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Abstract. We introduce algorithms to automatically score and rank information
technology (IT) assets in an enterprise, such as computer systems or data files,
by their business value and criticality to the organization. Typically, information
assets are manually assigned classification labels with respect to the confidential-
ity, integrity and availability. In this paper, we propose semi-automatic machine
learning algorithms to automatically estimate the sensitivity of assets by profil-
ing the users. Our methods do not require direct access to the target assets or
privileged knowledge about the assets, resulting in a more efficient, scalable and
privacy-preserving approach compared with existing data security solutions rely-
ing on data content classification. Instead, we rely on external information such as
the attributes of the users, their access patterns and other published data content
by the users. Validation with a set of 8,500 computers collected from a large com-
pany show that all our algorithms perform significantly better than two baseline
methods.
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1 Introduction

Recently, a growing number of advanced persistent threats (APTs) [7] and insider
threats [[18] have demonstrated the capability of attacking specific highly sensitive en-
tities in a government or company. The computer security community has recognized
that not all IT assets have the same value or importance to the company, and, therefore,
they require different levels of protection corresponding to their sensitivity and value.
By prioritizing the security efforts and budget to better protect highly sensitive assets,
organizations can reduce the security risk. Further, quantitative measurement of the sen-
sitivity of IT assets enables other important applications such as intelligent file backup
and business continuity planning.

To achieve this vision, all assets in an organization need to be assigned a sensitiv-
ity value that properly indicates the business value and criticality to the organisation.
Currently, the asset classification is primarily done manually by the system administra-
tors with respect to the confidentiality, integrity and availability of the assets. However,
there are critical limitations in the manual approach. First, it is very hard for a large or-
ganization to assign appropriate labels to all the assets in the organization. The number
of assets in a large organization can grow huge, and, often, the assets are created and
managed independently in different departments, so it is extremely hard to catalog and
centrally manage all the assets. Second, most of the guidelines are descriptive and can
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be interpreted subjectively. Therefore, the classification of assets can differ significantly
by different human judges. Third, they typically measure the sensitivity using a coarse-
grained (3 to 5-scale) rating as in the Bell-LaPadula model [3] ranging from the most
sensitive (e.g., Top Secret) to the least sensitive (e.g, Un-classified).

In this paper, we explore methods for semi-automatically scoring various assets
within an enterprise using information about the users. To our knowledge, there has
been little effort to automatically quantify the sensitivity of IT assets. Previous studies
mostly focus on a specific type of assets, e.g., data files [4J12l13]] or network assets [3]],
or propose a ranking method using a small number of manually generated features [10].
We propose a new method for determining asset values using automatically extracted
features that are generic to various asset types including data and network assets. We
use only information about the users of the target asset including attributes of the users,
their access patterns and externally published data by the users such as personal and
project webpages and files shared by the users. Note that this information can be easily
extracted and does not require direct access to the target asset or detailed knowledge
about the asset, such as the owner of the asset and the sensitivity of the data in the asset.

Further, we note that there are many different aspects for an asset being considered
sensitive, and the criterion can change over time. For instance, a computer is considered
very sensitive because it stores sensitive data (i.e., confidentiality), or it hosts important
applications for the business (i.e., availability). Based on these observations, we ap-
ply instance-based learning approaches, making the system domain independent and
easy to adapt to new sensitive asset types. Given a small set of known sensitive assets,
we learn their characteristics and score other sensitive assets using the models. In this
work, we explore a kNN (Nearest Neighbor)-based method, a clustering-based method
and the kNN-based method with distance metric learning techniques. We validate the
algorithms using a real-world data set comprising about 8,500 computers. Our experi-
ments show that all our algorithms perform significantly better than the baseline cases,
and the kKNN-based method with distance metric learning techniques outperform the
other algorithms. The main contributions of this paper are as follows.

— Previous studies presented solutions for a specific IT asset type such as data, servers
or computer networks, forcing companies to manage multiple heterogenous ap-
proaches. Our methods rely on meta-level information that can be extracted from
most IT assets in the same way. This domain-independent set of features makes our
methods applicable to many different IT asset types.

— Further, extraction of the meta-level features does not require direct access to the
target assets or privileged knowledge about the assets, and, thus, our method is very
efficient and can be easily scalable to a large set of heterogeneous assets.

