
Deadlock Checking by Data Race Detection

Ka I Pun1, Martin Steffen1, and Volker Stolz1,2

1 University of Oslo, Norway
2 United Nations University—Intl. Inst. for Software Technology, Macao, China

Abstract. Deadlocks are a common problem in programs with lock-
based concurrency and are hard to avoid or even to detect. One way for
deadlock prevention is to statically analyze the program code to spot
sources of potential deadlocks.

We reduce the problem of deadlock checking to race checking, another
prominent concurrency-related error for which good (static) checking
tools exist. The transformation uses a type and effect-based static analy-
sis, which analyzes the data flow in connection with lock handling to find
out control-points that are potentially part of a deadlock. These control-
points are instrumented appropriately with additional shared variables,
i.e., race variables injected for the purpose of the race analysis. To avoid
overly many false positives for deadlock cycles of length longer than two,
the instrumentation is refined by adding “gate locks”. The type and effect
system and the transformation are formally given. We prove our analysis
sound using a simple, concurrent calculus with re-entrant locks.

1 Introduction

Concurrent programs are notoriously hard to get right and at least two factors
contribute to this fact: Correctness properties of a parallel program are often
global in nature, i.e., result from the correct interplay and cooperation of mul-
tiple processes. Hence also violations are non-local, i.e., they cannot typically
be attributed to a single line of code. Secondly, the non-deterministic nature of
concurrent executions makes concurrency-related errors hard to detect and to
reproduce. Since typically the number of different interleavings is astronomical
or infinite, testing will in general not exhaustively cover all behavior and errors
may remain undetected until the software is in use.

Arguably the two most important and most investigated classes of concur-
rency errors are data races [3] and deadlocks [9]. A data race is the simultane-
ous, unprotected access to mutable shared data with at least one write access. A
deadlock occurs when a number of processes are unable to proceed, when waiting
cyclically for each other’s non-shareable resources without releasing one’s own
[7]. Deadlocks and races constitute equally pernicious, but complementary haz-
ards: locks offer protection against races by ensuring mutually exclusive access,
but may lead to deadlocks, especially using fine-grained locking, or are at least
detrimental to the performance of the program by decreasing the degree of par-
allelism. Despite that, both share some commonalities, too: a race, respectively

F. Arbab and M. Sirjani (Eds.): FSEN 2013, LNCS 8161, pp. 34–50, 2013.
DOI: 10.1007/978-3-642-40213-5 3,
c© IFIP International Federation for Information Processing 2013

Deadlock Checking by Data Race Detection 35

a deadlock, manifests itself in the execution of a concurrent program, when two
processes (for a race) resp. two or more processes (for a deadlock) reach respec-
tive control-points that when reached simultaneously, constitute an unfortunate
interaction: in case of a race, a read-write or write-write conflict on a shared
variable, in case of a deadlock, running jointly into a cyclic wait.

In this paper, we define a static analysis for multi-threaded programs which
allows reducing the problem of deadlock checking to race condition checking.
The analysis is based on a type and effect system [2] which formalizes the data-
flow of lock usages and, in the effects, works with an over-approximation on
how often different locks are being held. The information is used to instrument
the program with additional variables to signal a race at control points that
potentially are involved in a deadlock. Despite the fact that races, in contrast
to deadlocks, are a binary global concurrency error in the sense that only two
processes are involved, the instrumentation is not restricted to deadlock cycles
of length two. To avoid raising too many spurious alarms when dealing with
cycles of length > 2, the transformation adds additional locks, to prevent that
already parts of a deadlock cycle give raise to a race, thus falsely or prematurely
indicating a deadlock by a race.

Our approach widens the applicability of freely available state-of-the-art sta-
tic race checkers: Goblint [20] for the C language, which is not designed to
do any deadlock checking, will report appropriate data races from programs
instrumented through our transformation, and thus becomes a deadlock checker
as well. Chord [15] for Java only analyses deadlocks of length two for Java’s
synchronized construct, but not explicit locks from java.util.concurrent, yet
through our instrumentation reports corresponding races for longer cycles and
for deadlocks involving explicit locks.

The remainder of the paper is organised as follows. Section 2 presents syntax
and operational semantics of the calculus. Afterwards, Section 3 formalizes the
data flow analysis in the form of a (constraint-based) effect system. The obtained
information is used in Sections 4 and 5 to instrument the program with race
variables and additional locks. The sections also prove the soundness of the
transformation. We conclude in Section 6 discussing related and future work.

2 Calculus

In this section we present the syntax and (operational) semantics for our cal-
culus, formalizing a simple, concurrent language with dynamic thread creation
and higher-order functions. Locks likewise can be created dynamically, they are
re-entrant and support non-lexical use of locking and unlocking. The abstract
syntax is given in Table 1. A program P consists of a parallel composition of
processes p〈t〉, where p identifies the process and t is a thread, i.e., the code
being executed. The empty program is denoted as ∅. As usual, we assume ‖ to
be associative and commutative, with ∅ as neutral element. As for the code we
distinguish threads t and expressions e, where t basically is a sequential compo-
sition of expressions. Values are denoted by v, and let x:T = e in t represents

36 K. I. Pun, M. Steffen, and V. Stolz

Listing 1. Dining Philosophers

let l1 = new L; . . .; ln = new L /* create all locks */

phil = fun F(x,y) . (x.lock; y.lock; /* eat */

y.unlock; x.unlock; /* think */

F(x,y))

in spawn(phil(l1,l2)); . . . ; spawn(phil(ln,l1))

Table 1. Abstract syntax

the sequential composition of e followed by t, where the eventual result of e, i.e.,
once evaluated to a value, is bound to the local variable x. Expressions, as said,
are given by e, and threads are among possible expressions. Further expressions
are function application, conditionals, and the spawning of a new thread, writ-
ten spawn t. The last three expressions deal with lock handling: new L creates a
new lock (initially free) and gives a reference to it (the L may be seen as a class
for locks), and furthermore v. lock and v. unlock acquires and releases a lock,
respectively. Values, i.e., evaluated expressions, are variables, lock references,
and function abstractions, where we use fun f :T1.x:T2.t for recursive function
definitions. Note that the grammar insists that, e.g., in an application, both the
function and the arguments are values, analogously when acquiring a lock, etc.
This form of representation is known as a-normal form [11].

