
Sleuth: Automated Verification

of Software Power Analysis Countermeasures

Ali Galip Bayrak1, Francesco Regazzoni2,3, David Novo1, and Paolo Ienne1

1 School of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{aligalip.bayrak,david.novobruna,paolo.ienne}@epfl.ch

2 TU Delft, Netherlands
3 ALaRI - University of Lugano, Switzerland

regazzoni@alari.ch

Abstract. Security analysis is a crucial concern in the design of hard-
ware and software systems, yet there is a distinct lack of automated
methodologies. In this paper, we remedy this situation for the verifica-
tion of software countermeasure implementations. In this context, ver-
ifying the security of a protected implementation against side-channel
attacks corresponds to assessing whether any particular leakage in any
particular computational phase is statistically dependent on the secret
data and statistically independent of any random information used to
protect the implementation. We present a novel methodology to reduce
this verification problem into a set of Boolean satisfiability problems,
which can be efficiently solved by leveraging recent advances in SAT
solving. To show the effectiveness of our methodology, we have imple-
mented an automatic verification tool, named Sleuth, as an advanced
analysis pass in the back-end of the LLVM compiler. Our results show
that one can automatically detect several examples of classic pitfalls in
the implementation of countermeasures with reasonable runtimes.

Keywords: Software verification, security, DPA.

1 Introduction

The average person was estimated to consume about 34 gigabytes of data per
day in 2008 in the USA (including TV, gaming, movies, Internet, etc.) [9],
and this number is growing. Considering the amount of personal data flow-
ing through or processed by the everyday devices, ensuring the security of the
information is becoming a crucial requirement within the design process. How-
ever, off-the-shelf compilers or Electronic Design Automation (EDA) tools still
do not consider security as a design objective, and focus primarily on conven-
tional design objectives, such as execution time, code size, area and energy.
Recent works [4,7,10,11,25], however, indicate a nascent trend towards automat-
ing the application of hardware and software countermeasures to increase the
security of the systems against certain side-channel attacks. Although this rep-
resents a promising direction, many challenges remain open. This paper targets

G. Bertoni and J.-S. Coron (Eds.): CHES 2013, LNCS 8086, pp. 293–310, 2013.
c© International Association for Cryptologic Research 2013

294 A.G. Bayrak et al.

Unprotected
Vulnerable
st = pt xor key

Masked
Safe
st = key xor rnd
st = st xor pt
...

Masked
Vulnerable
st = key xor rnd
st = st xor pt
st = st xor rnd

Fig. 1. Sample programs

one such challenge: the automatic verification of protected software implemen-
tations against power analysis attacks.

A standard verification process determines whether a given system satisfies
certain properties described by the designer. Functional correctness is the most
fundamental such property and has been extensively studied by the research
community. In this work, we focus on a more specialized yet important property
for the security-critical applications: insensitivity against power analysis attacks.
We define an operation (or a group of operations) as sensitive if its associated
leakage (e.g., power consumption) depends on secret data (e.g., key) but not on
any random data. It is important to note that this definition does not necessarily
cover all possible side-channel weaknesses; however, we can effectively use it to
verify implementations of extensively studied countermeasures, such as Boolean
and arithmetic masking [23] and random precharging [29], and to the best of our
knowledge this is the first work in this direction.

As a simple motivating example, the operation in the first implementation
in Fig. 1 is vulnerable to power analysis attacks when it is executed on most
embedded devices [22]. This is because the device’s power consumption during
the execution of the operation will depend on the secret key (key), which can be
recovered using a simple statistical analysis known as Differential Power Analy-
sis (DPA) [21]. A well-accepted approach to avoid this vulnerability is to mask
the secret variable with random masks so as to randomize the result of the in-
termediate calculations [23], as shown in the second implementation. The masks
are propagated and then removed at the end of the whole implementation before
outputting the ciphertext, which is not shown in the example. This method has
been proven to be resistant against first-order DPA [8]. However, if the masks are
removed too early, a secret intermediate value could be leaked, as shown in the
third implementation. The value of st after the execution of the third operation
is key xor pt, as the second masking with rnd removes the effect of the first one.
Despite the triviality of the example, traditional type-based static information
flow analysis would not detect this pitfall; these methods usually make their
decisions based only on the types, but not on the associated variables. Hence,
such methods will falsely conclude that the last operation has a random output
since a variable that is random is involved in the operations. This behavior is
an unacceptable over-simplification; therefore, the propagation rules should also
consider the variables (e.g., random masks) in addition to types. Moss et al. [25]

Sleuth: Automated Verification of Software Power Analysis Countermeasures 295

used such a type system in their automatic masking method; however, their
approach is limited only to certain operations (xor and table look-up) for certain
(Boolean) masking schemes.

This simple example is just an illustration of many potential pitfalls in real
implementations. Most such pitfalls are much harder to detect manually, e.g.,
when they appear in later operations of the program, when the program com-
bines different Boolean and arithmetic functions, or when higher-order relations
between operations are considered.

In this paper, we propose an approach for security verification that is funda-
mentally different from simple rule-based property propagation, which is used
in many other instances of information flow analysis and other security prob-
lems. We convert the particular implementation under analysis into a set of
satisfiability problems, which are then used to determine whether an intermedi-
ate computation leaks secret data in a deterministic way, making it vulnerable
to certain attacks. In a sense, our methodology is agnostic to the protection
schemes used; it is able detect pitfalls in the application of a countermeasure
without making countermeasure specific considerations. Accordingly, it offers a
broad application scope for verification of protected implementations.