— Our system assigns a quantitative value to each asset rather than a coarse-grained
set of labels, allowing companies to adopt more fine-grained security measures.

— A major obstacle in applying machine learning methods to computer security prob-
lems is the lack of labeled data. In this work, we propose new semi-supervised
machine learning methods that learn the characteristics of sensitive assets from a
small number of examples.

— We validate our approaches with a large set of real data. Experimental results con-
firm that the proposed algorithms can retrieve sensitive assets with high ranks pro-
ducing higher precision and recall than baseline methods.
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2 Meta-level Features of Assets

As discussed in the introduction, a main goal of this study is to identify a set of features
that can be uniformly used for different asset types and be extracted without having
to access the target asset or privileged knowledge about the asset. This set of features
may not be as accurate as a small set of features carefully produced by domain experts,
but it makes the system very efficient and scalable and can provide a good estimate for
potentially sensitive assets.

In this study, we investigate 72 features from three kinds of knowledge — who ac-
cesses the asset (user features), how they access the asset (usage features) and what
kinds of tasks or projects the users work on (external content features). Table [I] de-
scribes the high-level feature categories used in this study.

Table 1. Features for estimating the sensitivity of IT assets

Feature Categories Feature Definition

User Features
Manager vs. NonManager Is the user a manager or a non-manager employee
Job Roles Job roles in the organization such as S/W Developer and Finance

Rank in the organizational The distance from the highest-ranked employee to the user in the
hierarchy organization hierarchy

Usage Features
Access Frequency the total number of accesses by a user (heavy or light)

Access Pattern the patterns of the accesses (e.g., regular, semi-regular, irregular)

External Content Features

External Data Content Topics discovered from the externally published data content
such as papers, patent and webpages of the users

2.1 User Features

User attributes such as job roles and the rank in the organization may affect the sen-
sitivity of the asset. For instance, an asset used primarily by executives would elevate
the sensitivity of the asset. In this work, we leverage these types of user attributes for
sensitivity estimation.

To extract the attributes of the users, we first need to identify the users of the asset
in the access logs. Some access logs, such as logs for a file repository or a system log-
on, typically contain the user accounts, thus, identifying the users is straightforward for
these assets. For computer network assets, user accounts are generally not available in
the logs (e.g., DNS logs). Instead, the logs contain the IP address from which the lookup
was requested. The process of determining which user is performing a DNS lookup is
not a trivial task. In most situations, we first need to find the most likely candidate user
who is assigned to a specific IP address during a specific time period. The resolution
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of an IP address to a user, while easy in a simple system, becomes more challenging in
a dynamic system with many different ways to access the network and with a large set
of users. Users can log into the network over WiFi or using an ethernet cable, or from
remote locations via VPN (virtual private network).

For computers in a network, we perform the IP to user mapping using various sources
including media access control (MAC) addresses, application (e.g., internal web por-
tals) logs, and WiFi logs. If the MAC address is present, then, during a DHCP session
setup, we can correlate the MAC address used for that session to the IP address that
is assigned, which, in turn, can give us an IP to user mapping. However, the MAC
addresses are not reliable for users using OS X and are often unavailable when new
devices are introduced. To alleviate the limitations, we also use application and WiFi
logs for the user mapping. The application level logs can correlate the act of a user
logging into an application (such as an internal web portal) to an IP address. The WiFi
logs can correlate a user establishing a connection to the WiFi with the authentication
credentials that are used to log in to the system. Since the user to IP mapping is not
perfect, we discard all DNS lookups for which we are unable to identify the user and
all logs that are resolved to more than one user (i.e., ambiguous logs) for our study.

After obtaining the set of users of an asset, we extract various user attributes that
can indicate the users’ job roles and the sensitivity of the data they generate. The high-
level categories of the user attributes used in this work are shown in Table[Il We extract
26 user attributes in total including Manager, NonManager, Rank-High, Rank-Middle,
Rank-Low, and 21 different job roles defined in the company such as IT Specialist,
Human Resources and Finance. Note that these attributes can be extracted from most
companies’ employee directory. The feature value of each feature is the number of users
who possess the attribute. For instance, if 100 managers, 500 non-manager employees
and 1 high-rank employee accessed the asset, the asset is represented Manager=100,
NonManager=500 and Rank-High=1.