Listing 1 shows the paraphrased code for the well-known Dining Philosopher
example. The recursive body used for each philosopher is polymorphic in the
lock locations.

The grammar for types, effects, and annotations is given Table 2, where
π represents labels (used to label program points where locks are created), r
represents (finite) sets of πs, where ρ is a corresponding variable. Labels π are
an abstraction of concrete lock references which exist at run-time (namely all
those references created at that program point) and therefore we refer to labels
π as well as lock sets r also as abstract locks. Types include basic types B
such as integers, booleans, etc., left unspecified, function types T̂1

ϕ−→ T̂2, and in
particular lock types L. To capture the data flow concerning locks, the lock types
are annotated with a lock set r, i.e., they are of the form Lr. This information will
be inferred, and the user, when using types in the program, uses types without
annotations (the “underlying” types). We write T, T1, T2, . . . as meta-variables
for the underlying types, and T̂ and its syntactic variants for the annotated types,
as given in the grammar. Furthermore, polymorphism for function definition is
captured by type schemes Ŝ, i.e., types prefix-quantified over variables ρ and
X, under some constraints. We let Y abbreviate either variables ρ or X, where

Deadlock Checking by Data Race Detection 37

Table 2. Types

X is a variable for effect which is introduced later. Any specialization of the
type scheme ∀�Y :C.T̂ has to satisfy the constraints C. For the deadlock and
race analysis we need not only information which locks are used where, but
also an estimation about the “value” of the lock, i.e., how often the abstractly
represented locks are taken.

Estimation of the lock values, resp. their change is captured in the behavioral
effects ϕ in the form of pre- and post-specifications Δ1 → Δ2. Abstract states
(or lock environments) Δ are of the form r0:n0, r1:n1, The constraint based
type system works on lock environments using variables only, i.e., the Δ are of
the form ρ0:n0, ρ1:n1, . . ., maintaining that each variable occurs at most once.
Thus, in the type system, the environments Δ are mappings from variables ρ
to lock counter values n, where n ranges from +∞ to −∞. As for the syntactic
representation of those mappings: we assume that a variable ρ not mentioned
in Δ corresponds to the binding ρ:0, e.g. in the empty mapping •. Constraints
C finally are finite sets of subset inclusions of the forms ρ 	 r and X ≥ Δ.
We assume that the user provides the underlying types, i.e., without location
and effect annotation, while our type system in Section 3 derives the smallest
possible type in terms of originating locations for each variable of lock-type L in
the program.

Semantics

Next we present the operational semantics, given in the form of a small-step
semantics, distinguishing between local and global steps (cf. Tables 3 and 4).
The local semantics deals with reduction steps of one single thread of the form
t1 −→ t2. Rule R-Red is the basic evaluation step which replaces the local
variable in the continuation thread t by the value v (where [v/x] represents
capture-avoiding substitution). The Let-construct generalizes sequential compo-
sition and rule R-Let restructures a nested let-construct expressing associativity
of that construct. Thus it corresponds to transforming (e1; t1); t2 into e1; (t1; t2).
Together with the first rule, it assures a deterministic left-to-right evaluation
within each thread. The two R-If-rules cover the two branches of the condi-
tional and the R-App-rules deals with function application (of non-recursive,
resp. recursive functions).

The global steps are given in Table 4, formalizing transitions of configurations
of the form σ � P , i.e., the steps are of the form σ � P −→ σ′ � P ′, where P is a

38 K. I. Pun, M. Steffen, and V. Stolz

Table 3. Local steps

Table 4. Global steps

program, i.e., the parallel composition of a finite number of threads running in
parallel, and σ is a finite mapping from lock identifiers to the status of each lock
(which can be either free or taken by a thread where a natural number indicates
how often a thread has acquired the lock, modelling re-entrance). Thread-local
steps are lifted to the global level by R-Lift. Rule R-Par specifies that the
steps of a program consist of the steps of the individual threads, sharing σ.
Executing the spawn-expression creates a new thread with a fresh identity which
runs in parallel with the parent thread (cf. rule R-Spawn). Globally, the process
identifiers are unique. A new lock is created by new L (cf. rule R-NewL) which
allocates a fresh lock reference in the heap. Initially, the lock is free. A lock l
is acquired by executing l.lock. There are two situations where that command
does not block, namely the lock is free or it is already held by the requesting
process p. The heap update σ +p l is defined as follows: If σ(l) = free, then
σ +p l = σ[l �→ p(1)] and if σ(l) = p(n), then σ +p l = σ[l �→ p(n + 1)]. Dually
σ −p l is defined as follows: if σ(l) = p(n + 1), then σ −p l = σ[l �→ p(n)], and
if σ(l) = p(1), then σ −p l = σ[l �→ free]. Unlocking works correspondingly, i.e.,
it sets the lock as being free resp. decreases the lock count by one (cf. rule
R-Unlock). In the premise of the rules it is checked that the thread performing
the unlocking actually holds the lock.