2 Definition of the Power Analysis Sensitivity

In this section, we define the four main elements of our verification approach:
program, type system, leakage model and sensitivity.

2.1 Program

A straight-line program is a sequence of branch-free operations. We use three-
address form to represent the operations, and Static Single Assignment (SSA)
form to represent the data dependencies [5].

Definition 1. A three-address form branch-free operation, or shortly an oper-
ation, d ∈ D, is a 4-tuple (op, x, y, z), where op is the operator, and x, y, and
z are the operands. An operand u represents values in {0, 1}wu, where wu ∈ N

is the bitwidth of u. An arithmetic/logic operation is expressed as x = y op z,
while an array handling operation is expressed as x = y[z] or y[z] = x, where
op is load or store, respectively. A straight-line program, or shortly a program,
p = (d0, ..., dn−1) ∈ P, is a sequence of n operations, where n ∈ N, di ∈ D and
0 ≤ i < n.

The left side of the assignment symbol (=) of an operation is known as the l-value;
similarly, the right side is known as the r-value. An operand can be a variable or,
in some cases, a constant. The variables of a program are classified as input
variables and intermediate variables ; this classification can be extracted un-
equivocally using standard compiler analysis [5]. For example, <t = key xor pt;

st = t xor rnd> is a straight-line program which has two xor operations, three
input variables (key, pt and rnd) and two intermediate variables (t and st).

296 A.G. Bayrak et al.

In this work, we target programs that do not have any input-dependent control-
flow. We automatically convert them into straight-line programs using standard
static code transformations, i.e., loop unrolling and function inlining. We restrict
our focus to this kind of programs for scalability reasons, since static program
analysis complexity grows exponentially with the number of branches (e.g., [1]).
Still, many provably-secure (against certain attacks) countermeasures, such as
masking, can be implemented without input-dependent control-flows and can
greatly benefit from our approach.

2.2 Type System

The use of type systems, a fundamental concept for programming languages
and compilers, gives special meanings to sequences of bits. Traditional security
analysis techniques (e.g., information flow analysis) use type systems to tag each
variable with its level of secrecy; for example, it is a common practice to use two
security types to represent each variable as either public or secret. In this work,
we extend this notion and introduce another security type for random variables.

Definition 2. Each input variable v of a program is tagged with a security type,
t(v) ∈ T , where T = {secret, public, random}. A secret variable is one whose
content should not be revealed (e.g., key), a public variable is one whose content
is observable by third-parties (e.g., plaintext), and a random variable is one
that takes uniformly distributed random values independently generated for each
different fresh run of the program and is non-observable by third-parties (e.g.,
masks used in the application of masking countermeasure).

We use the introduced type system to characterize the secrecy and randomness
of the operations. The types of the input variables must be assigned explicitly
by the user; types are automatically identified for the intermediate variables.

2.3 Leakage Model

Leakage is the information observable through the side channels (power con-
sumption, EM radiation, etc.) during the execution of the program. A leakage
model is a model of leakage imputable to one or more operations of the program.
It can be defined to consider each operation independently (a univariate leakage)
or a vector of operations together (bivariate, trivariate, and so on).

Definition 3. A leakage model, l ∈ L, is a function which models the side-
channel leakage of a subset of operations d′ = (d′0, ..., d

′
m−1) of a program p on a

given device h ∈ H, where m ∈ N, d′i ∈ D and 0 ≤ i < m. It returns a function
f that, in turn, returns an estimated leakage value r ∈ {0, 1}s (s ∈ N) for an
assignment of input variables of d′; hence, the domain of f is {0, 1}q, where
q ∈ N represents the aggregate bitwidth of all input variables of d′.

Sleuth: Automated Verification of Software Power Analysis Countermeasures 297

An example univariate leakage model, which is shown to be effective in practice
for power analysis attacks, is Hamming Weight (HW) of the r-value of the op-
eration (in this case, f is the HW function, which takes arbitrary length binary
input and returns a non-negative integer represented in binary form). Similarly,
a common bivariate leakage model is Hamming Distance (HD) of the r-values of
the two operations. Needless to say, these models do not perfectly represent the
leakage behaviors of the devices, but are the most common models used in the
literature. Our methodology gives the flexibility to the user to define their leak-
age model; some sample models are presented in Sections 4 and 5. Note that, l
can consider the device, the program and the operators in the formulation of f .
Hence, one can define a device- or operator-specific leakage model.

2.4 Sensitivity

We describe a vector of operations, and its associated leakage, as sensitive, if the
leakage of these operations satisfies two properties: (i) it statistically depends on
at least one secret input variable and (ii) it is statistically independent of any
random input variable. In other words, we check whether random inputs do not
have any impact on the leakage and whether any secret information is leaked
through a side-channel. Note that two variables are statistically independent if
and only if their mutual information is zero.

Definition 4. Given a program p = (d0, ..., dn−1) that has k input variables v =
{v0, ..., vk−1}, the associated security types t = {t0, ..., tk−1} of these variables, a
device h, and a leakage model l, then the sensitivity of a subset d′ = (d′0, ..., d

′
m−1)

of operations of p is a Boolean value that represents whether the leakage l(d′, p, h)
statistically depends on at least one input variable vi such that t(vi) = secret,
but not on any input variable vj such that t(vj) = random, where i, j, k ∈ N and
0 ≤ i, j < k.

For example, given the program <t = key xor pt; st = t xor rnd>, the univari-
ate leakage model “HW of the r-value of the operation”, and the types (se-
cret,public,random) of inputs (key,pt,rnd), the first operation is sensitive, since
it has a leakage (HW(key xor pt)) that is statistically independent of rnd, and
statistically dependent on key. The second operation, on the other hand, is in-
sensitive.

