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Abstract. Masking is a well-known technique used to prevent block ci-
pher implementations from side-channel attacks. Higher-order side chan-
nel attacks (e.g. higher-order DPA attack) on widely used block cipher
like AES have motivated the design of efficient higher-order masking
schemes. Indeed, it is known that as the masking order increases, the
difficulty of side-channel attack increases exponentially. However, the
main problem in higher-order masking is to design an efficient and se-
cure technique for S-box computations in block cipher implementations.
At FSE 2012, Carlet et al. proposed a generic masking scheme that can
be applied to any S-box at any order. This is the first generic scheme for
efficient software implementations. Analysis of the running time, or mask-
ing complexity, of this scheme is related to a variant of the well-known
problem of efficient exponentiation (addition chain), and evaluation of
polynomials.

In this paper we investigate optimal methods for exponentiation in
F2n by studying a variant of addition chain, which we call cyclotomic-
class addition chain, or CC-addition chain. Among several interesting
properties, we prove lower bounds on min-length CC-addition chains. We
define the notion of F2n -polynomial chain, and use it to count the number
of non-linear multiplications required while evaluating polynomials over
F2n . We also give a lower bound on the length of such a chain for any
polynomial. As a consequence, we show that a lower bound for the mask-
ing complexity of DES S-boxes is three, and that of PRESENT S-box
is two. We disprove a claim previously made by Carlet et al. regarding
min-length CC-addition chains. Finally, we give a polynomial evalua-
tion method, which results into an improved masking scheme (compared
to the technique of Carlet et al.) for DES S-boxes. As an illustration we
apply this method to several other S-boxes and show significant improve-
ment for them.

Keywords: block cipher, S-box, masking complexity, addition chain,
polynomial evaluation, side-channel attack.

1 Introduction

Side-channel attacks are considered to be an important class of cryptanalysis
techniques in modern cryptography. These attacks exploit various types of phys-
ical leakage of information including power consumption, running time, electro-
magnetic emission etc. during the execution of cryptographic algorithm on a
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target device [11]. In practice they are often more successful than the black-box
cryptanalysis, and many such practical attacks were demonstrated against well-
known ciphers. Hence it is a natural concern to protect a cryptosystem against
these attacks.

Masking is a widely used technique to protect block cipher implementations
from side-channel attacks. Goubin and Patarin proposed one such scheme for
DES [7]. Many other techniques for both hardware and software implementation
were later proposed, especially for AES (see [4] and references therein). Most of
these schemes have masking order one and, as a result, they are only resilient
against first-order side-channel attacks. However in the past years, higher-order
side-channel attacks have been proposed against well-known ciphers like AES.
Motivated by these attacks, several higher-order masking schemes have been
proposed.

In a higher-order masking scheme each sensitive variable (e.g. variables in-
volving secret keys) is randomly split into d + 1 shares, where d is known as
the masking order. Chari et al. [5] showed that the complexity of side-channel
attacks increases exponentially with the masking order. However implementing
a higher-order masking scheme will also affect the performance of the crypto-
graphic algorithm. Hence an algorithm resilient to higher-order attacks aims at
designing efficient masking techniques for block ciphers.

Higher-Order Masking: Although many masking techniques have been pro-
posed in literature, there are only a few that deal with higher-order masking.
Schramm and Paar [18] generalized the first-order table recomputation method
given in [1,12]. Their method can be applied to protect any S-box, but a third-
order attack was shown against this scheme by Coron et al. [6]. Rivain et al.
also proposed a scheme with formal security proofs but their method only gives
second-order security [15]. Ishai et al. [8] provided the first dth-order masking
method that can be applied to any S-box, for arbitrary d. However, applying
this technique for masking S-boxes in software becomes inefficient. Rivain and
Prouff [16] presented an efficient technique for masking AES S-box for any order.
Further Kim et al. [9] extended this scheme based on an approach of [17]. In FSE
2012, Carlet et al. [4] presented the first generic dth-order masking scheme, suit-
able for software implementation, that can be applied to any S-box. Currently,
this is the only such generic scheme.

Masking, Polynomial Evaluation, and Addition Chains An (n, m)-S-box
is a function from {0, 1}n to {0, 1}m, where m ≤ n. For most of the well-known
ciphers, n is 4, 6 or 8. To design a generic masking scheme, Carlet et al. [4]
consider a polynomial representation of an (n, m)-S-box over F2n . The n-bit
and m-bit strings are identified with elements of F2n in a natural way, if nec-
essary, by appending m-bit strings with leading zeros. Such a polynomial can
be easily computed from the S-box table by applying Lagrange interpolation
method. The polynomial will be of the form

∑2n−1
i=0 ai x

i, where ai ∈ F2n . Hence
the evaluation of an S-box reduces to evaluating the corresponding polynomial
for some element in F2n . Operations involved in this polynomial evaluation are:
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addition, multiplication by a scalar (from F2n), squaring, and multiplications
that are not squaring. Except the last one, all the above operations are affine
in F2n . In this masking scheme only the non-linear multiplications are signifi-
cant. Because the dth-order masking of an affine operation requires O(d) logical
operations, whereas a non-linear multiplication requires O(d2) operations [4].
Hence the masking complexity of a S-box is defined as the minimum number of
non-linear multiplications needed to evaluate its corresponding polynomial.

