the synthe-
sis carried out in Cadence RTL Compiler version 11.10-p005. For that purpose,
we used three different libraries, including an open-cell 45 nm NANGATE [25]
library, version PDKv1 3 v2010 12. The power consumption has been measured
using a High-Speed UMC 130 nm CMOS generic process provided by Fara-
day Technology Corporation. Note that the power estimates are obtained after
synthesis and as such are not accurate enough to be used for comparison with
other designs available in the literature. Their purpose is rather to have a relative
comparison of our own implementations. Finally, we provide additional hardware
figures using an advanced NXP 90 nm CMOS process, outlining the performance
of our design when implemented using an industry compliant technology.

Fides: Lightweight Authenticated Cipher 155

Table 4. Hardware performance of the implemented Fides architectures (synthesis re-
sults). Latency is defined as the number of clock cycles per round while the throughput
is observed at 100 kHz assuming very long messages.

Design
Security Area Frequency Latency Throughput Power
(bits) (GE) (kHz) (kb/s) (µW)

Advanced NXP 90 nm CMOS process, typical case PVT (25◦ C, 1.2 V)

Fides-80-S 80 793 100 47 10.64 N/A
Fides-80-4S 80 1178 100 23 21.74 N/A
Fides-80-R 80 2922 100 1 500 N/A
Fides-80-T 80 2876 100 47 10.64 N/A
Fides-96-S 96 1001 100 47 12.77 N/A
Fides-96-4S 96 1305 100 23 26.09 N/A
Fides-96-R 96 6673 100 1 600 N/A
Fides-96-T 96 4792 100 47 12.77 N/A

NANGATE 45 nm CMOS process, typical case PVT (25◦ C, 1.1 V)

Fides-80-S 80 1244 100 47 10.64 N/A
Fides-80-4S 80 1819 100 23 21.74 N/A
Fides-80-R 80 4023 100 1 500 N/A
Fides-80-T 80 4696 100 47 10.64 N/A
Fides-96-S 96 1584 100 47 12.77 N/A
Fides-96-4S 96 2023 100 23 26.09 N/A
Fides-96-R 96 9180 100 1 600 N/A
Fides-96-T 96 7541 100 47 12.77 N/A

UMC 130 nm CMOS process, typical case PVT (25◦ C, 1.2 V)

Fides-80-S 80 1153 100 47 10.64 1.97
Fides-80-4S 80 1682 100 23 21.74 2.82
Fides-80-R 80 4175 100 1 500 7.90
Fides-80-T 80 4267 100 47 10.64 7.47
Fides-96-S 96 1453 100 47 12.77 2.49
Fides-96-4S 96 1870 100 23 26.09 3.12
Fides-96-R 96 8340 100 1 600 14.82
Fides-96-T 96 6812 100 47 12.77 11.84

[8] ST 65 nm CMOS LP-HVT process, typical case PVT conditions.

ALE 128 2579 20×103 105 121.9 94.87
ALE e/d 128 2700 20×103 105 121.9 102.32
ASC-1 A 128 4793 20×103 370 34.59 169.11
ASC-1 A e/d 128 4964 20×103 370 34.59 193.71
ASC-1 B 128 5517 20×103 235 54.47 199.02
ASC-1 B e/d 128 5632 20×103 235 54.47 207.13
AES-CCM 128 3472 20×103 452 28.32 128.31
AES-CCM e/d 128 3765 20×103 452 28.32 162.15

[3] TSMC 90 nm CMOS process, typical case PVT conditions.

c-Quark 128 3125 100 768 8.33 N/A
c-Quark 128 7100 100 24 266.67 N/A

[31] NANGATE 45 nm CMOS process, typical case PVT conditions.

Keccak-200-MD 80 7400 50×103 18 200 N/A
Photon–196-MD 80 11000 50×103 N/A N/A N/A
Quark-176-MD 80 5900 50×103 N/A N/A N/A
Spongent-176-MD 80 6500 50×103 N/A N/A N/A

[16] TSMC 180 nm CMOS process, unknown PVT conditions.

HB2-ee4c 128 3220 100 4 400 5.10
HB2-ee16c 128 2332 100 16 100 4.70
HB2-ee20c 128 2159 100 20 80 4.36

Fides-xy-S – Serial architecture (1 S-box).
Fides-xy-4S – Architecture with 4 S-boxes.
Fides-xy-R – Round-based architecture (32 S-boxes).
Fides-xy-T – Threshold implementation (1 S-box).

ABC-xyz-MD – MonkeyDuplex scheme (area is estimated from the graphs reported in [31]).

156 B. Bilgin et al.

For the purpose of comparison, at the bottom of Table 4, we add figures of
the recent designs of ALE, c-Quark, ASC-1 and Hummingbird-2. Note that
the performance of ALE is given for the frequency of 20 MHz using a low-
power 65 nm advanced CMOS library. Additionally, although not providing the
exact hardware figures, the authors of Grain-128a estimate that the smallest
implementation of their design consumes 2770 GE. For the sake of completeness,
we also include the figures of the AES-CCM mode. Note that the performance of
designs reported in [31] is actually the performance of unrolled architectures and
as such is not directly comparable to our implementations. We further note here
that the security level of all the designs we compare Fides to is different and
needs to be taken into account when considering the possible trade-offs between
security, area, and speed.