Deadlock Checking by Data Race Detection 39

To analyze deadlocks and races, we specify which locks are meant statically
by labelling the program points of lock creations with π, i.e., lock creation state-
ments new L are augmented to newπ L where the annotations π are assumed
unique for a given program. We assume further that the lock references l are
also labelled lρ; the labelling is done by the type system presented next.

3 Type and Effect System

Next we present a constraint-based type and effect system for information which
locks are being held at various points in the code. The analysis works thread-
locally, i.e., it analyzes the code of one thread. In Section 4, we will use this infor-
mation to determine points in a program, that globally may lead to deadlocks
and which are then instrumented appropriately by additional race variables. The
judgments of the system are of the form

Γ � e : T̂ :: ρ;C , (1)

where ρ is of the form Δ1 → Δ2. Equivalently, we write also Γ ;Δ1 � e : T̂ ::
Δ2;C for the judgment. The judgment expresses that e is of type T̂ , where
for annotated lock types of the form Lr the r expresses the potential points
of creation of the lock. The effect ϕ = Δ1 → Δ2 expresses the change in the
lock counters, where Δ1 is the pre-condition and Δ2 the post-condition (in a
partial correctness manner). The types and the effects contain variables ρ and
X; hence the judgement is interpreted relative to the solutions of the set of
constraints C. Given Γ and e, the constraint set C is generated during the
derivation. Furthermore, the pre-condition Δ1 is considered as given, whereas
Δ2 is derived.

The rules for the type system are given in Table 5. The rule TA-Var com-
bines looking up the variable from the context with instantiation, choosing fresh
variables to assure that the constraints θC, where C is taken from the vari-
able’s type scheme, are most general. As a general observation and as usual,
values have no effect, i.e., its pre- and post-condition are identical. Also lock
creation in rule TA-NewL does not have an effect. As for the flow: π labels
the point of creation of the lock; hence a new constraint is generated, requiring
ρ 	 {π} for the ρ-annotation in the lock type. The case for lock references lρ in
rule TA-LRef works analogously, where the generated constraint uses the lock
variable ρ instead of the concrete point of creation.

For function abstraction in rule TA-Abs1, the premise checks the body e of
the function with the typing context extended by x:
T �A, where the operation

T �A turns all occurrences of lock types L in T into their annotated counter-
parts using fresh variables, as well as introducing state variables for the latent
effects of higher-order functions. Also for the pre-condition of the function body,
a fresh variable is used. The recursive function is also formulated similarly. It
uses in addition a fresh variable for the post-condition of the function body,
and constraints requiring X2 ≥ Δ2 and T̂2 ≥ T̂ ′

2 are generated. For function
application (cf. rule TA-App), the subtyping requirement between the type T̂2

40 K. I. Pun, M. Steffen, and V. Stolz

Table 5. Constraint based type and effect system

of the argument and the function’s input type T̂ ′
2 is used to generate additional

constraints. Furthermore, the precondition Δ of the application is connected
with the precondition of the latent effect Δ1 and the post-condition of the latent
effect with the post-condition of the application, the latter one using again a fresh
variable. The corresponding two constraints Δ ≤ Δ1 and Δ2 ≤ X represent the
control flow when calling, resp. when returning to the call site. The treatment of
conditionals is standard (cf. rule TA-Cond). To assure that the resulting type
is an upper bound for the types of the two branches, two additional constraints
C and C ′ are generated.

The let-construct (cf. rule TA-Let) is combined with the rule for general-
ization, such that for checking the body e2, the typing context is extended by
a type scheme Ŝ1 which generalizes the type T̂1 of expression e1. The close-
operation is defined as close(Γ,C, T̂) = ∀�Y :C.T̂ where the quantifier binds all
variables occurring free in C and T̂ but not in Γ . Spawning a thread in rule
TA-Spawn has no effect, where the premise of the rule checks well-typedness of
the thread being spawned. The last two rules deal with locking and unlocking,

Deadlock Checking by Data Race Detection 41

simply counting up, resp. down the lock counter, setting the post-condition to
over-approximate Δ⊕ ρ, resp. Δ� ρ.

The type system is basically a single-threaded analysis. For subject reduction
later and soundness of the analysis, we also need to analyse processes running in
parallel. The definition is straightforward, since a global program is well-typed
simply if all its threads are. For one thread, p〈t〉 : p〈ϕk;C〉, if � t : T̂ :: ϕ;C for
some type T̂ . We will abbreviate p1〈ϕ1;C1〉 ‖ . . . ‖ pk〈ϕk;Ck〉 by Φ.