3 Automatic Detection of the Sensitivity of Operations

In this section, we present how we determine sensitive operations (or vector
of operations) in a given program, based on the definitions given in Section 2.
The methodology is composed of two steps: first, we convert our program into a
special Data Flow Graph (DFG) and, second, we analyze this graph to determine
sensitive operations.

298 A.G. Bayrak et al.

1 s[0] = 1;
2 s[1] = 0;
3 for (i=0 ; i<2 ; i++) {
4 t = s[iˆa] ˆ b;
5 sm[i] = t;
6 }
7 r0 = key ˆ a;
8 r1 = pt ˆ r0;
9 r2 = sm[r1];

(a) Sample implementation in C

�

�

�� �

��

�	

��

����

�

��
��������

�������

(b) Corresponding DFG

Fig. 2. An example data-flow conversion from a given implementation. All variables
are assumed to be a single bit for simplicity, without loss of generality. The inputs of the
LUTsm are statically generated using the formula LUTsm [sel] = s[iˆa]ˆb, where
sel represents the selection line (b is the most significant bit followed by a and i).

3.1 Graph Representation

Our DFG nodes are either arithmetic/logic operations (<x = y op z>) or array
handling operations (<x = y[z]> or <y[z] = x>). A node for an arithmetic/logic
operation has two incoming edges for y and z, and one outgoing edge for x. Ac-
curately covering data dependencies for the array handling operations requires
special representation. This is because the accessed address, and hence the data
it points to, might be determined by the input variables. For example, in the
program <a[0] = b; a[1] = c; t = a[d]>, variable t is assigned either b or c de-
pending on d. Hence, an array handling operation is treated according to whether
the address it accesses is statically-determinable (i.e., the address is constant af-
ter propagating the constants statically along the program). For instance, the
address of the second operation of the program <i = 0; y = key[i]> is statically-
determinable, since y accesses key[0] independently of the inputs, while it is not
statically-determinable for the program <i = rnd; y = key[i]> if rnd is an input.
Accordingly, if all accesses to an array are statically-determinable, we refer to
it as a directly accessed array and treat related accesses as ordinary assignment
operations (e.g., <y = key[0]>). Otherwise, we call it an indirectly accessed array
and create a Look-Up-Table (LUT) to mimic its behavior.

The LUT for an indirectly accessed array is represented as a 2m : 1 multi-
plexer, where m represents the total bitwidth of inputs that determines either
the address or the data of the array. An example is given in Fig. 2(a); sm is
an indirectly accessed array and there are m = wi + wa + wb bits (where wx

represents the bitwidth of x) that are involved in its calculation. The 2m inputs
of the LUT are set to fixed values that are calculated from all possible assign-
ments of these m bits, e.g., the least significant input of the LUT is calculated
by setting all of these m inputs to zero. Once the LUT is generated, the address
of a load operation that accesses to that array is given as a select line together
with the input bits used in the calculation. An example is shown in Fig. 2(b) for
the single-bit case of the example in Fig. 2(a).

Sleuth: Automated Verification of Software Power Analysis Countermeasures 299

�

�

�� �

��

�	

��

�

��

��

��

�����
��������

�������

�

�

�� �

��

�	

��

�

��

��

��

�����
��������

�������

pt : public
key : secret
a : random
b : random

Fig. 3. The DFG corresponding to the code in Fig. 2 is redrawn to show leak-
age. Univariate leakage, q1, for the last operation (<r2 = sm[r1]>) and bivari-
ate leakage, q2, caused by the consecutive execution of the last two operations
(<r1 = ptˆr0; r2 = sm[r1]>) are explicitly shown; HW and HD are selected as
example leakage models.

This LUT-based approach is developed to cover all possible data-flows for per-
fect accuracy of the analysis, which is the primary concern of this work. It might
be costly when we consider an application with a large number of pointer oper-
ations with huge points-to sets; however, such applications are rare, especially
in power-analysis countermeasure implementations, since they are designed for
memory-limited embedded systems and points-to sets are usually small. For ex-
ample, for a masked AES implementation with different input and output masks,
such a table has a size of 224B = 16MB, which is not a huge table to be processed
by a host computer (note that we run our verification tool on our own system,
not the target system).

3.2 Sensitivity Detection

Once again, an operation (or a group of operations) is sensitive if two conditions
hold simultaneously. First, the associated leakage must be statistically dependent
on at least one secret input, and second, it must be statistically independent
of any random input. Let us consider the left-hand side DFG of Fig. 3 as an
example. The DFG computes the leakage of the operation on line 9 in Fig. 2(a)
as the Hamming weight of the result of the look-up operation, which is q1.
Then, dependence from the secret input key, first condition, can be expressed as
q1 ∼ key, where ∼ denotes statistical dependence (i.e., x ∼ y means I(x; y) �= 0,
where I stands for mutual information). Similarly, independence from the random
inputs a and b, second condition, can be expressed as ¬(q1 ∼ a) ∧ ¬(q1 ∼ b).
A dual example for a bivariate leakage is shown at right-hand side DFG of
Fig. 3. The latter models the leakage q2 produced in the joint execution of
the operations on lines 8 and 9. Accordingly, q1 and q2 will be HW(r2) and
HD(r1, r2), respectively.