Efficient methods for polynomial evaluation is a well-studied area [10, Section
4.6.4]. Of particular interest is the evaluation of a power function (i.e. xα),
because of its simplicity. Not only are these functions of theoretical interest,
there are also studies on the suitability of S-boxes based on power functions
[13]. Formal analysis of the optimal methods to evaluate these powers has led
to a detailed study of addition chains [21,10, Section 4.6.3]. The length of these
chains correspond to the number of multiplications needed for the corresponding
exponentiation. However, to analyze the number of non-linear multiplications
required to evaluate an S-box, we need to investigate a variant of addition chain
introduced in [4]. We call this variant as cyclotomic-class addition chain, or in
short, CC-addition chain to distinguish it from the usual addition chain. Also,
CC-addition chains more accurately model the cost of exponentiations in F2n .
This is because squaring is very efficient in F2n , and we can also use the relation
x2n = x to our advantage.

Our Results

In this article we analyze and improve the generic higher order masking scheme
proposed by Carlet et al. at FSE 2012 [4]. We start by establishing several
interesting properties of CC-addition chain. We prove a lower bound on the min-
length CC-addition chain of any integer, which turns out to be logarithmic in the
Hamming weight of the integer. As a consequence, we disprove the claim in [4,
pp. 373] saying that integers of the form 2n− 2 have the longest min-length CC-
addition chain than any other lesser number. We give an elegant mathematical
proof showing that the masking complexity of AES is at least four, which was
previously established by the brute-force method in [4]. We also give a result on
the monotonicity property of the min-length CC-additions of an integer.

We propose and define the notion of F2n -polynomial chain. Although the no-
tion of CC-addition chain helps to evaluate the masking complexity of power
functions, in case of general polynomials the idea of F2n -polynomial is more nat-
ural and useful. Such a notion is necessary to formally define and establish lower
bounds on the masking complexity of an S-box. We prove a lower bound on the
minimum number of non-linear multiplications required to evaluate a polynomial
in F2n . This lower bound is related to the min-length CC-addition chains of the
integers present in the exponents of the polynomial. As a corollary we show that
the masking complexity of DES (S-box) is at least three and that of PRESENT
is at least two. Previously no such lower bounds were known. We prove that
the notion of masking complexity is invariant of the way of representing the
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corresponding field. One can argue that the linearity of the field isomorphism
reasoning given in [4] is incomplete.

Finally, we give a polynomial evaluation technique which improves the effi-
ciency of generic higher-order masking of S-boxes. For DES this algorithm gives
improvement over the previously proposed algorithm in [4] and automatically
improves the upper bound on the masking complexity of DES S-boxes to 7,
from 10. We apply this technique to other well-known ciphers to demonstrate
the efficiency of this technique (c.f. Table 1). When applied to AES this technique
gives the optimal masking complexity.

2 Results on Cyclotomic-Class Addition Chains

2.1 Definitions

Let N be the set of positive integers and Z be the set of integers. ν(n) refers
to the number of bits that are one in the binary representation of n, i.e. the
Hamming weight of n. For a binary string z in {0, 1}∗, 〈z〉2 denotes the binary
representation of some non-negative integer. Let us recollect the standard notion
of addition chain.

Definition 1. [Addition Chain [10, Section 4.6.3]] An addition chain S for α
(α ∈ N) is a sequence of integers

a0 = 1, a1, a2, . . . , ar = α, (1)

such that for every i = 1, 2, . . . , r, there exist some 0 ≤ j, k < i such that

ai = aj + ak.

The length of S, denoted by L (S), is r.

Thus in an addition chain, any element in the sequence (except the first) must
be a sum of some previous two elements. The length of a shortest addition chain
for α is denoted by l(α). Formally,

l(α) = min {L (S) : S is an addition chain for α} . (2)

Intuitively, l(α) represents the minimum number of “multiplications” needed to
compute xα from x (x is an element of a monoid).

The notion of “addition chain” has been generalized to q-addition chain (q ∈
N) in [20]. In this generalization of the “usual” addition chains the multiple of
an element by q can be computed in a single step. Note that an (usual) addition
chain is a 2-addition chain.

The q-addition chains are more relevant than (2-)addition chains in the case
of exponentiations in finite fields Fqn of characteristic q �= 2. In such a field it is
possible to compute xq very efficiently, often “free” [20].

In this work we study another variant of addition chain introduced in [4].
Before we describe the variant, let us first see the following definition.
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Definition 2. [Cyclotomic Class [4]] Let n ∈ N and α ∈ {0, 1, . . . , 2n − 2}. The
cyclotomic class of α (w.r.t. n), denoted by Cα, is defined as

Cα =
{
α · 2i (mod 2n − 1) : i = 0, 1, . . . , n− 1

}
.

The intuition for introducing the above definition comes from the following sce-
nario. Let g be a generator of the multiplicative group F

×
2n . Given x = gα, the

set
{
x, x2, x4, x8, . . . ,

}
is the same as

{
gi | i ∈ Cα

}
. Note that x2n = x in F

×
2n .

Since 2n ≡ 1 (mod 2n − 1), therefore |Cα| ≤ n. It is easy to see that the relation
R on set {0, 1, . . . , 2n − 2}, defined as (α, β) ∈ R iff β ∈ Cα, is an equivalence
relation. Hence the collection of cyclotomic classes forms a partition of the set
{0, 1, . . . , 2n − 2}. Since |Cα| ≤ n, we obtain the following observation.

Remark 1. The number of cyclotomic classes w.r.t. n is at least 2n−1
n .