Constraints C come in two forms: r � ρ and X1 ≤ X2 ⊕ (ρ:n) resp. X1 ≤
X2 � (ρ:n). We consider both kinds of constraints as independent, in particular
a constraint of the form X1 ≤ X2 ⊕ (ρ:n) is considered as a constraint between
the two variables X1 and X2 and not as a constraint between X1, X2, and
ρ. Given C, we write Cρ for the ρ-constraints in C and CX for the constraints
concerning X-variables. Solutions to the constraints are ground substitutions; we
use θ to denote substitutions. analogous to the distinction for the constraints,
we write θρ for substitutions concerning the ρ-variables and θX for substitutions
concerning the X-variables. A ground θρ-substitution maps ρ’s to finite sets
{π1, . . . , πn} of labels and a ground θX -substitution maps X’s to Δ’s (which are
of the form ρ1:n1, . . . , ρk:nk); note that the range of the ground θX -substitution
still contains ρ-variables. We write θρ |= C if θρ solves Cρ and analogously
θX |= C if θX solves CX . For a θ = θXθρ, we write θ |= C if θρ |= C and
θX |= C. Furthermore we write C1 |= C2 if θ |= C1 implies θ |= C2, for all
ground substitutions θ. For the simple super-set constraints of the form ρ 	 r,
constraints always have a unique minimal solution. Analogously for the CX -
constraints. A heap σ satisfies an abstract state Δ, if Δ over-approximates the
lock counter for all locks in σ: Assuming that Δ does not contain any ρ-variables
and that the lock references in σ are labelled by π’s, σ |= Δ if

∑
π∈r σ(lπ) ≤ Δ(r)

(for all r in dom(Δ)). Given a constraint set C, an abstract state Δ (with lock
references lρ labelled by variables) and a heap σ, we write σ |=C Δ (“σ satisfies
Δ under the constraints C”), iff θ |= C implies θσ |= θΔ, for all θ. A heap σ
satisfies a global effect Φ (written σ |= Φ), if σ |=Ci

Δi for all i ≤ k where
Φ = p1〈ϕ1;C1〉 ‖ . . . ‖ pk〈ϕk;Ck〉 and ϕi = Δi −→ Δ′

i.

Soundness

Next we prove soundness of the analysis wrt. the semantics. The core of the proof
is the preservation of well-typedness under reduction (“subject reduction”). The
static analysis does not only give back types (as an abstraction of resulting val-
ues) but also effects (in the form of pre- and post-specification). While types are
preserved, we cannot expect that the effect of an expression remains unchanged
under reduction. As the pre- and post-conditions specify (upper bounds on) the
allowed lock values, the only steps which change are locking and unlocking steps.
To relate the change of pre-condition with the steps of the system we assume the
transitions to be labelled. Relevant is only the lock set variable ρ; the identity p of
the thread, the label π and the actual identity of the lock are not relevant for the
formulation of subject reduction, hence we do not include that information in the
labels here. The steps for lock-taking are of the form σ1 � p〈t1〉 p〈ρ.lock〉−−−−−→ σ2 � p〈t2〉;

42 K. I. Pun, M. Steffen, and V. Stolz

Fig. 1. Subject reduction (case of unlocking analogous)

unlocking steps analogously are labelled by ρ. unlock and all other steps are
labelled by τ , denoting internal steps. The formulation of subject reduction can
be seen as a form of simulation (cf. Figure 1): The concrete steps of the system
—for one process in the formulation of subject reduction— are (weakly) simu-
lated by changes on the abstract level; weakly, because τ -steps are ignored in the
simulation. To make the parallel between simulation and subject reduction more
visible, we write Δ1

ρ.lock−−−→ Δ2 for Δ2 = Δ1 ⊕ ρ (and analogously for unlocking).

Lemma 1. (Subject reduction) Assume Γ � P ‖ p〈t1〉 :: Φ ‖ p〈Δ1 →
Δ2;C1〉, and furthermore θ |= C1 for some ground substitution and σ1 |= θΔ1

and σ1 |= Φ.

1. σ1 � P ‖ p〈t1〉 p〈τ〉−−→ σ2 � P ‖ p〈t2〉, then Γ � P ‖ p〈t2〉 :: Φ ‖ p〈Δ′
1 −→

Δ′
2, C2〉 where C1 � Δ1 ≤ Δ′

1 and C1 � Δ′
2 ≤ Δ2. Furthermore, C1 |= C2

and σ2 |= θΔ1 and σ2 |= Φ.
2. σ1 � P ‖ p〈t1〉 p〈ρ.lock〉−−−−−→ σ2 � P ‖ p〈t2〉, then Γ � P ‖ p〈t2〉 :: Φ ‖ p〈Δ′

1 −→
Δ2, C2〉 where C1 � Δ1 ⊕ ρ ≤ Δ′

1 and C1 � Δ′
2 ≤ Δ2. Furthermore C1 |= C2

and σ2 |= θΔ′
1 and σ2 |= Φ.

3. σ1 � P ‖ p〈t1〉 p〈ρ.unlock〉−−−−−−→ σ2 � P ‖ p〈t2〉, then Γ � P ‖ p〈t2〉 :: Φ ‖ p〈Δ′
1 −→

Δ2, C2〉 where C1 � Δ1 � ρ ≤ Δ′
1 and C1 � Δ′

2 ≤ Δ2. Furthermore C1 |= C2

and σ2 |= θΔ′
1 and σ2 |= Φ.

The property of the lemma is shown pictorially in Figure 1.

As an immediate consequence, all configurations reachable from a well-typed
initial configuration are well-typed itself. In particular, for all those reachable
configurations, the corresponding pre-condition (together with the constraints)
is a sound over-approximation of the actual lock counters in the heap.

Corollary 1. (Soundness of the approximation) Let σ0 � p〈t0〉 be an initial
configuration. Assume further Γ � p〈t0〉 :: p〈Δ0 → Δ2;C〉 and θ |= C and where
Δ0 is the empty context. If σ0 � p〈t0〉 −→ ∗σ � P , then Γ � P :: Φ, where
Φ = p1〈Δ1 → Δ′

1;C1〉 ‖ . . . ‖ pk〈Δk → Δ′
k;Ck〉 and where σ |= θΔi (for all i).

4 Race Variables for Deadlock Detection

Next we use the information inferred by the type system in the previous section
to locate control points in a program which potentially give rise to a deadlock.