What can be observed further from Table 4 is a substantial influence of the
technology choice on the overall hardware performance. A difference in the rel-
ative size of designs synthesized in the advanced NXP 90 nm technology and
the open-cell NANGATE library, for instance, spans between 35 % and 65 %.
This affirms the difficulty of such one-to-one comparison, which is often seen in
the literature. We therefore opt for making future comparisons to our designs
easier by including hardware figures obtained using the freely available open-cell
technology [25].

5 Conclusion

We have presented Fides, a very lightweight authenticated cipher especially
suitable for constrained hardware environments. The results achieved in this
work, including amongst others a compact implementation of only 793 GE for
80-bit and 1001 GE for 96-bit security, significantly outperform any previous
design known by the authors. Based on the cryptographically optimal 5-bit and
6-bit S-boxes, we have built a very compact threshold implementation whose area
requirements are as low as 2876 GE for a design attaining an 80-bit security level.

Acknowledgments. This work has been supported in part by the Austrian
Government through the research program COMET, project SeCoS (project
number 836628) and by the Austrian Science Fund (FWF), project TRP 251-
N23, and is funded by the Major State Basic Research Development Program of
China (973 Plan) (No. 2013CB338004), National Natural Science Foundation of
China (No. 61073150), and Chinese Major Program of National Cryptography
Development Foundation (No. MMJJ20110201).

References

1. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. IJWMC 5(1), 48–59 (2011)

2. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Lightweight
Hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 1–15. Springer, Heidelberg (2010)

Fides: Lightweight Authenticated Cipher 157

3. Aumasson, J.P., Knellwolf, S., Meier, W.: Heavy Quark for secure AEAD. In: DIAC
- Directions in Authenticated Ciphers (2012)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other Applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012)

5. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3 × 3 and 4 × 4 s-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

6. Bogdanov, A.: On unbalanced feistel networks with contracting mds diffusion. Des.
Codes Cryptography 59(1-3), 35–58 (2011)

7. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
Spongent: A Lightweight Hash Function. In: Preneel and Takagi [28], pp. 312–325

8. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-
Based Lightweight Authenticated Encryption. In: 20th International Workshop on
Fast Software Encryption – FSE (2013)

9. Borghoff, J., et al.: PRINCE - A Low-Latency Block Cipher for Pervasive Comput-
ing Applications - Extended Abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)

10. CAESAR. CAESAR: Competition for Authenticated Encryption: Security, Appli-
cability, and Robustness, http://competitions.cr.yp.to/caesar.html

11. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for des-likecryptosystems. Des. Codes Cryptography 15(2), 125–156 (1998)

12. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.)
Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidel-
berg (2001)

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

14. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

15. Dillon, J.F.: APN polynomials: an update. In: International Conference on Finite
Fields and Applications - Fq9 (2009)

16. Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The hummingbird-
2 lightweight authenticated encryption algorithm. In: Juels, A., Paar, C. (eds.)
RFIDSec 2011. LNCS, vol. 7055, pp. 19–31. Springer, Heidelberg (2012)

17. Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The Hummingbird-2
Lightweight Authenticated Encryption Algorithm. In: Juels, A., Paar, C. (eds.)
RFIDSec 2011. LNCS, vol. 7055, pp. 19–31. Springer, Heidelberg (2012)

18. Even, S., Mansour, Y.: A Construction of a Cioher From a Single Pseudorandom
Permutation. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993)

19. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer (2011)

20. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel and Takagi [28], pp. 326–341

21. IBM. IBM ILOG CPLEX Optimizer,
http://www.ibm.com/software/integration/optimization/cplex-optimizer/

http://competitions.cr.yp.to/caesar.html
http://www.ibm.com/software/integration/optimization/cplex-optimizer/

158 B. Bilgin et al.

22. Knežević, M., Nikov, V., Rombouts, P.: Low-latency encryption – is lightweight =
light + wait? In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 426–446. Springer, Heidelberg (2012)

23. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

24. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)

25. NANGATE. The NanGate 45nm Open Cell Library, http://www.nangate.com
26. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-

channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

27. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

28. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

29. Saarinen, M.-J.O.: Related-key Attacks Against Full Hummingbird-2. In: Moriai,
S. (ed.) Fast Software Encryption. LNCS. Springer (to appear, 2013)

30. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel and Takagi [28], pp. 342–357

31. Yalçın, T., Kavun, E.B.: On the Implementation Aspects of Sponge-based Authen-
ticated Encryption for Pervasive Devices. In: Mangard, S. (ed.) CARDIS 2012.
LNCS, vol. 7771, pp. 141–157. Springer, Heidelberg (2013)

http://www.nangate.com

	Fides: Lightweight Authenticated Cipherwith Side-Channel Resistancefor Constrained Hardware
	1 Introduction
	2 TheDesign
	2.1 The Round Transformations of
	2.2 Security Assumptions and Claims

	3 Security Analysis
	3.1 Differential and Linear Cryptanalysis
	3.2 Impossible Differential Cryptanalysis

	4 Hardware Implementations and Comparison
	5 Conclusion
	References