In [4], the exact count of the number of cyclotomic classes (w.r.t. n) is given as
∑

δ|(2n−1)

φ(δ)
μ(δ) , where φ is the Euler’s totient function and μ(δ) is the multiplicative

order of 2 modulo δ. However, no lower bound on this expression was given there.
The simple observation in Remark 1 shows that

∑

δ|(2n−1)

φ(δ)
μ(δ) ≥

2n−1
n .

A variant of addition chain proposed in [4] is the cyclotomic-class addition
chain, in short, CC-addition chain.

Definition 3. [CC-Addition Chain [4]] Let n ∈ N, α ∈ {1, 2, . . . , 2n − 2}, and
C = {Ci : i = 0, 1, . . . , 2n − 2} be the collection of cyclotomic classes w.r.t. n,
A cyclotomic-class addition chain SC of α (w.r.t. n) is a sequence of cyclotomic
classes

Ca0 = C1, Ca1 , Ca2, . . . , Car = Cα, (3)

such that for every i = 1, 2, . . . , r, there exist some 0 ≤ j, k < i, βi ∈ Cai ,
βj ∈ Caj , and βk ∈ Cak

such that

βi ≡ βj + βk (mod 2n − 1) .

The length of SC , denoted by LCn (SC), is r.

Formally, a shortest CC-addition chain for α (w.r.t. n), denoted by mn(α), is
defined as

mn(α) = min {LCn (SC) : SC is an addition chain for α (w.r.t. n)} . (4)

The phrase “masking complexity of α” has been used in [4] to describe mn(α).
CC-addition chains describe a way to compute xα from x ∈ F

×
2n , where squaring

operations are considered free and hence not counted. These sort of chains model
the complexity of exponentiation in F2n more accurately than (2-)addition chains
when squaring is implemented very efficiently using a special representation of
field elements [20]. CC-addition chains also model exactly the number of non-
linear multiplications required to mask S-boxes that are represented by power
functions [4]. An important difference between q-addition chains, in particular
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2-addition chains, and CC-addition chains is that the former is a sequence of
positive integers while the latter is a sequence of classes. It is for this reason
that we refer to the latter chain as “cyclotomic-class addition chain” and not
just 2-addition chain as done in [4]. The notion of CC-addition chains can be
extended in a natural way to Fqn to obtain q-CC-addition chain, analogous to
q-addition chain. Accordingly, the CC-addition chain in Definition 3 may also
be referred to as 2-CC-addition chain. In this work, we restrict ourselves to
(2-)CC-addition chains, particularly keeping applications to higher-order mask-
ing in mind.

Note that mn(α) is not necessarily equal to the minimum number of non-
doubling steps in all of addition chains for α, though mn(α) ≤ l(α). That is,
every CC-addition chain does not necessarily need to be derived from an addition
chain by not explicitly writing the doubling steps. This is a consequence of the
fact that there exist α, n1 and n2 such that mn1(α) �= mn2(α). For example,
m5(23) = 2 but m6(23) = 3. We refer to the table of values for mn(α) for n ≤ 11
in [4].

Nevertheless, we can obtain upper bounds on the value of mn(α) using pre-
vious results on addition chains in a straightforward way. Note that for a given
value of α, mn(α) is defined only for those n such that α ≤ 2n − 2. Hence we
require n ≥ 	log2 (α+ 2)
.

Upper Bound for mn(α). A trivial upper bound mn(α) ≤ ν(α)−1 is obtained
from the binary method [10, Section 4.6.3]. Let α = bt2

t+bt−12
t−1+. . .+b12

1+b0,
where t = �log2 α�, bi ∈ {0, 1} ∀i = 1, . . . , t, and bt = 1. An addition chain
obtained from the binary method is as follows

bt = 1, bt2, bt2 + bt−1, 2 (bt2 + bt−1) , bt2
2 + bt−12 + bt−2, . . . , α.

The above addition chain yields a CC-addition chain for α (w.r.t. any n ≥
	log2 (α+ 2)
). Hence the length of such a chain is ν(α)− 1. Note that we count
only those additions that are not doublings.

An improved upper bound for mn(α) is possible if we use the techniques
of Brauer [3]. In [3], addition chains much shorter than those from the binary
method have been constructed. This result on (2-)addition chains has also been
extended to q-addition chains in [20]. See also [22,10, Section 4.6.3].

Brauer’s method of constructing addition chains is a generalization of the
binary method mentioned above. Instead of working in the base-2 expansion of
α, we now work with base-2k expansion (k ∈ N). Let z = 2k and α = btz

t +
bt−1z

t−1 + . . . + b1z
1 + b0, where t = �logz α�, bi ∈ {0, 1, . . . , z − 1} ∀i =

0, 1, . . . , t, and bt �= 0. The corresponding addition chain is

1, 2, . . . , z − 2, z − 1,

bt2, bt4, . . . , btz, btz + bt−1,

(btz + bt−1) 2, (btz + bt−1) 4, . . . , (btz + bt−1) z, btz
2 + bt−1z + bt−2,

. . . bzt + bt−1z
t−1 + . . .+ b1z

1 + z0.
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The total length of the above addition chain is z − 2 + t(k + 1). The number
of non-doubling steps is (z − 2)/2 + t = 2k−1 − 1 +

⌊
log2 α

k

⌋
, which is also the

length of the corresponding CC-addition chain for α (w.r.t. any n). This value is
minimized when k ≈ log2 log2 α− 2 log2 log2 log2 α and the corresponding value
is about log2 α

log2 log2 α−2 log2 log2 log2 α + log2 α

2(log2 log2 α)2
− 1. Hence as α → ∞, we obtain

mn(α) ≤
log2 α

log2 log2 α
(1 + o(1)) . (5)