Deadlock Checking by Data Race Detection 43

As we transform the given program after analyzing it, for improved precision, we
assume that in the following all non-recursive function applications are instanti-
ated/ inlined: a unique call-site per function ensures the most precise type- and
effect information for that function, and correspondingly the best suitable instru-
mentation. The polymorphic type system gives a context-sensitive representa-
tion, which can then be instantiated per call-site. Note that this way, we need to
analyze only the original program, and each function in there once, although for
the next step, we duplicate methods. Recursive functions are instantiated once
with (minimal) effects capturing all call-sites.

Those points are instrumented appropriately with assignments to additional
shared variables, intended to flag a race. To be able to do so, we slightly need
to extend our calculus. The current formulation does not have shared variables,
as they are irrelevant for the analysis of the program, which concentrates on the
locks. In the following we assume that we have appropriate syntax for accessing
shared variables; we use z, z′, z1, . . . to denote shared variables, to distinguish
them from the let-bound thread-local variables x and their syntactic variants. For
simplicity, we assume that they are statically and globally given, i.e., we do not
introduce syntax to declare them. Together with the lock references, their values
are stored in σ. To reason about changes to those shared variables, we introduce
steps of the form p〈!z〉−−−→ and

p〈?z〉−−−→, representing write resp. read access of process p
to z. Alternatives to using a statically given set of shared variables, for instance
using dynamically created pointers to the heaps are equally straightforward to
introduce syntactically and semantically, without changing the overall story.

4.1 Deadlocks and Races

We start by formally defining the notion of deadlock used here, which is fairly
standard (see also [16]): a program is deadlocked, if a number of processes are
cyclically waiting for each other’s locks.

Definition 1. (Waiting for a lock) Given a configuration σ � P , a process
p waits for a lock l in σ � P , written as waits(σ � P, p, l), if (1) it is not the
case that σ � P

p〈l.lock〉−−−−→, and furthermore (2) there exists σ′ s.t. σ′ � P
p〈l.lock〉−−−−→

σ′′ � P ′. In a situation without (1), we say that in configuration σ � P , process
p tries for lock l (written tries(σ � P, p, l)).
Definition 2. (Deadlock) A configuration σ � P is deadlocked if σ(li) =
pi(ni) and furthermore waits(σ � P, pi, li+k1) (where k ≥ 2 and for all 0 ≤ i ≤
k− 1). The +k is meant as addition modulo k. A configuration σ � P contains
a deadlock, if, starting from σ � P , a deadlocked configuration is reachable;
otherwise it is deadlock free.

Thus, a process can only be deadlocked, i.e., being part of a deadlocked
configuration, if p holds at least one lock already, and is waiting for another
one. With re-entrant locks, these two locks must be different. Independent from
whether it leads to a deadlock or not, we call such a situation —holding a lock

44 K. I. Pun, M. Steffen, and V. Stolz

and attempting to acquire another one— a second lock point. More concretely,
given a configuration, where we abbreviate the situation where process p holds
lock l1 and tries l2 by slp(σ � P)l1→l2

p . The abstraction in the analysis uses
program points π to represent concrete locks, and the goal thus is to detect in
an approximate manner cycles using those abstractions π. As stated, a concrete
deadlock involves a cycle of processes and locks. We call an abstract cycle ΔC

a sequence of pairs �p:�π with the interpretation that pi is holding πi and wants
πi+1 (modulo the length of the cycle). Next we fix the definition for being a
second lock point. At run-time a process is at a second lock point simply if it
holds a lock and tries to acquire a another, different one.

Definition 3. (Second lock point (runtime)) A local configuration σ � p〈t〉
is at a second point (holding l1 and attempting l2, when specific), written slp(σ �
p〈t〉)l1→l2 , if σ(l1) = p(n) and tries(σ � p〈t〉, l2). Analogously for abstract locks
and heaps over those: slp(σ � p〈t〉)π1→π2 , if σ(π1) = p(n) and tries(σ � p〈t〉, π2).
Given an abstract cycle ΔC a local configuration is at a second lock point of
ΔC , if slp(σ � p〈t〉)π1→π2 where, as specified by ΔC , p holds π1 and wants π2.
Analogously we write for global configurations e.g., slp(σ � P)π1→π2

p , where p is
the identity of a thread in P .

Ultimately, the purpose of the static analysis is to derive (an over-
approximation of the) second lock points as a basis to instrument with race
variables. The type system works thread-locally, i.e., it derives potential sec-
ond lock points per thread. Given a static thread, i.e., an expression t without
run-time syntax, second lock points are control points where the static analysis
derives the danger of attempting a second lock. A control-point in a thread t
corresponds to the occurrence of a sub-expression; we write t[t′] to denote the
occurrence of t′ in t. As usual, occurrences are assumed to be unique.

Definition 4. (Second lock point (static)) Given a static thread t0[t], a
process identifier p and Δ0 �p t0 : Δ, where Δ0 = •. The occurrence of t in t0
is a static slp if:

1. t = let x:L{...,π,...} = v. lock in t′.
2. Δ1 �p t :: Δ2, for some Δ1 and Δ2, occurs in a sub-derivation of Δ0 �

t0 :: Δ.
3. there exists π′ ∈ Δ1 s.t. ΔC � p has π′, and ΔC � p wants π .

Assume further σ0 � p〈t0〉 −→∗ σ � p〈t〉. We say σ � p〈t〉 is at a static second
lock point if t occurs as static second lock point in t0.