Now that the conditions for sensitivity have been expressed, we need a practi-
cal method for checking statistical dependence. A näıve method would be to try
all possible input values and compute the corresponding mutual information,

300 A.G. Bayrak et al.

�

�

��

�

���
�

��

�

�

	

��

�

�

�

�

��

�

�

	

��

�

����

�����
�		�	��	

�������

�����
�		�	��	

�������

�����
�		�	��	

�������

�����
�		�	��	

�������

Fig. 4. The result of this SAT query determines whether the q1 in Fig. 3 is randomized
(when SAT?= 1) or not (when SAT?= 0). In this example, the answer is true and a
satisfying assignment is (a, b, key, pt) = (0, 0, 0, 0).

however, the sizes of the input bits of cryptographic algorithms are usually high
(hundreds to thousands of bits), which make this method computationally in-
feasible.

Instead, inspired by the functional verification and logic synthesis communi-
ties, we propose to formulate our problem as a satisfiability (SAT) query and
use SAT solvers to solve it. Thereby, we can leverage the latest advances in SAT
technology, a hot area of research in the last decade (e.g., annual SAT com-
petitions [3]), to speed up our analysis. Actually, the statistical dependence is
analogous to the don’t-care analysis of logic synthesis, since the input variables of
the program are assumed to be, by definition, pairwise statistically-independent.
An intermediate variable is statistically independent of an input variable if and
only if the input variable is a don’t-care for the intermediate variable. Such don’t-
care analysis have been successfully formulated as SAT queries in the context of
logic synthesis [24].

Our solution initially checks the second condition (i.e., randomness) of the
sensitivity as described in Algorithm 1. We check whether a bit is a don’t-care
for a particular leakage by using a SAT query that confirms whether setting the
bit to 0 or to 1 can ever produce different results; if it can not, then the bit is a
don’t care. However, if we are able to find even a single bit that is not a don’t-care,
we conclude that the leakage depends on some random variables. Fig. 4 shows
the query constructed based on Algorithm 1 to check the randomness for the q1
of Fig 3, namely ¬(q1 ∼ a)∧¬(q1 ∼ b). The SAT solver reports true, confirming
that q1 is randomized and thus not sensitive. In the hypothetical case where the
solver returns false, a second query is constructed with secret inputs instead of
random ones, in order to determine whether there is any dependency to a secret
variable, namely q1 ∼ key. If this second query returns true, the operation is
sensitive; otherwise, it is insensitive.

Sleuth: Automated Verification of Software Power Analysis Countermeasures 301

Algorithm 1. Determine whether an output q depends on any random bit

Input: G : the DFG whose output is q
Input: IR : the input bits of G which are random
Returns: a Boolean which determines whether G depends on any random bit

for all i ∈ IR do
G0 ← copy of G with i set to 0
G1 ← copy of G with i set to 1
if SAT(G0 �= G1) then

return true
end if

end for
return false

4 The Sleuth

In order to automate the methodology mentioned in Section 3, we developed
Sleuth. We implemented Sleuth in the back-end of the LLVM [2] (Low-Level
Virtual Machine) compiler; LLVM is an open-source compiler infrastructure that
gained a significant popularity in the research community and industry in the last
decade. Sleuth works on the input implementations given in LLVM-assembly
language, which makes Sleuth compatible with many off-the-shelf tools. An im-
plementation compiled for another embedded platform can easily be converted
into LLVM-assembly; for instance, we implemented a straightforward conversion
script from AVR- to LLVM-assembly. A high-level (C, C++, Python, etc.) im-
plementation can be compiled into LLVM-assembly using off-the-shelf compilers,
such as llvm-gcc or clang, if the user wants to analyze some high-level prop-
erties, such as verifying a given protection scheme.

4.1 User Interaction

Sleuth needs four inputs: the user’s original implementation without any an-
notations, the security type annotations, the leakage model implementation, and
the list of operations (or operation vectors) to be checked for sensitivity.

Original Implementation: The users provide their implementation in LLVM-
assembly.

Security Type Annotations: The users provide a file that includes the security
types of all the inputs. Sleuth reports an error to the users for the inputs that
do not have any security type. This file consists of lines of the form xi : ti, where
xi is an input variable with type ti (e.g., key : secret).

Leakage Model: The definition of the leakage model is used by the sensitiv-
ity detection algorithm mentioned in Section 3.2. The user has the flexibility
to define a univariate (e.g., HW) or a multivariate (e.g., [15,17]) leakage model.
The function takes an operation vector as parameter, which is used for defining

302 A.G. Bayrak et al.

operator-dependent (e.g., the leakage of a multiplication operation could be de-
fined differently than of a Boolean operation) or operand-dependent (e.g., the
leakage might consider only some operands) leakage models; see Appendix A
for samples. Nothing in the fundamental idea of this paper (Sections 2 and 3)
prevents the implementation of leakage models that consider device-specific fea-
tures or physical concerns (pipelining, caches, etc.); however, the challenge is
in implementing such a leakage model and a software interface that conveys all
the required information on the program and yet allows [experienced] users to
capture the physical phenomenon in a practical, realistic, and somehow intuitive
way. Thus, in this first version of the Sleuth we have a restricted interface to
implement simple yet most popular (e.g., HW, HD) and effective leakage models;
future versions might support implementing advanced physical features.

Queried Operations: The user can specify to Sleuth which leakages they
want to analyze. A query file consists of any number of lines having the form
<num s_begin:s_end {all,consecutive}>, where num represents the or-
der of relations to analyzed (i.e., univariate, bivariate, etc.), s_begin:s_end
represents the scope of the analysis (e.g., between lines 10 and 20), and all/
consecutive represents whether the analysis should be performed for all op-
erations or only between pairwise consecutive ones (i.e., only valid in case of
multivariate leakages). The users can specify as many such queries as they want
ensuring the feasibility of the number of queries. Some results on the execution
time of the queries in typical implementations are provided in Section 5.