2.2 Usage Features

The access patterns of the users add additional insights on the sensitivity of an asset. For
instance, a user who occasionally uses the asset will have less impact than a user who
uses the asset frequently. On the other hand, if a user’s access pattern is very regular
(e.g., every day at Sam), that may indicate that the user is running an automated job
(e.g., file backup), so the accesses should not affect much on the asset’s sensitivity.
Figure [l shows typical daily DNS lookup activities.

In this work, we analyze access logs with the timestamps to discover the frequency
of a user’s access and the patterns of the accesses. We first group the logs by each pair of
a user and an asset, and record the number of log entries as the access frequency of the
user to the asset. We categorize the access frequency into Heavy or Light using a pre-
defined threshold. Further, we determine if a connection to the asset is done through an
automated access or a manual access (i.e., access pattern). We observe that automated
accesses tend to be regular, for instance, once a day at 4am or once every hour, while
human accesses are more sporadic. In other words, automated accesses are more pre-
dictable while human accesses are more uncertain. Based on this observation, we apply
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Fig. 1. Number of unique domains accessed per user in a single day. The data show that most
users access 20 to 30 different domains in a day, while a few users connect to over 200 different
domains.

the Shannon entropy, H (X ), which measures the uncertainty in a random variable [16]
to determine the access patterns.

H(X)=- Zp(xi) log(p(x:))

Now, we explain in detail how we measure the entropy of user accesses. First, for
each user and asset pair, we split all the accesses over each hour of the day (i.e., grouping
accesses into 24 time slots). For instance, we count how many accesses a user initiated
at the 9am-9:59am period in the logs collected over a long period time. Figure P shows
two sets of access patterns over the 24 time slots. Figure illustrates cases where
the accesses were made at the same time periods repeatedly, while Figure shows
cases where the accesses spread across many different time slots. After obtaining a
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Access Count

\ I

[
T2 3 4 5 6 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 12 3 4 5 6 7 8 9 10111213 14 16 16 17 18 19 20 21 22 23
Time Slots Time Slots

(a) Regular Access Pattern (b) Irregular Access Pattern

Fig. 2. Access Patterns

24-dimensional count vector for a user-asset pair, we then normalize the counts into
probability distributions and compute the entropy. If an access distribution produces
a low entropy, then the accesses are regarded as automated accesses. We divide access
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patterns into three categories—Regular, SemiRegular and Irregular-based on the entropy
values (i.e., high, medium and low respectively).

By combining the access frequency and the access pattern features, we generate 6
usage features: RegularHeavy, RegularLight, Semi-regularHeavy, Semi-regularLight,
IrregularHeavy and IrregularLight. If the accesses by a user to an asset exhibit a regular
pattern (i.e., low entropy), and the user has a large number of accesses, it is considered
as RegularHeavy. On the other hand, if the access pattern is irregular (i.e., high entropy)
and the access count is low, then it is considered as IrregularLight. Similarly to the user
features, the number of users that exhibit a certain access pattern is the feature value
for the asset, i.e., how many users access the asset using RegularHeavy or RegularLight
pattern.

2.3 External Content Features

The sensitivity of an asset is dependent largely on how sensitive the data in the asset are,
and, thus, the topics of data in the assets can be good indicators of the asset sensitivity.
When content inspection can be performed, the sensitivity can be measured by the tech-
niques presented in [[12/13]]. When direct content inspection is not feasible, we propose
to use external data contents generated by the users as a substitute. External contents of
a user can include any documents or data sources the user produced outside the target
asset, such as papers, patents, and project webpages. These external contents are used
to conjure the user’s job responsibilities and the tasks the user is working on. Note that
we only extract the contents that can be accessed without an access permission to the
host system. Some examples of external data content include:

Published documents such as patents and papers

Titles of files the user has shared in a file-sharing site
Wiki or project websites where the user is a member of
Personal webpages

Blogs created by the user

Tags the users added on webpages

Document of a User: We combine all the external data published by a user and gen-
erate a document for the user using the bag-of-word representation. We then remove
stop words [l and count the occurrences of each word in the user document. The ba-
sic assumption is that more frequently used words indicate the topics of the user more
strongly than less frequently used words.

Document of an Asset: We then generate a hypothetical document for an asset by
combining the documents of its users. Furthermore, we assume that the users who ac-
cess the asset more frequently influence the content of the asset more than the users
who uses it occasionally. We scale the frequency of words in the user documents based
on the frequency of the user’s access, which is defined as the number of days the user
accessed the asset. Figure 3] depicts the high level process of generating documents for
assets, and Definition[Il provides a formal description.