2.2 Lower Bound

No non-trivial lower bounds have been previously known for mn(α). In this
article we show that mn(α) ≥ 	log2(ν(α))
. Recall that ν(α) is the Hamming
weight of α in the binary notation. The basic idea is to first show that Hamming
weight is invariant in a cyclotomic class. To obtain the bound, we then use this
result along with the simple fact that when two positive integers are added, then
the Hamming weight of sum is at most the sum of the Hamming weights. Similar
techniques have been used in [20].
Lemma 1. Let n ∈ N, α ∈ {0, 1, . . . , 2n − 2}, and Cα be the cyclotomic class
of α (w.r.t. n). If β ∈ Cα, then ν(β) = ν(α).

Proof. This follows from a well-known observation that the multiplication of α by
2 modulo 2n− 1 is same as the cyclic left shift of the n-bit binary representation
of α.

As an illustration, consider the cyclotomic class C3 of α = 3 w.r.t. n = 5.
C3 = {3, 6, 12, 24, 17}. Note that 17·2 ≡ 3 (mod 31). In the binary representation,

C3 = {〈00011〉2 , 〈00110〉2 , 〈01100〉2 , 〈11000〉2 , 〈10001〉2} . (6)

The following proposition gives a lower bound for mn(α).
Proposition 1. mn(α) ≥ 	log2(ν(α))
.
Proof. From Lemma 1 and, the fact that the Hamming weight of sum of two
positive integers is at most the sum of the Hamming weights, we obtain that
the CC-addition chain of length at most r (3) can only contain integers having
Hamming weight at most 2r. This is because elements of C1 have Hamming
weight 1 and at each step the Hamming weight can at most double. Therefore,
in order for α to be present in a CC-addition chain, then the chain’s length must
be at least 	log2(ν(α))
. ��
As a consequence of the above proposition, we now disprove the claim made
in [4, pp. 373]. Their claim was that given a (fixed) value of n, mn(2

n − 2) ≥
mn(α) ∀α = 1, . . . , 2n − 3, i.e., 2n − 2 has the longest min-length CC-addition
chain among the integers modulo 2n − 1.
Proposition 2. Let n = 2t+1 for some t ∈ N and t > 2. Then mn(2

n−2) = t.
In particular, m9(510) = 3 < m9(508) = 4.

Proof. In Appendix A.
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2.3 Monotonicity of mn(α)

It is natural to ask how the value of mn(α) varies with n. As mentioned pre-
viously, mn(α) is defined only for n ≥ 	log2 (α+ 2)
. Is the value of mn(α)
independent of n for a given value of α? This is not true since we have al-
ready seen the counterexample m5(23) = 2 but m6(23) = 3. The example
m7(83) = 3 but m9(83) = 2 shows that mn(α) can also decrease as n in-
creases. We can generalize the above examples to obtain infinitely many ex-
amples. For instance, consider mn

(〈
10 . . . 0︸ ︷︷ ︸

n−4

111
〉
2

)
= mn

(〈
0 . . . 0︸ ︷︷ ︸
n−4

1111
〉
2

)
= 2

but mn+1

(〈
010 . . .0︸ ︷︷ ︸

n−4

111
〉
2

)
= mn+1

(〈
0 . . . 0︸ ︷︷ ︸
n−4

11101
〉
2

)
= 3, where n ≥ 5.

But we can still show that mn(α) ≤ mn′(α) if n |n′, i.e. if n divides n′.

Theorem 1. Let α, n, n′ ∈ N, n |n′ and 	log2 (α+ 2)
 ≤ n ≤ n′. Then mn(α) ≤
mn′(α) .

Proof. For space constraint the proof is given in the full version of this paper.

Theorem 1 suggests that, to find a minimum length CC-addition chain w.r.t. n′,
first try to find one w.r.t. a divisor n of n′. Since F2n is a smaller field than F2n′ ,
it may be advantageous to work in F2n . Once a minimum length CC-addition
chain w.r.t. n′ is found, then check if it is a CC-addition chain w.r.t. n′. If it is
the case, then it will be a minimum length chain.

3 Polynomial Evaluation and Masking Complexity

3.1 F2n-Polynomial Chain

The masking complexity of an S-box (Definition 5) corresponds to the min-
length CC-addition chain of the exponent when it can be represented as a power
function. However when the S-box has a general polynomial representation, a
notion similar to CC-addition chain is required. For evaluating polynomials (over
R) the notion of polynomial chain is given in [10, Section 4.6.4]. In case of
polynomials in F2n [x], we define the notion of F2n -polynomial chain, where we
do not count addition, scalar multiplication and squaring operations. Note that
if x, y ∈ F2n , then x2n = x and (x+ y)2 = x2 + y2.

Definition 4. A F2n-polynomial chain S for a polynomial P (x) ∈ F2n [x] is
defined as

λ−1 = 1, λ1 = x, . . . , λr = P (x) (7)

where

λi =

⎧
⎪⎪⎨

⎪⎪⎩

λj + λk −1 ≤ j, k < i,
λj · λk −1 ≤ j, k < i,
αi � λj −1 ≤ j < i, αi is a scalar,
λ2
j −1 ≤ j < i.
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Note that here · and � both perform the same operation, multiplication in F2n.
However in order to differentiate the non-linear operation we use � for scalar
multiplication. Here λj · λk denotes a non-linear multiplication. Let the number
of non-linear multiplications involved in chain S be N (S). Then the non-linear
complexity of P (x) (over F2n), denoted by M(P (x)), is defined as M(P (x)) =
min
S

N (S), where S computes P (x).