At the end of its run, Sleuth reports the result of each query; a result is
either successful, meaning that there is no sensitive leakage for the given
query, or failed along with the operations causing the sensitive leakages. The
user also has access to the DFGs generated for the sensitivity queries, which
could be exploited to analyze the underlying problem.

4.2 Implementation Details

We implemented Sleuth in the back-end of the LLVM compiler, using standard
LLVM libraries. Sleuth works in the following three fully-automated main steps:

– It first parses the original implementation in LLVM-assembly and converts
it into a straight-line program, by unrolling loops and inlining function calls,
without applying any optimizations. The user must handle any desired op-
timization before giving it as input to Sleuth, because we also analyze the
low-level relations, such as operation ordering, which could be destroyed by
the optimization.

– The straight-line program is converted to a DFG as explained in Section 3.1.
– The user specified operations are queried for sensitivity as explained in Sec-

tion 3.2, using the user specified security type annotations and leakage model.

We used KLEE [1] as a base system, especially for parsing and its interface
with SAT-solver. KLEE is a verification tool (more specifically, automatic test

Sleuth: Automated Verification of Software Power Analysis Countermeasures 303

generation tool) that also works in the back-end of the LLVM. We then imple-
mented the mentioned features for generating the DFG and the SAT queries
from the user-provided inputs.

5 Experimental Studies

In this section, we present some examples on how Sleuth can automatically
detect sensitive leakages. We first give examples on different implementations of
state-of-the-art countermeasures and present some potential programming pit-
falls, which can be easily detected by Sleuth. Afterwards, we show that Sleuth
can also be used to analyze the high-level algorithmic behavior of the counter-
measures by showing the vulnerabilities of well-known Boolean to arithmetic
mask conversion algorithms.

5.1 High-Level Code to Assembly Compilation Problems

As we motivate in the introduction and show in Fig. 1, randomly masking the key
before operating with the plaintext is a common method for protection. However,
if we implement our masking scheme in a high-level language and compile it for
our target device using an off-the-shelf compiler, we might not always get the
desired behavior in the low level assembly code. Figure 5 shows an example.
Although we force the priority of the xor operation between key and mask in
the C code using parentheses (line 9), our AVR port of the gcc compiler does
the opposite (see lines 9-13 of assembly code): the xor (eor in AVR-assembly)
between key and pt is performed first. This is not a bug from the functionality
perspective since the xor operation is associative and the compiler made an
arbitrary choice during one of the optimization phases. However, it is a serious
problem from the security perspective: we are not doing a proper masking in the
given assembly code, because the operation on line 11 leaks sensitive information
(plaintext xor key). As shown by Mangard et al. [22], such an operation might
be vulnerable to standard DPA attacks. Note that, although this is a small
example, it is not a simple or local problem. Key whitening (plaintext xor key)
is the first operation in many cryptographic algorithms and these key whitening
operations (i.e., assembly operations on line 11, 17 and fourteen more lines for
each iteration of the loop) might render the whole implementation vulnerable
against DPA attacks even if the rest of the implementation is perfectly masked.
Sleuth is able to detect this problem easily. We converted the mentioned

AVR assembly into LLVM assembly using a simple conversion script we imple-
mented. The ordering of the operations was preserved during the conversion. We
created the necessary files for Sleuth to define the types of the variables and
the scope of the queries. Finally, we used the Hamming weight univariate leakage
model. Sleuth was able to spot all of the sixteen sensitive xor operations (for
each iteration of the loop) in 0.02 seconds on a standard desktop computer.

Similar problems can arise in later operations of an implementation; these are
harder to detect because of the size of the problem and variety of the types of

304 A.G. Bayrak et al.

1 unsigned char st[16];
2 unsigned char key[16];
3 unsigned char pt[16];
4 unsigned char mask[16];
5 void ARK() {
6 unsigned char i;
7 for (i=0 ; i<16 ; i++) {
8 st[i] = pt[i] ˆ
9 (key[i] ˆ mask[i]);

10 }
11 }

1 . text
2 . global ARK
3 . type

ARK, @function
4 ARK:
5 /∗ pro logue : f unc t i on ∗/
6 /∗ frame s i z e = 0 ∗/
7 /∗ s tack s i z e = 0 ∗/
8 . L s t ack u sage = 0
9 lds r24 , key

10 lds r25 , pt
11 eor r24 , r25
12 lds r25 , mask
13 eor r24 , r25
14 sts st , r24
15 lds r24 , key+1
16 lds r25 , pt+1
17 eor r24 , r25
18 . . .

Fig. 5. A masked key whitening operation in C and the corresponding AVR-assembly
code compiled with avr-gcc -O3 -S with avr-gcc-4.5.3. The ordering of the xor
operations are not preserved because of its associative property.

operations. To show the effectiveness of Sleuth in mixture of arithmetic/logic
and array handling operations, we implemented a protected round of AES which
uses the Boolean masking algorithm of Herbst et al. [19], and tested it. There
are a couple of points the designer must be extremely careful about when imple-
menting this algorithm. For example, an improper implementation of the mask
changing routine between the SubBytes and MixColumns can cause a sensitive
leakage. This routine, briefly, changes the mask of row i of state matrix of AES
from M ′ to Mi. In order to do this, we can simply xor all state variables in row i
with M ′ ⊕Mi. However, the ordering of these xor operations is important; if we
perform an xor operation between a state variable and M ′ before xor’ing with
Mi, we will cancel the mask and reveal the original (unmasked) value of variable.
This is highly likely when converting from a high-level implementation to the
assembly as we show above or when programming manually. We intentionally
inserted such bugs and ran Sleuth to see its performance.
Sleuth was able to detect all of such bugs in 430 seconds while creating

a table of size 16MB for the S-Box. Considering the value of the feedback we
get, this amount of time and memory appears quite reasonable. Note that we
do not give any implementation specific parameter to Sleuth; it automatically
analyzes the code, builds the graphs and LUTs and uses them to detect all
sensitive operations for the given leakage model without even knowing that the
masking countermeasure is applied.