55

! Stop words are very commonly used words in most documents such as prepositions (e.g., “to”,
“in”) and pronouns (e.g., “I”, “this”).
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Fig. 3. High level description of content generation for assets using external user contents and
the users’s access counts to the assets. The words in an asset document come from external
contents generated by the asset users, and the counts of the word occurrences in the document are
determined based on both the word counts in the user documents and the users’ access counts for
the asset.

Definition 1. Let asset A have n users, U = {u1, - ,u,}, and the document of
a user u; be D(u;). Then, the document of asset A, D(A), is defined as D(A) =
Uu, et Uw, eD(uy) Wi Further, the count of a word in D(A), c(w;) , is computed as

c(wy) = Z 8; - c(wji)

c(wj;) is the count of word w; in D(u;), and 0; is the weight of user u,; for the asset A
and defined as log(#days(u;, A)).

Topic Discovery: Once we generate a document representation of an asset, a set of
assets can be considered as a collection of documents. The document collection for
all assets in an organization typically contain a large number of words. Treating indi-
vidual words as features will result in a very high dimensional feature space and data
sparseness issues. Instead, we can group the words into topics and use the topics as the
content features. Each asset can then be represented as the probability distributions over
the discovered topics.

In this work, we apply Latent Dirichlet Allocation (LDA) [6], a generative topic
modeling technique, to discover the topics from a collection of documents. LDA is a
probabilistic generative model for collections of discrete data such as text collections.
Each document in a corpus is modeled as a finite mixture over underlying set of topics,
and each topic is, in turn, modeled as a distribution over words. LDA allows for multiple
topic assignments to a document (i.e., probabilistic clustering) and, thus, better explains
the underlying topic distributions in the given corpus.
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LDA assumes the following generative process for creating a document d in a col-
lection of document D:

1. For each document d € D, a distribution over topics is sampled from a Dirichlet
distribution, 6 ~ Dir(«).

2. For each word w in a document, select a topic, z, according to the distribution,
Multinomial(9).

3. Finally, a word is chosen from a multinomial probability conditioned on the topic,
p(w|z, 8). B is a matrix of word probabilities over topics which is to be estimated
from the training data.

LDA requires the number of topics to be discovered as an input parameter. In this
work, we run LDA with 40 topics, and, therefore, each asset is represented as a proba-
bility distribution over the 40 topics. Table[2lshows three sample topics discovered from
our data set.

Table 2. Sample topics discovered from document representations of computer servers. Topic5
indicates Speech Recognition, Topic28 is related to related to Analytics and Business Intelligence.
BAMS stands for business analytics and management. Topic37 is related to Computer Security.

Topics Most Relevant Words

Topic5 speech, recognition, system, using, models, language, translation, based, detec-
tion, arabic, transcription, model, speaker

Topic28 business, community, management, analytics, method, system, supply, project,
BAMS, data, performance, applications, research

Topic37 system, computing, virtual, security, community, secure, method, research, data,

trusted, applications, operating

2.4 Feature Normalization

The selection of features is critical for machine learning methods, as the data are repre-
sented as points in a multi-dimensional feature space, where a feature corresponds to an
axes. Another important consideration is the range of feature values. Most data mining
and machine learning algorithms rely on a metric or a distance function to evaluate how
similar two data points are in the feature space. When there is a large difference in the
range of the feature values along different axes, these metrics implicitly assign higher
weights to features with larger ranges. To mitigate the effect, a feature normalization
technique is often applied and converts all features into an equal range.

In this study, the values of the user and usage features are the counts of the features
in the target asset, while the content topic features are the probabilities in range of [0,
1]. The raw count values, especially for the usage features, can grow very large when
the data set is collected over a long time period. We normalize the user and usage fea-
tures using the cumulative distribution function (CDF) following the findings by Aksoy
and Haralick [[1]] @ CDF-based feature normalization is performed as follows. Given a

2 We experimented with other feature normalization techniques such as linear scaling, unit range
normalization and rank normalization, and the CDF normalization performed best for our data.
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random variable z € R with cumulative distribution function F(z), the normalized
feature value, Z, of « is defined as & = F, () which is uniformly distributed in [0, 1].