Proposition 3. Let P (x) :=
∑2n−1

i=0 ai x
i be a polynomial in F2n [x]. Then

M(P (x)) ≥ max
0<i<2n−1

ai �=0

mn(i).

Proof. To prove the proposition, we just need to prove the following claim. Let
σn
k := {α |mn(α) ≤ k}. We claim that, with at most k non-linear multiplications,

we can evaluate only those polynomials of the form
∑

i aix
i, where i ∈ σn

k and
ai ∈ F2n . It is easy to see that with zero non-linear multiplications, only those
polynomials of the form

∑
i aix

i, where i ∈ σn
0 = {2j | 0 ≤ j ≤ n − 1}. Let

us assume that the above claim is true up to k − 1 non-linear multiplications.
Consider the set of polynomials T :=

{
p(x) | p(x) =

∑
j bjx

j , j ∈ σn
k−1, bj ∈

F2n
}
. Since squaring is a linear operation in F2n [x], the set T is closed under

additions, scalar multiplications and squaring operations. Hence if we allow only
one more non-linear multiplication, then exponents in the resulting polynomial
can only be from σn

k . Note that mn(α) is defined only for 0 < α < 2n − 1 and
x2n−1 = 1 if x �= 0. This proves the claim. ��

3.2 Masking Complexity: Well-Definedness and Lower Bounds

The masking complexity of an S-box is formally defined as follows.

Definition 5. [Masking Complexity] Let m,n ∈ N with m ≤ n. The masking
complexity of an (n,m)-S-box is the non-linear complexity of P (x), where P (x)
is the polynomial representation of the S-box over F2n .

Note that the above definition has been intuitively described in [4, Definition
1] as the minimum number of non-linear multiplications needed to evaluate the
polynomial representation. Once the bit strings are identified naturally with
the elements of F2n (given a field representation), then we can apply Lagrange
interpolation technique to compute the (unique) polynomial of degree at most
2n − 1 representing the S-box in the corresponding field.

Well-Definedness. The well-definedness and relevance of the above definition
of masking complexity is guranteed because of the following reasons.

1. A natural question is - does masking complexity change with the irreducible
polynomial used to represent F2n? Note that under the natural mapping of
bit strings to the field elements, the same S-box may correspond to different
polynomials over F2n for different representations of the field. However we
show in Theorem 2 that masking complexity does not depend on the field
representation.
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2. It is relatively straightforward to mask affine functions. In F2n , squaring is
linear, and affine functions are free from any “non-linear” multiplications.

The n-bit strings can be naturally mapped to field elements of F2n represented as
polynomials over F2 modulo a degree n irreducible polynomial f1(y). Formally,
B1 : {0, 1}n → F2[y]/f1(y) is defined as

B1 (〈bn−1bn−2 . . . b0〉) :=
n−1∑

i=0

bi y
i + (F2[y] · f1(y)) , (8)

where bi ∈ {0, 1}. The m-bit strings (m ≤ n) are appended with leading zeros to
identify them with n-bit strings. Later we shall see that it suffices if B1 is some
F2-linear bijection. Note that ({0, 1}n,⊕) may be viewed as a vector space over
F2.

Remark 2. It was claimed in [4, Remark 3] that the property of independence
of masking complexity w.r.t. the irreducible polynomial used to represent F2n

follows from the fact that field isomorphisms are F2-linear bijections. This reason
is not enough and a formal proof requires more arguments, as we shall see in the
proof of Theorem 2.

Let f1(y) and f2(z) be two irreducible polynomials of degree n over F2. Then
F2[y]/f1(y) and F2[z]/f2(z) are two representations for F2n . Let B1 : {0, 1}n →
F2[y]/f1(y) be as in (8), and B2 : {0, 1}n → F2[z]/f2(z) be analogously defined
for f2(z). Note that B1 and B2 are F2-linear isomorphisms between vector spaces.
The corresponding inverse maps B−1

1 and B−1
2 are also F2-linear isomorphisms

of vector spaces.
Let U : {0, 1}n → {0, 1}n be any function on n-bit strings. For instance, U

may represent an (n,m)-S-box (upon padding m-bit strings with leading zeros).
The maps U and B1 will “induce” a map U1 : F2[y]/f1(y) → F2[y]/f1(y). More
precisely,

U1 = B1 ◦ U ◦ B−1
1 . (9)

Similarly we can define
U2 = B2 ◦ U ◦ B−1

2 . (10)
Let P1(x) and P2(x) be the polynomial representations (of degree at most 2n−1)
of U1 and U2, respectively. We now prove the following theorem.

Theorem 2. M (P1(x)) = M (P2(x)), where P1(x) and P2(x) are as defined
above. In other words, the masking complexity of an S-box (in general, any func-
tion on bit strings) is invariant w.r.t. field representations.

Proof. For space constraint the proof is given in the full version of this paper.

Lemma 2. [4, Proposition 1] The masking complexity of an S-box (in general,
any function) cannot increase when it is composed with affine functions. When
composed with affine bijections, then masking complexity remains the same.