5.2 Consecutive Execution Related Problems

In the previous examples, it is enough to use a univariate leakage model to detect
the DPA-vulnerability of the individual operations. Sometimes, although each
of the individual operations are insensitive, the consecutive execution of two (or
more) of them might cause a sensitive leakage. Let us give an example.

Sleuth: Automated Verification of Software Power Analysis Countermeasures 305

1 // swap st[2] with st[10]
2 tmp = st[2];
3 st[2] = st[10];
4 st[10] = tmp;

This is a standard way of implementing the ShiftRows phase of AES for the
third row of its state matrix. If we implement the Boolean masking algorithm
of Herbst et al. [19], the input masks of st[2] and st[10] will be identical;
i.e., original unmasked values are st_orig[2] = st[2] ⊕ m and st_orig[10]

= st[10] ⊕ m, respectively. Since the ShiftRows phase propagates the masks
without changing them, we can argue that if there is no information leaked
before these operations, no information will be leaked here. However, this highly
depends on the leakage (e.g., power consumption) characteristic of the target
device and how we implement these operations at a low level. The corresponding
optimized AVR-assembly implementation generated by avr-gcc is as follows:

1 lds r24,st+2
2 sts tmp,r24
3 lds r25,st+10
4 sts st+2,r25
5 sts st+10,r24

This code might be problematic when it is executed on a device whose power con-
sumption characteristic is dominated by bit switching activity, as is the case with
most of the state-of-the-art embedded devices. The power consumption of such
a device is correlated with the Hamming distance of the number of bit switches
between two consecutively executed operations [22]. Hence, consecutively execut-
ing the operations on lines 2 and 3 will have a power consumption value that is
correlated with HD(st[2],st[10]) = HD(st_orig[2]⊕m, st_orig[10]⊕m) =
HW(st_orig[2]⊕st_orig[10]). Note that this value does not depend on the
mask m and only depends on the original, key dependent and non-randomized,
values; hence, it is sensitive.

As a result, it is not only the individual operations themselves that can cause
a sensitive leakage—the actual ordering of the operations is important, too. How-
ever, sensitive orderings could not be avoided in a standard compilation process
(e.g., using gcc) or using automated protection tools (e.g., the tool of Moss et
al. [25]) that does not consider the ordering problem specifically. Hence, we can
use Sleuth to detect whether such a problem exists in a given implementation.
We ran Sleuth to detect the sensitive bivariate leakages caused by consecutive
operations and used Hamming distance as the leakage model. Sleuth was able
to find all occurrences of the undesired consecutive operation orderings in 477 sec-
onds for this example. In addition, for the above assembly code, it discovers that
the consecutive ordering is also a problem for the operation pair on lines 4 and 5.

It is important to note that the random precharging countermeasure [29] is
based on the idea of using random operations before and after sensitive ones
to randomize the power consumption of consecutive executions. Using the same
parameters we described here, we can easily detect the problems in an imple-
mentation of it.

306 A.G. Bayrak et al.

5.3 Countermeasure Related Problems

In the previous examples, we focused on implementation-related issues. Sleuth
can also be used to analyze the protection schemes as well. As an example, we
analyze Boolean to arithmetic masking conversion algorithms by Messerges [23]
and Goubin [18] (shown in Fig. 6 in Appendix B for quick reference). They both
convert a Boolean masked variable into arithmetic masked version, i.e., if x′ is
the Boolean masked value of x and the mask is rx, they find the value A such
that x′ ⊕ rx = A + rx.

The algorithm of Messerges [23] reveals either the original unmasked values
(e.g., x) or the bitwise-negation of them (e.g., x) during the intermediate calcu-
lations, based on the value of a random bit. The assumption is that the attacker
would not know the value of the random bit; hence, any bit of an intermedi-
ate value (e.g., x or x) is equally likely to be 0 or 1. The argument is valid
when we consider each bit of x independently; however, as pointed by Coron
and Goubin [12] later, the probability distribution of xor of last two bits of x or
x is independent of the random value, i.e., x[1] ⊕ x[0] = x[1] ⊕ x[0] always holds

(where x[i] represents the ith bit of x). Hence, an attacker can use this power
model (xor of two last bits of A) to successfully attack an implementation of this
method. We implemented this conversion algorithm in C. Sleuth was able to
detect the problem in about 0.02 seconds using different leakage models (e.g.,
xor of last two bits of the result, parity of the result, etc.).

Similarly, we can use Sleuth to analyze the Boolean to arithmetic mask
conversion algorithm of Goubin [18]. In this experiment, we ran our analysis on
all pairs of operations to find out the possible second-order attack points against
this algorithm. Sleuth reported us that a second-order attack might be possible
when we use the Hamming distance of the results of the operations (i.e., on lines
3 and 6, HD(x′ ⊕R,R⊕ rx) = HW(x′ ⊕R ⊕R ⊕ rx) = HW(x′ ⊕ rx) = HW(x)
only depends on the secret value x). Sleuth was again able to find this bivariate
sensitive leakage in 0.02 seconds.