3 Sensitivity Estimation Algorithms

In this section, we present our algorithms for estimating the sensitivity of assets. As
noted earlier, there are many different aspects that make an asset sensitive to the or-
ganization. For instance, an asset is considered sensitive because it contains sensitive
business data, or it hosts important applications. Based on these observations, we apply
instance-based learning approaches, in which we learn the characteristics of sensitive
assets from a small number of known sensitive assets. Therefore, our methods do not
require any prior knowledge about the domain or the target assets, making the algo-
rithms very flexible and easy to adapt to new domains. In this work, we explore three
semi-supervised machine learning approaches: a kNN-based method, a clustering-based
method, and the kKNN method with distance metric learning techniques.

3.1 kNN-Based Method

The k-nearest neighbor classification is a type of instance-based learning which assigns
a new data point to the majority class among its k nearest neighbors from the training
data set [8]]. The kNN approach is extremely flexible and non-parametric, and no as-
sumption is made about the probability distribution of the features. The similarity is
computed based on the distances between feature vectors in the feature space.

More formally, let X = {x1,...,x, } be the training data set,and Y = {y1,...,yc}
be the set of classes. In the basic kNN classification, the class for a new data point x is
defined as arg maxj<;<c Z§=1 1(yi,y;) , where y; is the class of the j-th neighbor,
and 1(y;, y;) is an indicator function that returns 1 if y; = y; and O otherwise. In many
applications, the vote is weighted by the distance between the new point and a neighbor,
and the decision is influenced more by closer neighbors.

k

arg e, " wlde. ) 10

where w(d(z, x;)) is a weight function that is inversely related to the distance d(x, x;).

In this work, we extend the weighted kNN approach and compute the sensitivity of a
new asset based on the distance to its kNN assets in the training data and the sensitivity
scores of the kNN assets. When the sensitivity scores are not provided for the training
data, we can assign the same value to all the training data. The sensitivity of a new asset
A, V(A), is then defined as a weighted average score of its k-nearest neighbors among
the known sensitive assets, {S1, ..., Sk}

k
V(A) = ) eSS (1)
i=1

V(S;) is the sensitivity value of S;, and e~ #(A:5) is the weight function where d(A, S;)
is the Euclidean distance of the two assets. The kNN-based sensitivity estimation is
described in Algorithm[l
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Algorithm 1. Sensitivity Estimation based on k-Nearest Neighbors

1: Input: Unlabeled assets A = {Ai,...,An}, a set of known sensitive assets S =
{81, ...,8m}, and, optionally, the sensitivity scores of S, V = {V(S1),...,V(Sm)}

: Output: Ordered list of assets A" = {A], ..., A}, }, where V(A]) > V(A1)

: for A; € Ado

ENN(A;) < {Si,...,Sk}, k assets from S that are closest to A;

Compute the sensitivity of A;, V(A;) using Equation (T)

: Sort A in descending order of V(A;)

QA WN

3.2 Clustering-Based Method

The clustering-based method considers that the assets are from many different business
units such as product development groups, HR or Finance department, and, therefore,
they will naturally form distinct groups. Suppose only one sensitive asset from the HR
department is included in the training data. With the kNN method with & > 1, the
sensitivity of assets from the HR department will be measured with assets from other
departments. By taking into account the subgroups in the dataset, we can determine the
sensitivity level of an asset using the sensitive assets from the same subgroup.

First, a clustering technique is used to discover these underlying subgroups in the
data set. We then generate the centroid of the sensitive assets in each cluster, which is
the the mean of the sensitive assets in the cluster. Similarly to the kNN-based method,
we measure the sensitivity of an asset A as the weighted average score of the k-nearest
centroids as described in Algorithm[2] The difference of the kNN-based approach and
the clustering-based approach is illustrated in Figure 4l

|
[ |
. .
] I Te =
A = [
. [ B
"y v [ ]
®
"». 1'! m
| )
- X |
[ 4 |
*
(a) kNN-based method where k=2 (b) Nearest centroid-based method

Fig. 4. Illustrations of the KNN and Clustering-based methods for sensitivity estimation. The
circle symbols denote known sensitive assets and the square symbols denote unlabeled assets.
The diamond symbols in [A(B) represent the centroid of the sensitive assets in each cluster. Note
that the sensitivity of the light-colored (yellow) square is measured with a sensitive asset from a
different cluster in Figure f(a)]
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Algorithm 2. Sensitivity Estimation based on k-Nearest Centroids