Lemma 2. (Static overapproximation of slp’s) Given ΔC and σ � P be a
reachable configuration where P = P ′ ‖ p〈t〉 and where furthermore the initial
state of p is p〈t0〉. If σ � p〈t〉 is at a dynamic slp (wrt. ΔC), then t is a static
slp (wrt. ΔC).

Proof. A direct consequence of soundness of the type system (cf. Corollary 1).
��

Deadlock Checking by Data Race Detection 45

Next we define the notion of race. A race manifests itself, if at least two
processes in a configuration attempt to access a shared variables at the same
time, where at least one access is a write-access.

Definition 5. (Race) A configuration σ � P has a (manifest) race, if σ �
P

p1〈!x〉−−−→, and σ � P
p2〈!x〉−−−→ or σ � P

p2〈?x〉−−−−→, for two different p1 and p2. A
configuration σ � P has a race if a configuration is reachable where a race
manifests itself. A program has a race, if its initial configuration has a race; it
is race-free else.

Race variables will be added to a program to assure that, if there is a dead-
lock, also a race occurs. More concretely, being based on the result of the sta-
tic analysis, appropriate race variables are introduced for each static second
lock points, namely immediately preceding them. Since static lock points over-
approximate the dynamic ones and since being at a dynamic slp is a necessary
condition for being involved in a deadlock, that assures that no deadlock remains
undetected when checking for races. In that way, that the additional variables
“protect” the second lock points.

Definition 6. (Protection) A property ψ is protected by a variable z starting
from configuration σ � p〈t〉, if σ � p〈t〉 −→∗ a−→ σ′ � p〈t′〉 and ψ(p〈t′〉) implies
that a =!z. We say, ψ is protected by z, if it is protected by z starting from an
arbitrary configuration.

Protection, as just defined, refers to a property and the execution of a single
thread. For race checking, it must be assured that the local properties are pro-
tected by the same, i.e., shared variable are necessarily and commonly reached.
That this is the case is formulated in the following lemma:

Lemma 3. (Lifting) Assume two processes p1〈t1〉 and p2〈t2〉 and two thread-
local properties ψ1 and ψ2 (for p1 and p2, respectively). If ψ1 is protected by x
for p1〈t1〉 and ψ2 for p2〈t2〉 by the same variable, and a configuration σ � P with
P = p1〈t1〉 ‖ p2〈t2〉 ‖ P ′′ is reachable from σ′ � P ′ such that ψ1 ∧ψ2 holds, then
σ′ � P ′ has a race.

4.2 Instrumentation

Next we specify how to transform the program by adding race variables. The
idea is simple: each static second lock point, as determined statically by the type
system, is instrumented by an appropriate race variable, adding it in front of the
second lock point. In general, to try to detect different potential deadlocks at
the same time, different race variables may be added simultaneously (at different
points in the program). The following definition defines where to add a race
variable representing one particular cycle of locks ΔC . Since the instrumentation
is determined by the static type system, one may combine the derivation of the
corresponding lock information by the rules of Table 5 such that the result of the
derivation not only derives type and effect information, but also transforms the

46 K. I. Pun, M. Steffen, and V. Stolz

program at the same time, with judgments of the form Γ � t � t′ : T̂ :: ϕ, where t
is transformed to t′. Note that we assume that a solution to the constraint set has
been determined and applied to the type and the effects. Since the only control
points in need of instrumentation are where a lock is taken, the transformation
for all syntactic constructs is trivial, leaving the expression unchanged, except
for v.lock-expressions, where the additional assignment is added if the condition
for static slp is satisfied (cf. Definition 4).

Definition 7. (Transformation) Given an abstract cycle ΔC . For a process
p from that cycle, the control points instrumented by a !z are defined as follows:

Γ � v : L
r

:: Δ1 −→ Δ1 Δ2 = Δ1 ⊕ r π ∈ r π
′ ∈ Δ1 ΔC � p wants π ΔC � p has π

′

Γ � v. lock : L
r

:: Δ1 −→ Δ2 Γ, x:L
r � t � t

′
: T :: Δ2 → Δ3

Γ � let x:T = v. lock in t � let x:T = (!z; v. lock) in t
′
: T :: Δ1 −→ Δ3

By construction, the added race variable protects the corresponding static
slp, and thus, ultimately the corresponding dynamic slp’s, as the static ones
over-approximate the dynamic ones.

Lemma 4. (Race variables protect slp’s) Given a cycle ΔC and a corre-
sponding transformed program. Then all static second lock points in the program
are protected by the race variable (starting from the initial configuration).

The next lemma shows that there is a race “right in front of” a deadlocked
configuration for a transformed program.

Lemma 5. Given an abstract cycle ΔC , and let P0 be a transformed program
according to Definition 7. If the initial configuration σ0 � P0 has a deadlock wrt.
ΔC , then σ0 � P0 has a race.