Note that in the proof of Theorem 2 the only property of the maps B1 and B2

used is that they are F2-linear bijections. Hence if B1 and B2 are any linear
bijections, even then the masking complexity of an S-box remains invariant.
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Lower Bounds. We represent the fields F24 , F26 and F28 using irreducible
polynomials y4 + y3 + 1, y6 + y4 + y3 + y + 1, y8 + y4 + y3 + y + 1 ∈ F2[y],
respectively. From Theorem 2, we know that the masking complexity is invariant
w.r.t. the field representations.

The polynomials corresponding to eight DES S-boxes are polynomials of de-
gree 62 in F26 [x], and the one for the PRESENT S-box is a polynomial of degree
14 in F24 [x]. Since m6(62) = 3 and m4(14) = 2, from Proposition 3 we obtain
the following corollary.

Corollary 1. Masking complexity of a DES S-box is at least 3, and that of the
PRESENT S-box is at least 2.

The AES S-box can be written as an affine permutation composed with the
polynomial x254 ∈ F28 [x]. From Lemma 2, the masking complexity of AES S-
box is M

(
x254

)
over F28 . Using arguments similar to the proof of Lemma 4 (in

Appendix A), we obtain the following corollary.
Corollary 2. Masking complexity of the AES S-box is at least 4.
The above corollary was shown by exhaustive search in [4].

4 Improved Generic Higher-Order Masking of S-Boxes

In [4], Carlet et al. used the cyclotomic class method to get a masking scheme for
S-boxes. They also gave parity-split method to evaluate polynomials efficiently.
In this section we apply a divide-and-conquer method to obtain an efficient so-
lution to the same problem. The main idea of this approach is to express the
polynomial(say, having degree N) as a function of several lower degree polyno-
mials, each of degree at most k (for some fixed k).

Let P (x) be the polynomial of degree N which we want to evaluate. Then we
start by dividing the polynomial with xkt where N = k(2t− 1). The remainder
obtained by this will have degree at most kt−1 and degree of the quotient will be
kt− t = k(t− 1). Next we can add the term xk(t−1) to the remainder and divide
the sum by the quotient. This allows us to express the remainder by polynomials
having degree at most k−1 and k(t−1)−1. Now the term xk(t−1) together with
the other lower degree polynomials will allow us to apply the method recursively
when t = 2l.

In [14] this divide-and-conquer approach for monic polynomials is proposed.
For the sake of completeness, a brief description of this general method is given
in the Appendix B. However, we observe that in our case the restriction of
polynomial being monic is not necessary. Also it turns out that we can adapt
that algorithm even if the condition N = k(2t− 1) is not satisfied. We describe
this with specific examples of DES, AES and some other well-known S-boxes.

4.1 DES S-Boxes

Let PDES(x) be the polynomial in F26 [x] corresponding to an S-box of DES.
Note that for all the S-boxes the corresponding polynomial has degree 62. We
express PDES as
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PDES(x) = q(x) · x36 +R(x) (11)

where deg(R) ≤ 35 and deg(q) = 26. Now if we divide the polynomial R(x)−x27

with q(x), we get c(x) and s(x) satisfying

R(x)− x27 = c(x) · q(x) + s(x) (12)

where deg(c) ≤ 9 and deg(s) ≤ 25. Substituting (12) in (11), we get

PDES(x) = (x36 + c(x)) · q(x) + x27 + s(x) (13)

Further continuing in the same way we first divide q(x) with x18 to obtain

q(x) = q1(x) · x18 +R1(x), (14)

and then divide R1(x) − x9 by q1(x) to obtain

R1(x) − x9 = c1(x) · q1(x) + s1(x). (15)

Combining (14) and (15) we get

q(x) = (x18 + c1(x)) · q1(x) + x9 + s1(x). (16)

Where deg(R1) ≤ 17, deg(q1) = 8, deg(c1) ≤ 9 and deg(s1) ≤ 7. Similarly
proceeding with x27 + s(x), we get q2(x), R2(x), c2(x), and s2(x) satisfying

x27 + s(x) = q2(x) · x18 +R2(x)

R2(x)− x9 = c2(x) · q2(x) + s2(x)
(17)

where deg(R2) ≤ 17, deg(q2) = 9, deg(c2) ≤ 8 and deg(s2) ≤ 8. Combining them
we get

x27 + s(x) = (x18 + c2(x)) · q2(x) + x9 + s2(x) (18)

Finally combining equations (18), (16) and (13), we obtain

PDES(x) =(x36 + c(x)) ·
(
((x18 + c1(x)) · q1(x)) + (x9 + s1(x))

)

+
(
(x18 + c2(x)) · q2(x) + (x9 + s2(x))

) (19)

In (19) the number of non-linear multiplications equals 3 + l′, where l′ is the
number of non-linear multiplications involved in evaluating the monomials in
(19) of degree at most 9, together with monomials x18 and x36.

Consider the monomials x, x2, x3, . . . , x9. The number of non-linear multipli-
cations required to evaluate them is 4. From x9, we can compute x18 = (x9)2

and x36 = (x18)2 using only squarings. Hence l′ = 4. Therefore the number of
non-linear multiplications for evaluating PDES is 3 + 4 = 7. Note that this also
improves an upper bound on the masking complexity of DES S-boxes.
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4.2 AES and Other 8-Bit S-Boxes

Applying the above technique for 8-bit S-boxes leads to significant reduction
in the number of non-linear multiplications required, in majority of the cases.
To compute the polynomials corresponding to 8-bit S-boxes, we use the field
representation F28 = F2[y]/(y