Note that, using the correct leakage model is important to get the desired
result; however, we support an extensible library of different leakage models,
thus, less experienced users could conservatively try them all without knowledge
of the exact model to be used.

6 State of the Art

Automatic generation and verification of secure systems is becoming increasingly
popular in the security and design automation communities. The first attempts
concerning the automatic generation of robust implementations began soon af-
ter the introduction of side-channel attacks [16,21,26] and the countermeasures
against them. Initially, the research community focused mainly on the automa-
tion for hardware countermeasures, in the synthesis [27,30] or placement and
routing phases [6,31]. More recently, automation has begun to be adopted in
software countermeasures. Firstly, Bayrak et al. [7] presented a general frame-
work which identifies sensitive instructions against power analysis attacks and

Sleuth: Automated Verification of Software Power Analysis Countermeasures 307

protects them by applying state-of-the-art countermeasures; in their study, ran-
dom precharging was used. Soon after, Agosta et al. [4] proposed an automatic
code morphing technique and Moss et al. [25] introduced a type system for au-
tomatic application of Boolean masking. These works focused mainly on power
analysis attacks, whereas Cleemput et al. [10] proposed compiler mitigations for
timing attacks. Our verification framework can be used to verify the output of
some of these automatically-generated protected implementations. For example,
Moss et. al [25] assumed that the information leakage is independent for each
executed instruction. However, as shown in Section 5.2, consecutive execution
of operations that are independently insensitive might cause vulnerabilities even
against first-order attacks, and Sleuth can detect such problems.

State-of-the-art automatic verification methods have mainly focused on infor-
mation flow analysis and timing vulnerability detection. Information-flow analy-
sis techniques aim to detect whether there is any transfer of information that is
undesired (such as a flow from a high-security variable to a low-security one) [28].
Such techniques have been applied to several areas, such as network security [20],
operating system security [13] and gate-level hardware security [32]. These tech-
niques usually do not cover side-channels. Ford et al. [14] proposed an informa-
tion flow technique for detecting timing side-channels. Similarly, Vieira proposed
a formal verification methodology for timing channels [33]. In this work, instead,
we focused more on power side-channels and showed that we can successfully de-
tect potential programming pitfalls in power analysis software countermeasure
implementations.

7 Conclusions

In this work, we address, for the first time, the automated verification of power
analysis countermeasures. We propose a fully-automated methodology based on
converting a given implementation into a DFG and solving a set of satisfia-
bility problems on this graph. We showed that this methodology is capable of
detecting first-order or higher-order power analysis vulnerabilities in both the
countermeasure itself and an improper implementation of it. We implemented
the proposed methodology in a tool, Sleuth, which we used to verify several
real world software routines aimed to be resistant against power analysis at-
tacks. Sleuth demonstrates the effectiveness of our approach by automatically
detecting, in a reasonable amount of time, not only the implementation related
security bugs (such as improper ordering of instructions and undesired mask
cancellation in an intermediate calculation), but also the hidden problems in the
countermeasure itself, such as the ones in the Boolean to arithmetic masking
conversion algorithm proposed by Messerges [23].

Although the presented SAT-based methodology is generic and powerful, the
success of an analysis depends on the reliability of the used leakage model; this is
a common problem in any power analysis based work that uses a leakage model.
The limitation of the tool (not the proposed SAT-based methodology) is that
the software interface has limited capabilities to define device-specific features;
we are planning to improve the interface in future versions.

308 A.G. Bayrak et al.

In terms of scalability, the usefulness of the tool is limited by the efficiency
of the SAT-solver. However, almost any other verification tool in any domain
(hardware, software) suffers from the same limitation, and yet verification tools
are invaluable tools to designers. The initial results are promising: currently we
detect all problems in an AES round within a few minutes, whereas a brute-force
approach is intractable. There is vast literature on how to improve efficiency, po-
tentially also trading off some accuracy; future research direction might explore
such potential improvements.

References

1. The KLEE symbolic virtual machine, http://klee.llvm.org
2. The LLVM compiler infrastructure, http://llvm.org
3. SAT competitions, http://www.satcompetition.org
4. Agosta, G., Barenghi, A., Pelosi, G.: A code morphing methodology to automate

power analysis countermeasures. In: Design Automation Conference, DAC 2012,
pp. 77–82 (2012)

5. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers – Principles, Techniques,
& Tools. Pearson (2006)

6. Badel, S., Guleyupoglu, E., Inac, O., Martinez, A.P., Vietti, P., Grkaynak, F.K.,
Leblebici, Y.: A generic standard cell design methodology for differential circuit
styles. In: Design, Automation and Test in Europe, DATE 2008, pp. 843–848 (2008)

7. Bayrak, A.G., Regazzoni, F., Brisk, P., Standaert, F.X., Ienne, P.: A first step
towards automatic application of power analysis countermeasures. In: Design Au-
tomation Conference, DAC 2011, pp. 230–235 (June 2011)

8. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

9. Bohn, R.E., Short, J.E.: How much information? 2009 Report on American con-
sumers (December 2009)

10. Cleemput, J.V., Coppens, B., de Sutter, B.: Compiler mitigations for time attacks
on modern x86 processors. ACM Transactions on Architecture and Code Opti-
mization 8(4), 23:1–23:20 (2012)

11. Computer Aided Cryptography Engineering (CACE European Project),
http://www.cace-project.eu

12. Coron, J.-S., Goubin, L.: On Boolean and arithmetic masking against differen-
tial power analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 231–237. Springer, Heidelberg (2000)

13. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: USENIX Conference on Operating Systems Design and Im-
plementation, pp. 1–6 (2010)

14. Ford, B.: Plugging side-channel leaks with timing information flow control. arXiv
preprint arXiv:1203.3428 (2012)

15. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. Cryptology ePrint Archive, Report 2010/523 (2010),
http://eprint.iacr.org/

16. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete re-
sults. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 251–261. Springer, Heidelberg (2001)

http://klee.llvm.org
http://llvm.org
http://www.satcompetition.org
http://www.cace-project.eu
http://eprint.iacr.org/

Sleuth: Automated Verification of Software Power Analysis Countermeasures 309

17. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting higher-order
DPA attacks. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 221–234.
Springer, Heidelberg (2010)

18. Goubin, L.: A sound method for switching between Boolean and arithmetic mask-
ing. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 3–15. Springer, Heidelberg (2001)

19. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

20. Gray III, J.W.: Toward a mathematical foundation for information flow security.
Journal of Computer Security 1(3), 255–294 (1992)

21. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

22. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer (2007)

23. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

24. Mishchenko, A., Brayton, R.K.: SAT-based complete don’t-care computation for
network optimization. In: Design, Automation and Test in Europe, DATE 2005,
pp. 412–417 (2005)

25. Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler assisted masking. In:
Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 58–75. Springer,
Heidelberg (2012)

26. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

27. Popp, T., Kirschbaum, M., Zefferer, T., Mangard, S.: Evaluation of the masked
logic style MDPL on a prototype chip. In: Paillier, P., Verbauwhede, I. (eds.)
CHES 2007. LNCS, vol. 4727, pp. 81–94. Springer, Heidelberg (2007)

28. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

29. Tillich, S., Großschädl, J.: Power analysis resistant AES implementation with in-
struction set extensions. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 303–319. Springer, Heidelberg (2007)

30. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: Design, Automation and Test in
Europe, DATE 2004, pp. 246–251 (2004)

31. Tiri, K., Verbauwhede, I.: A digital design flow for secure integrated circuits. IEEE
Transactions on CAD of Integrated Circuits and Systems 25(7), 1197–1208 (2006)

32. Tiwari, M., Wassel, H.M.G., Mazloom, B., Mysore, S., Chong, F.T., Sherwood, T.:
Complete information flow tracking from the gates up. ACM Sigplan Notices 44(3),
109–120 (2009)

33. Vieira, B.: Formal Verification of Cryptographic Software Implementations. Ph.D.
thesis, Universidade do Minho, Portugal (2012)

A Sample Leakage Definition in Sleuth

In this section, we provide a sample leakage model implementation for Sleuth.
The user can overwrite this function, and define other multivariate leakage mod-
els that consider any number of operations. The declaration of the function (in
C) is as follows:

310 A.G. Bayrak et al.

uint32_t Sleuth_leakage(Operation* ops, uint32_t sz);

where ops and sz represent the operation vector and its size, respectively. An
operation is a structure

struct Operation{
char* opname; uint32_t x; uint32_t y; uint32_t z;};

where opname is the operation name used as in LLVM-assembly (e.g., "xor")
and x, y and z are the operands (see Section 2.1 for details).

This function returns the value of the leakage in terms of the elements of the
operations. We used 32-bits leakage values; realistic measurements (e.g, using
an oscilloscope) usually have even less precision. The default univariate and
bivariate leakage model definition is as follows:

// HW and HD functions return Hamming weight and distance
uint32_t Sleuth_leakage(Operation* ops, uint32_t sz) {

if (sz == 1) { // univariate leakage
return HW(ops[0].x);

} else if (sz == 2) { // bivariate leakage
return HD(ops[0].x,ops[1].x);

} // one can define a multivariate leakage similarly
return 0;

}

B Boolean to Arithmetic Masking Conversion Algorithms

The Boolean to arithmetic masking conversion algorithms of Messerges [23] and
Goubin [18] are shown in Fig. 6.

1 BooleanToArithmetic_Messerges(x′,rx) {
2 // randomly select: C = 0 or C = -1
3 B = C ⊕ rx; /* B=rx or B=rx */
4 A = B ⊕ x′; /* A=x or A=x */
5 A = A - B; /* A=x− rx or A=x− rx */
6 A = A + C; /* A=x− rx or A=x− rx */
7 A = A ⊕ C; /* A=x− rx */
8 }
9

10

1 BToA_Goubin(x′,rx){
2 // random R
3 T = x′ ⊕ R;
4 T = T - R;
5 T = T ⊕ x′;
6 R = R ⊕ rx;
7 A = x′ ⊕ R;
8 A = A - R;
9 A = A + T;

10 }

Fig. 6. Two different algorithms for switching from Boolean to arithmetic masking,
proposed by Messerges [23] and Goubin [18], respectively. They both find the value of
A such that x = x′ ⊕ rx = A + rx, where x is the unmasked original value and rx is
the random mask.

	Sleuth: Automated Verificationof Software Power Analysis Countermeasures
	1 Introduction
	2 Definition of the Power Analysis Sensitivity
	2.1 Program
	2.2 Type System
	2.3 Leakage Model
	2.4 Sensitivity

	3 Automatic Detection of the Sensitivity of Operations
	3.1 Graph Representation
	3.2 Sensitivity Detection

	4 The Sleuth
	4.1 User Interaction
	4.2 Implementation Details

	5 Experimental Studies
	5.1 High-Level Code to Assembly Compilation Problems
	5.2 Consecutive Execution Related Problems
	5.3 Countermeasure Related Problems

	6 State of the Art
	7 Conclusions
	References