1: Input: Unlabeled assets A = {Ai,..., A}, a set of known sensitive assets S =
{S1,...,Sm}, and, optionally, the sensitivity scores of S,V = {V(S1),...,V(Sm)}
: Output: Ordered list of assets A" = {A], ..., A}, where V(A]) > V(Aj,,)
: Cluster all assets, AU S, into K subgroups, C = {C1,...,Cx}.
for C; € C do
St anS // the set of sensitive assets in C;
C; + the centroid of S*
V(C;) < the mean sensitivity value of S*
: for A; € Ado
Let C = {C1,...,C)} be the k nearest centroids from .A;
V(Ai) = X, e D 0(G)
: Sort A in descending order of V(A;)

R A Ul

—_
- O

3.3 kNN Method with Distance Metric Learning

The accuracy of many machine learning algorithms including both kNN classification
and clustering is heavily dependant on the distance (or similarity) metric used for the
input data. However, when the data are in a high-dimensional space, the selection of an
optimal distance metric is not intuitive. Distance metric learning is a machine learning
technique that aims to automatically learn a distance metric for the input data from a
given set of labeled data points. The basic idea is to learn a distance metric that puts
instances from a same class closer to each other and instances from different classes
far apart. Recently, many studies have demonstrated that an automatically learned dis-
tance metric significantly improves the accuracy of classification, clustering and re-
trieval tasks [17/14420].

Distance metric learning algorithms are further divided into global distance metric
learning and local distance metric learning. Global distance metric learning algorithms
learn a distance metric that satisfy all the pairwise constraints, i.e., keep all the data
points within the same classes close, while separating all the data points from different
classes. Local distance metric learning algorithms, on the other hand, learn a distance
metric satisfying local constraints, and has been shown to be more effective than global
distance learning for multi-modal data.

In this study, we apply a global distance learning algorithm and a local distance
metric learning algorithm to transform the feature space. For global learning, we ap-
ply Relevant Component Analysis (RCA) [17] to learn a distance metric as proposed
in [2]. The RCA-based distant metric learning algorithm learns a Mahalanobis distance
metric using only equivalence constraints (i.e., instances in the same class) and finds a
new feature space with the most relevant features from the constraints. It maximizes the
similarity between the original data set X and the new representation Y constrained by
the mutual information 7(X,Y"). By projecting X into the new space through feature
transformation, two data objects from the same class have a smaller distance in Y than
in X. For local distance metric learning, we apply the Large Margin Nearest Neighbor
(LMNN) distance learning algorithm [[14]. The LMNN algorithm also learns a Maha-
lanobis distance metric, but it identifies k-nearest neighbors, determined by Euclidean
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distance, that share the same label and enforces the k-nearest neighbors belong to the
same class while instances from different classes are separated by a large margin.

After the feature space projection using the distance metric learning algorithms, we
apply the kNN-based sensitivity estimation method described in section[3.1]

4 Experimental Results and Evaluation

To validate the algorithms, we conducted experiments with a real life data set com-
prising about 8,500 computers. In this section, we describe in detail the experimental
settings and evaluation results. Henceforth, we denote the kNN-based method using
the original feature space as kNN, the centroid-based method as Centroid, the kNN
method with the LMNN distance metric learning as LM NN, and the kNN method with
the RCA distance metric learning as RCA.

4.1 Data

The computers used in the experiments were extracted from DNS logs collected in
the authors’ organization over 3.5 months from April, 1, 2012 to July, 15, 2012. We
extracted 12,521 unique computers for which we were able to identify the user but dis-
carded the computers with only one user or fewer than three look-up requests, resulting
in 8,472 computers. We use the 8,472 computers for training and evaluation of our
models—80% of the computers for training and 20% for evaluation respectively. Using
the mapping of IP address to user described in section 2.1 we identified 2,804 unique
users for the 8,472 computers.