8 + y4 + y3 + y + 1).
CAMELLIA cipher [2] uses four 8-bit S-boxes and all the corresponding poly-

nomials have degree 254. On the other hand, CLEFIA cipher [19] uses two 8-bit
S-boxes and one of the corresponding polynomials (for S-box S0) has degree 252
while the other has degree 254. We treat the above polynomials as if they are
having degree 255 = 17 ×

(
24 − 1

)
and start by dividing with x136 (and then

adding the term x119). The process continues as done for DES above. For polyno-
mials of degree 254, we need to precompute the powers xi (1 ≤ i ≤ 17), whereas
for the polynomial of degree 252 we need to precompute until x19. As Table
1 indicates, we require 15 non-linear multiplications for all the corresponding
S-boxes except the S-box S0 (corresponding to the polynomial of degree 252) of
CLEFIA, which requires 16 non-linear multiplications. Previously, these S-boxes
required 22 non-linear multiplications by the parity-split method of [4].

Table 1. Comparison of the number of non-linear multiplications required for masking
various S-boxes

S-box(es)
Method AES CAMELLIA CLEFIA DES PRESENT SERPENT

Cyclotomic [4] 4 33 33 11 3 3
Parity-Split [4] 6 22 22 10 4 4
This Paper 4 15 16 (S0)/15 (S1) 7 3 3

The polynomial PAES(x) corresponding to the non-linear function of AES
S-box is x254 ∈ F28 [x]. Initially compute x, x2, x4, x8, x16, x17 = x16 · x,
x34 =

(
x17

)2, x68 =
(
x34

)2 and x136 =
(
x68

)2. To compute this list only one
non-linear multiplication is required. Write PAES(x) = x254 = q(x) · x136, where
q(x) = x118. Further, q(x) = x118 = q1(x) · x68, where q1(x) = x50. Finally,
q1(x) = x50 = x16 · x34. Hence

PAES(x) =
((
x16 · x34

)
· x68

)
· x136.

Given the initially computed list of powers, the above computation can be done
with three non-linear multiplications. So four non-linear multiplications are re-
quired all together for the AES S-box, which is exactly equal to its masking
complexity. The cyclotomic method of [4] also achieves the optimal number.

4.3 PRESENT and SERPENT S-Boxes

We have also considered the application of above techniques to 4-bit S-boxes of
PRESENT and SERPENT ciphers. PRESENT cipher has a single S-box, whose
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corresponding polynomial over F24 [x] is of degree 14. We use the representation
F24 = F2[y]/(y

4 + y + 1). SERPENT uses eight 4-bit S-boxes and the corre-
sponding polynomials have degree 14 (for two polynomials), 13 (for five) or 12
(for one). In all the cases we require 3 non-linear multiplications. The cyclotomic
method also requires the same number.

An outline of the method is as follows. Initially compute the list x, x2, x3 = x2 ·
x, x4, x5 = x4 ·x, x6 =

(
x3

)2, x10 =
(
x5

)2, using two non-linear multiplications.
Divide the polynomial by x10, and proceed as done in the case of DES. This
process stops at the first level itself, requiring only one non-linear multiplication.
This method totally requires three non-linear multiplications.

4.4 Cost of Linear Operations

The technique presented in this section to evaluate the polynomials correspond-
ing to specific S-boxes has lead to an improvement (or remain the same) in the
number of non-linear multiplications required. We would like to note that this
method does not incur significant overhead with respect to the linear opera-
tions. For instance, in the case of DES S-boxes, we need about 63 additions, 58
scalar multiplications, and 6 squarings. Both the cyclotomic method as well as
the parity-split method of [4] require about 62 additions and 62 scalar multipli-
cations. The number of squarings for the cyclotomic method is about 50, and it
is about 7 for the parity-split method.

An estimate in general for the two methods of [4] is as follows. The number
of additions required by both the methods is equal to the number of terms
in the polynomial less one, while the number of scalar multiplications is the
number of non-monic coefficients less one (for the constant term). Hence for
dense polynomials (where most of the 2n terms are present) both these quantities
will be about the degree of the polynomial. The number of squarings for the
cyclotomic method is about 2n − 1 less the number of cyclotomic classes, while
for the parity-split method it is about 2	n

2 
−1 +
⌊
n
2

⌋
(for dense polynomials).

In our case, if the degree d of a polynomial is approximately k · (2m − 1), then
the number of additions is about (k + 1) · (2m − 1). The number of non-linear
multiplications is about k ·(2m − 1). The number of squarings is about k

2+logk d.
Hence if k ≈

√
d, then this is about

√
d
2 + 2. Hence for dense polynomials (as is

the case for many S-boxes), there is no significant overhead with respect to the
linear operations.

5 Conclusion

In this work we have formalized the idea of polynomial chain in F2n . Using this
notion we give bounds on the masking complexity of polynomials corresponding
to several S-boxes. The idea of polynomial chain is more generic (in the con-
text of polynomial evaluation). This gives a better way of analyzing the masking
complexity for S-boxes which do not correspond to some power function, as is
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the case for many S-boxes used in popular block ciphers. The polynomial eval-
uation method described in Section 4 results into more efficient generic higher-
order masking scheme for many S-boxes, compared to the algorithms/heuristics
provided in [4]. Also our analysis gives insight into the polynomial evaluation
methods in F2n , which could be of independent interest.
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A Proof of Proposition 2

Proposition. Let n = 2t + 1 for some t ∈ N and t > 2. Then mn(2
n − 2) = t.

In particular, m9(510) = 3 < m9(508) = 4.