Proof. By the definition of deadlock (cf. Definition 2), some deadlocked config-
uration σ′ � P ′ is reachable from the initial configuration:

σ0 � P0 −→∗ σ′ � P ′ where P ′ = . . . pi〈t′i〉 ‖ . . . ‖ pj〈t′j〉 ‖ . . . , (2)

where by assumption, the processes pi and the locks they are holding, resp. on
which they are blocked are given by ΔC , i.e., σ(li) = pi(ni) and waits(σ′ �
P ′, pi, li+k1). Clearly, each participating process σ′ � pi〈t′i〉 is at a dynamic slp
(cf. Definition 3). Since those are over-approximated by their static analogues
(cf. Lemma 2), the occurrence of t′i in t0i resp. of t′j in t0j is a static slp. By
Lemma 4, all static slp (wrt. the given cycle) are protected, starting from the
initial configuration, by the corresponding race variable. This together with the
fact that σ′ � pi〈t′i〉 is reachable from σ0 � pi〈t0i 〉 implies that the static slp in
each process pi is protected by the same variable x. Hence, by Lemma 3, σ0 � P0

has a race between pi and pj . ��

Deadlock Checking by Data Race Detection 47

The previous lemma showed that the race variables are added at the “right
places” to detect deadlocks. Note, however, that the property of the lemma was
formulated for the transformed program while, of course, we intend to detect
deadlocks in the original program. So to use the result of Lemma 5 on the orig-
inal program, we need to convince ourselves that the transformation does not
change (in a relevant way) the behavior of the program, in particular that it
neither introduces nor removes deadlocks. Since the instrumentation only adds
variables which do not influence the behavior, this preservation behavior is obvi-
ous. The following lemma shows that transforming programs by instrumenting
race variables preserves behavior.

Lemma 6. (Transformation preserves behavior) P is deadlock-free iff PT

is deadlock-free, for arbitrary programs.

Next, we state that with the absence of data race in a transformed program,
the corresponding original one is deadlock-free:

Lemma 7. (Data races and deadlocks) P is deadlock-free if PT is race-free,
for arbitrary programs.

5 Gate Locks

Next we refine the transformation to improve its precision. By definition, races
are inherently binary, whereas deadlocks in general are not, i.e., there may be
more than two processes participating in a cyclic wait. In a transformed pro-
gram, all the processes involved in a specific abstract cycle ΔC share a common
race variable. While sound, this would lead to unnecessarily many false alarms,
because already if two processes as part of a cycle of length n > 2 reach simul-
taneously their race-variable-instrumented control-points, a race occurs, even if
the cycle may never be closed by the remaining processes. In the following, we
add not only race variables, but also additional locks, assuring that parts of a
cycle do not already lead to a race; we call these locks gate locks. Adding new
locks, however, needs to be done carefully so as not to change the behavior of
the program, in particular, not to break Lemma 6.

We first define another (conceptual) use of locks, denoted short-lived locks. A
process which is holding a short-lived lock has to first release it before trying any
other lock. It is obvious to see that transforming a program by adding short-lived
locks does not lead to more deadlocks.

A gate lock is a short-lived lock which is specially used to protect the access
to race variables in a program. Since gate locks are short-lived, no new dead-
locks will be introduced. Similar to the transformation in Definition 7, we still
instrument with race variables at the static second lock points, but also wrap the
access with locking/unlocking of the corresponding gate lock (there is one gate
lock per ΔC). However, we pick one of the processes in ΔC which only accesses
the race variable without the gate lock held. This transformation ensures that
the picked process and exactly one of the other processes involved in a deadlock

48 K. I. Pun, M. Steffen, and V. Stolz

cycle may reach the static second lock points at the same time, and thus a race
occurs. That is, only the race between the process which could close the dead-
lock cycle and any one of the other processes involved in the deadlock will be
triggered.

Observe that depending on the chosen process, the race checker may or may
not report a race—due to the soundness of our approach, we are obviously inter-
ested in the best result, which is “no race detected”. Therefore, we suggest to
run the analysis with all processes to find the optimal result. Note that checks
for different cycles and with different “special” processes for the gate lock-based
instrumentation can easily be run in parallel or distributed. It is also possible
to instrument a single program for the detection of multiple cycles: even though
a lock statement can be a second lock point for multiple abstract locks, the
transformations for each of them do not interfere with each other, and can be
analyzed in a single race checker-run.

Theorem 1. Given a program P , PT is a transformed program of P instru-
menting with race variables and gate locks, P is deadlock-free if PT is race-free.

6 Conclusion

We presented an approach to statically analyze multi-threaded programs by
reducing the problem of deadlock checking to data race checking. The type and
effect system statically over-approximates program points, where deadlocks may
manifest themselves and instruments programs with additional variables to sig-
nal a race. Additional locks are added to avoid too many spurious false alarms.
We show soundness of the approach, i.e., the program is deadlock free, if the
corresponding transformed program is race free.

Numerous approaches have been investigated and implemented over the years
to analyze concurrent and multi-threaded programs (cf. e.g. [18] for a survey of
various static analyses). Not surprisingly, in particular approaches to prevent
races [3] and/or deadlocks [8] have been extensively studied for various lan-
guages and are based on different techniques. (Type-based) analyses for race
detection include [1] [10] [6] [19] [13] to name a few. Partly based on similar
techniques, likewise for the prevention of deadlocks are [21] [14]. Static detection
of potential deadlocks is a recurring topic: traditionally, a lock-analysis is car-
ried out to discover whether the locks can be ordered, such that subsequent locks
can only be acquired following that order [4]. Then, a deadlock is immediately
ruled out as this construction precludes any “deadly embrace”. The lock order
may be specified by the user, or inferred [5]. To the best of our knowledge, our
contribution is the first formulation of (potential) deadlocks in terms of data
races. Due to the number of race variables introduced in the transformation,
and assuming that race checking scales linearly in their number, we expect an
efficiency comparable to explicit-state model checking.

In general, races are prevented not just by protecting shared data via locks; a
good strategy is to avoid also shared data in the first place. The biggest challenge

Deadlock Checking by Data Race Detection 49

for static analysis, especially when insisting on soundness of the analysis, is to
achieve better approximations as far as the danger of shared, concurrent access
is concerned. Indeed, the difference between an overly approximate analysis and
one that is usable in practice lies not so much in obtaining more refined conditions
for races as such, but to get a grip on the imprecision caused by aliasing, and
the same applies to static deadlock prevention.