In a separate effort, the company had attempted to manually compile a list of servers,
for the purpose of disaster recovery and business continuity, that host important appli-
cations of the company. The list provides the server names and their business criticality
value (BCV) assigned manually by domain experts. Each computer is assigned with a
BCV from five BCV categories—BCV1 to BCV5-and each BCV category is associated
with a numeric value from 10 (BCV1) to 50 (BCV5). We found 253 servers from this
list in our collected data set, and, thus, use the 253 servers as the labeled (i.e., ground
truth) data for this study. The ground truth data account for about 3% of the experi-
mental data, and we use the data set for both training and evaluation of the algorithms.
Table[5and Figure[@lshow the size of the experimental data, the size of the ground truth
set, and the distribution of the ground truth data over the five BCV categories.

4.2 Evaluation Metrics

We observe that the problem of identifying sensitive assets can be cast as an informa-
tion retrieval (IR) problem — finding relevant (sensitive) assets in a large collection of
assets and ranking them according to their relevance. This allows us to apply the evalu-
ation metrics developed for IR such as recall, precision and discounted cumulative gain
(DCG) [1911119] to validate the performance of our algorithms.
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Precision and Recall: Precision and recall are widely used metrics for binary decision
problems including information retrieval and pattern recognition. In a binary decision
problem, a system labels data samples either positive or negative. Precision measures
the fraction of samples classified as positive that are truly positive, and recall measures
the fraction of positive samples that are correctly classified.

|{true positives in the result}| _ |{true positives in the result}|

Recall =

Precision —
recuson |{all samples in the result}| |{all positive samples}|

In a ranked retrieval context as in our study and in most web search engines, pre-
cision and recall are typically measured at the top n results. Further, when the class
distribution is skewed, Precision-Recall (PR) curves are often used. A PR curve is gen-
erated by plotting the precision at different levels of recall rates, and provides a more
comprehensive view on the system’s performance.

Discounted Cumulative Gain (DCG): In addition to ranking the results, when the
relevance of an instance is measured using a multi-scale rating (e.g., from completely
relevant to completely irrelevant), the quality of the results can be more precisely mea-
sured using a graded relevance scale of the results. For instance, two search engines can
produce the same precision and recall, but the search engine that retrieves documents
with a higher relevance scale at the top of the results is more useful.

DCG measures the usefulness (or gain) of a search result based on its position in a
search result list. The gain of each result is discounted logarithmically proportional to
its position in the ranked list, and the DCG of a system is defined as the accumulated
gain from the top of the result list to the bottom [9].

n

EL
DCG:RELH—Z REL,
r=2

logy ()

where REL, is the relevance score of the result at rank r, and n is the number of
instances in the result.

For IR systems, the relevance of a search result is typically judged using a 5-scale
rating from O (completely irrelevant) to 4 (completely relevant). For our study, we use
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the five BCVs as the relevance scores of computer assets by mapping the BCVs of [10,
50] into [1, 5], and by assigning O to all other computer assets.

4.3 Baseline Methods

We designed two hypothetical baseline methods to compare our algorithms with. The
first baseline produces a random ordering of the assets (hereafter denoted as Random).
The second baseline is based on the assumption that assets used by high-rank employees
are more sensitive than those used by low-rank employees. This method (denoted as
OrgRank) produces a ranking of the assets by sorting the assets in descending order by
Rank-High, Rank-Middle, and Rank-Low (the Rank features described in Table [T).

4.4 Experimental Results

In the experiments, each algorithm produces a ranked list of the computer assets, and
we compare the six algorithms based on precision, recall and DCG. We set k to 3 for all
kNN-based methods, and, for the clustering-based method, we generated 150 clusters
for the data and & = 1 for similarity estimation. The evaluation is conducted using 5-fold
cross validation methods. In a 5-fold cross validation, the ground truth data is randomly
divided into 5 equally sized subgroups, and each of the subgroups is used for evaluation.
At i-th validation (1 < ¢ < 5), the i-th subgroup (i.e., 20% of the data) is withheld to
evaluate the model’s performance, and the remaining four subgroups (i.e., 80% of the
data) are used to train the model. Since cross validation does random splitting of the
ground truth data, we conducted 5-fold cross validation 10 times, and all the results
reported here are the average performance of the 10 runs. The results of the Random
baseline system is also the average performance from 10 random orderings.

Precision and Recall: First, we show the precision-recall curves of the algorithms.
The precisions are measured at 20 different recall rates ranging from 0.05 to 1 as shown
in Figure[7(a)] All four algorithms yield significantly higher precision up to recall=0.2
than the baseline systems, with LM NN outperforming the others. We notice that the
precision drops rapidly as the recall increases. This is mainly due to the high skew in
the class distribution in our data set (only 0.6% of samples are positive).