Proof. The proof proceeds in two steps. In lemma 3 below, we first show that
mn(2

n − 2) = t. As a result, m9(510) = 3. Then in Lemma 4, we prove that
m9(508) = 4. This will complete the proof of the proposition. ��

Lemma 3. mn(2
n − 2) = t, where n = 2t + 1, t ∈ N and t > 2.

Proof. From Proposition 1, we have mn(2
n − 2) ≥ log2(ν(2

n − 2)) = t. A CC-
addition chain of length t for 2n − 2 (w.r.t. n) can be constructed as follows

C1, C22−1, C24−1, C28−1, . . . , C22t−1 = C2n−2. (20)

Note that C22t−1 = C2n−2 because 2n − 2 = 2
(
22

t − 1
)
. Why the above se-

quence is indeed a CC-addition chain can be readily seen if we look at the n-
bit-representations of the representatives of the cyclotomic classes in the above
sequence. In the proof of Proposition 1 and the example in (6), we have observed
that all the elements of a given cyclotomic class can be obtained by (left) cyclic
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shifts of the n-bit-representation of any one element of the class. Consider an
integer sequence

〈1〉2 ×→ 〈10〉2 +→ 〈11〉2 ×→ 〈1100〉2 +→ 〈1111〉2 →
. . . → 〈11 . . . 11︸ ︷︷ ︸

2t

〉2
×→ 〈11 . . . 11︸ ︷︷ ︸

2t

0〉2. (21)

In the above sequence, those arrows marked with × correspond to multiplying
by a power of 2 (i.e. left shift) and hence such a step is not a separate step in
the corresponding CC-addition chain. But those marked with + correspond to
addition of two distinct integers and hence count as one step in the CC-addition
chain. This shows that the sequence in (20) is a CC-addition chain for 2n − 2
(w.r.t. n), and hence mn(2

n − 2) = t. ��

Lemma 4. m9(508) = 4.

Proof. From Proposition 1, we have m9(508) ≥ 	log2(7)
 = 3. We now rule out
the possibility that m9(508) = 3. Let there be a CC-addition chain for 508 (w.r.t.
9) of length 3. The only possibility is that in such a chain, the Hamming weight
doubles after each of the first two (addition) steps. But in the last step, we must
have two integers a =

〈
a8 . . . a0

〉
2

and b =
〈
b8 . . . b0

〉
2

such that 508 = a + b,
ν(a) = ν(b), and both must come from the same cyclotomic class. Hence the
bit-patterns of a and b must be cyclic shifts of each other. We just need to make
sure that the bit-pattern 508 = 〈111111100〉2 cannot be obtained. There are four
possible cases:

1. a0 = b0 = 1: then a1 = 1 or b1 = 1 (but not both). Hence with remaining
5 ones, it is not possible to obtain ones at the remaining 7 positions in the
sum.

2. a0 = b0 = 0 and a1 = b1 = 0: now there are 8 ones for 7 positions. Hence a
zero will appear in the sum when there is a one in the same position.

3. a0 = b0 = 0, a1 = b1 = 1 and a2 = b2 = 1: in this case it is not possible to
get ones in 6 positions in the sum with only 4 ones.

4. a0 = b0 = 0, a1 = b1 = 1 and a2 = b2 = 0: by symmetry, we can set
a3 = 1 and b3 = 0. Now there are 2 ones for a that can occur in any of
the five remaining positions. Hence there are

(
5
2

)
= 10 choices. Once the two

positions are fixed for a, then for b, the remaining three ones must be in the
other three remaining positions of the sum. One can easily check in all the
10 cases that a and b are not cyclic shifts of each other.

Hence we obtain m9(508) > 3. The CC-addition chain

〈1〉2
×→ 〈10〉2

+→ 〈11〉2
×→ 〈1100〉2

+→ 〈1111〉2
×→ 〈111100〉2

+→ 〈111111〉2 ×→ 〈1111110〉2 +→ 〈1111111〉2 ×→ 〈111111100〉2.

shows that m9(508) ≤ 4. Hence m9(508) = 4 ��
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B Divide-and-Conquer Strategy for Polynomial
Evaluation

Let P (x) be a polynomial having degree N = k(2t− 1). We divide P (x) by xkt

and express P (x) as following

P (x) = Q(x) · xkt +R(x) (22)

where Q is monic and deg(Q) = k(t − 1), deg(R) ≤ kt − 1. Now we divide
R(x)− xk(t−1) by Q(x) and obtain C(x), R1(x) as following

R(x) − xk(t−1) = C(x) ·Q(x) +R1(x) (23)

where deg(C) ≤ k − 1, deg(R1) ≤ k(t− 1)− 1. So P (x) can be written as

P (x) = (xkt + c(x)) ·Q(x) + xk(t−1) + R1(x) (24)

Note that (xk)t+c(x)) is already a function of polynomials having degree at most
k. Assume that t = 2i−1, then having computed x2, x3, ..., xk we can compute
xkt for “free”(without non-linear multiplications).

Next we apply the same technique to Q(x) and xk(t−1) +R1(x) (both having
degree k(t − 1)) recursively. In general, if i ≤ m then the number of non-linear
multiplications can be calculated from the relation

T (k(2i − 1)) = 2T (k(2i−1 − 1)) + 1 (25)

where T (γ) is the number of non-linear multiplications required to evaluate a
polynomial having degree γ, using the above technique. This gives T (k(2m −
1)) = 2m−1 − 1 ≈ N/2k. Hence the total number of non-linear multiplications is
about 1

2 (k +N/k).
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