Future work A natural extension of our work would be an implementation of
our type and effect system to transform concurrent programs written in e.g. C
and Java. Complications in those languages like aliasing need to be taken into
account, although results from a may-alias analysis could directly be consumed
by our analysis. The potential blowup of source code-size through instantiation
of function applications can be avoided by directly making use of context in the
race-checker, instead of working on a source-based transformed program. As a
first step, we intend to make our approach more applicable, to directly integrate
the transformation-phase into Goblint, so that no explicit transformation of C
programs needs to take place.

For practical applications, our restriction on a fixed number of processes will
not fit every program, as will the required static enumeration of abstract cycle
information. We presume that our approach will work best on code found e.g.
in the realm of embedded system, where generally a more resource-aware pro-
gramming style means that threads and other resources are statically allocated.

For lack of space, most of the proofs have been omitted here. Further details
can be found in the accompanying technical report [17].

Acknowledgements. We are grateful for detailed discussion of Goblint to Kalmer
Apinis, and Axel Simon, from TU München, Germany.

References

1. Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static race detection
for Java. ACM Transactions on Programming Languages and Systems 28(2), 207–
255 (2006)

2. Amtoft, T., Nielson, H.R., Nielson, F.: Type and Effect Systems: Behaviours for
Concurrency. Imperial College Press (1999)

3. Beckman, N.E.: A survey of methods for preventing race conditions (May 2006),
http://www.nelsbeckman.com/publications.html

4. Birrell, A.D.: An introduction to programming with threads. Research Report 35,
Digital Equipment Corporation Research Center (1989)

5. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Prevent-
ing data races and deadlocks. In: Object Oriented Programming: Systems, Lan-
guages, and Applications, OOPSLA 2002, Seattle, USA. ACM (November 2002);
SIGPLAN Notices

6. Boyapati, C., Rinard, M.: A parameterized type system for race-free Java pro-
grams. In: Object Oriented Programming: Systems, Languages, and Applications,
OOPSLA 2001. ACM (2001)

http://www.nelsbeckman.com/publications.html

50 K. I. Pun, M. Steffen, and V. Stolz

7. Coffman Jr., E.G., Elphick, M., Shoshani, A.: System deadlocks. Computing Sur-
veys 3(2), 67–78 (1971)

8. Corbett, J.: Evaluating deadlock detection methods for concurrent software. IEEE
Transactions on Software Engineering 22(3), 161–180 (1996)

9. Dijkstra, E.W.: Cooperating sequential processes. Technical Report EWD-123,
Technological University, Eindhoven (1965); Reprinted in [12]

10. Flanagan, C., Freund, S.N.: Type inference against races. In: Giacobazzi, R. (ed.)
SAS 2004. LNCS, vol. 3148, pp. 116–132. Springer, Heidelberg (2004)

11. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: ACM Conference on Programming Language Design and Imple-
mentation, PLDI. ACM (June 1993); SIGPLAN Notices 28(6)

12. Genyus, F.: Programming Languages. Academic Press (1968)
13. Grossman, D.: Type-safe multithreading in Cyclone. In: TLDI 2003: Types in Lan-

guage Design and Implementation, pp. 13–25. ACM (2003)
14. Kobayashi, N.: Type-based information flow analysis for the π-calculus. Acta Infor-

matica 42(4–5), 291–347 (2005)
15. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: ACM

Conference on Programming Language Design and Implementation, PLDI, Ottawa,
Ontario, Canada, pp. 308–319. ACM (June 2006)

16. Pun, K.I., Steffen, M., Stolz, V.: Deadlock checking by a behavioral effect system for
lock handling. Journal of Logic and Algebraic Programming 81(3), 331–354 (2012);
A preliminary version was published as University of Oslo, Dept. of Computer
Science Technical, Report 404 (March 2011)

17. Pun, K.I., Steffen, M., Stolz, V.: Deadlock checking by data race detection. Tech-
nical report 421, University of Oslo, Dept. of Informatics (October 2012)

18. Rinard, M.: Analysis of multithreaded programs. In: Cousot, P. (ed.) SAS 2001.
LNCS, vol. 2126, pp. 1–19. Springer, Heidelberg (2001)

19. Sasturkar, A., Agarwal, R., Wang, L., Stoller, S.: Automated type-based analysis
of data races and atomicity. In: Ferrante, J., Padua, D.A., Wexelblat, R.L. (eds.)
PPoPP 2005, pp. 83–94. ACM (2005)

20. Seidl, H., Vojdani, V.: Region analysis for race detection. In: Palsberg, J., Su, Z.
(eds.) SAS 2009. LNCS, vol. 5673, pp. 171–187. Springer, Heidelberg (2009)

21. Vasconcelos, V., Martins, F., Cogumbreiro, T.: Type inference for deadlock detec-
tion in a multithreaded polymorphic typed assembly language. In: Beresford, A.R.,
Gay, S.J. (eds.) Pre-Proceedings of the Workshop on Programming Language
Approaches to Concurrent and Communication-Centric Software, PLACES 2009.
EPTCS, vol. 17, pp. 95–109 (2009)

	Deadlock Checking by Data Race Detection
	Introduction
	Calculus
	Type and Effect System
	Race Variables for Deadlock Detection
	Deadlocks and Races
	Instrumentation

	Gate Locks
	Conclusion