Next, we examine recall in more detail, as high recall is more desirable for the ap-
plications with highly imbalanced data. Figure shows the recall levels measured at
the top n% (5% < n < 30%) of the most sensitive assets in the ranked lists. As we
can see, our algorithms produce much higher recall than the baseline systems, and the
distance metric learning methods outperform the other algorithms across all levels of n.
For instance, RCA achieves about 300% and 57% higher recall than Random at top 5%
and top 30% respectively. Interestingly, OrgRank performs very poorly and produces
much lower precision and recall than Random.

Discounted Cumulative Gain: Figure [§] shows the DCG values at each rank in the
ranked list of the data. As noted, DCG is a better metric for applications where the
relevance is judged in multi-scales. The comparison of DCG clearly show that our
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Fig. 8. The discounted cumulative gains of different algorithms. The x-axis represents the ranks
of the data in descending order, i.e., x=1 represents the most sensitive computer ranked by each
algorithm.

algorithms perform significantly better than the baseline methods, and LM NN performs
slightly better than the other algorithms. Further, our algorithms converge much more
quickly achieving high DCGs early in the ranked list. This shows that our algorithms
are able to assign high ranks to highly sensitive assets. We also notice that the OrgRank
method performs better than Random when measured by DCG.

5 Related Work

There have been little work on automatically measuring the sensitivity (or criticality) of
IT assets. A related body of work has been studied by [3110/12113U15]. Park et al. [[12/13]]
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and Beaver et al. [4]] proposed methods for scoring the value of the information stored in
host computers using text processing and classification. While these methods are very
useful for data security, they can not be applied to other types of IT assets. Further, these
methods require direct access to the assets to crawl the data, thus, they are harder to ap-
ply to a large scale heterogenous environment. Beaudoin and Eng presented a method
for computing the values of network assets based on the network topology, systemic de-
pendencies among the network assets and the interfaces between the network [3]. They
manually assign the initial values to some of the sources called “user services”, and
percolate the values from the user services back to the supporting assets using a graph
mining algorithm. Sawilla and Ou presented AssetRank, a generalization of the PageR-
ank algorithm, which calculates the importance of an asset to an attacker [15]. Their
approach uses the dependency relationships in the attack graph and the vulnerability
attributes to compute the relative importance of attacker assets rather than the impor-
tance of the asset itself. Kim and Kang [[10] described a method for scoring and ranking
cyber assets using a small number of hand-crafted features. They utilize three types of
features — static factors (e.g., the criticality of application on the asset and value of data
on the asset), static value-sensitive factors (e.g., who owns the machine) and dynamic
value-sensitive factors (e.g., who is currently logged onto the machine). Crucially, their
features are hard to extract automatically, and, thus, they extract the feature values in
five-point scale from domain experts using a user survey.

6 Discussion and Conclusions

In this paper, we proposed algorithms for automatically scoring IT assets with a mini-
mum of human intervention. Our algorithms provide several technical advantages that
make our system more efficient, scalable, and privacy preserving than other existing
methods. First, our methods do not require access to the assets or any detailed knowl-
edge about the targets. Second, the features are very domain-independent and can be
mostly extracted from access logs. Third, we apply semi-supervised machine learning
approaches to minimize human efforts.

We confirmed through experiments that our algorithms perform much better than a
random ordering or a simple hypothesis-based approach. Further, the performance im-
provement was larger when the multi-scale sensitivity values were taken into account.
This indicates that our algorithms were able to retrieve assets with higher scores at
higher ranks. The experiments also demonstrated that distance metric learning tech-
niques improves the accuracy of the algorithms.

The system envisions to provide fine-grained security on high-value enterprise as-
sets and help large enterprises manage the security risks associated with these assets.
Firstly, the fine grained estimation of sensitivity values can be used to define access
control policies based on the sensitivity levels. For instance, we can define access con-
trol policies granting access to assets with sensitivity levels up to a defined threshold.
Another application of the dynamic computation of sensitivity values is in risk-based
security methods. These methods typically rely on bounding the worst case damage
caused by incorrect access control decisions. The ability to dynamically estimate the
sensitivity values would make risk based methods effective and applicable in practice.
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