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Abstract. Accountability of distributed systems aims to ensure that
whenever a malicious behavior is observed, it can be irrefutably linked
to a malicious node and that every honest node can disprove false ac-
cusations. Recent work, such as PeerReview and its extensions, shows
how to achieve accountability in both deterministic and randomized sys-
tems. The basic idea is to generate tamper-evident logs of the performed
computations such that an external auditor can check the system’s ac-
tions by mere recomputation. For randomized computations it is more
challenging: revealing the seed of the pseudo-random generator in the
logs would break the unpredictability of future values. This problem
has been addressed in a previous work, CSAR, which formalizes a no-
tion of accountable randomness and presents a realization. Although all
these techniques have been proven practical, they dramatically (and in-
evitably) expose a party’s private data, e.g., secret keys. In many scenar-
ios, such a privacy leak would clearly be unaccepable and thus prevent
a successful deployment of accountability systems.

In this work, we study a notion of privacy-preserving account-
ability for randomized systems. While for deterministic computations
zero-knowledge proofs offer a solution (which is even efficient for some
computations), for randomized computations we argue that efficient so-
lutions are less trivial. In particular, we show that zero-knowledge proofs
are incompatible with the notion of accountable randomness considered
in CSAR if we aim at efficient solutions. Therefore, we propose an alter-
native definition of accountable randomness, and we use it as a building
block to develop the new notion of privacy-preserving accountable ran-
domized computation. We present efficient instantiations for interesting
classes of computations, in particular for digital signature schemes as the
arguably most important cryptographic primitive.

1 Introduction

In distributed systems, checking whether a node’s operation is correct or faulty
is a major concern. Indeed, faulty actions can occur for many reasons: a node
can be affected by a hardware or software failure, a node can be compromised
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by an attacker, or a node’s operator can deliberately tamper with its software.
Detecting such faulty nodes is often very difficult, in particular for large-scale
systems.

Recent work proposed accountability as a paradigm to ensure that whenever
an incorrect behavior is observed, it can be linked to a malicious node. At the
same time, honest nodes gain the ability to disprove any false accusations. Ex-
amples of these accountability systems include PeerReview [15] and its extension
[2]. The basic idea of PeerReview is that every user generates a tamper-evident
log which contains a complete trace of the performed computations. Later, an
auditor (in PeerReview any other node in the distributed system) can check
the correctness of the user’s operations by inspecting the logs, replaying the
execution of the user using a reference implementation, and finally comparing
its result. The above approach is however restricted to deterministic systems.
Indeed, in order to enable the replay of a randomized computation one should
publish the seed of the pseudo-random generator in the logs. Clearly, this would
completely destroy the unpredictability of future pseudo-random values. This
issue was addressed by CSAR, an extension of PeerReview [2]. More specifically,
the main contribution in [2] is to formalize a notion of accountable random-
ness, called strong accountable randomness, and to present the construction of
a pseudo-random generator satisfying this property. Informally, strong account-
able randomness consists of the following requirements: (i) the pseudo-random
generator generates values that look random, even to the party who computes
them; (ii) it is possible to verify that the values were computed correctly; (iii)
the unpredictability of future values (i.e., those for which a proof was not yet
issued) does not get compromised; and (iv) the above properties are fulfilled
even if a malicious party is involved in the seed generation.

While the approach of PeerReview and CSAR is very general and has been
proven practical, these techniques have an inherent drawback: they inevitably
expose a party’s private data. In many scenarios such a privacy leak is unac-
ceptable and might thus discourage the adoption of accountability systems. For
instance, consider a company that runs its business using a specific software.
There are many cases in which companies’ tasks have to comply with legal regu-
lations, and having a system which allows an auditor to check this compliance in
a reliable way would be highly desirable. On the other hand, companies have a
lot of data that they want to keep secret. This data might include, for instance,
business secrets such as internal financial information, or secret keys for digital
signatures or encryption schemes.1

In spite of its utter importance, the idea of providing accountability while
preserving the privacy of the party’s data has not been yet properly explored in
previous work.

1 While in principle such a problem can be solved by using generic secure multi-
party computation techniques (SMPC) [10], all known SMPC protocols require the
verifier to participate in the computation, which is infeasible in practice, whereas in
our setting the verifier only participates in the verification by checking the tamper-
resistant log, which is much better suited for practice.
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1.1 Our Contribution

We address this important open problem in the area of accountability providing
three main contributions:

– We formalize a notion of privacy-preserving accountability for randomized
systems. At a high level, our notion requires that a user is able to produce
a log that convinces an auditor of the correctness of (1) the outcome of
a computation (e.g., that y = P (x)), and (2) the generated randomness.
At the same time, the contents of the log neither compromise the secrecy of
specific inputs of the computation nor the unpredictability of the randomness
generated in the future. Our notion is defined in the UC framework, and thus
allows for arbitrary composability.2

– We focus on efficient realizations of privacy-preserving accountability for ran-
domized systems. We show that a construction can be obtained by using the
non-interactive proof system by Groth and Sahai [13] which supports state-
ments in the language of pairing-product equations, and a pseudorandom
function, due to Dodis and Yampolskiy [9], which works in bilinear groups
and is thus compatible with this language. With the above proof system we
can characterize a variety of computations: efficient solutions exist for the
case of algebraic computations with equations of degree up to 2, but also
arbitrary circuits can be supported [12].

– We show interesting applications of privacy-preserving accountability for
randomized systems to digital signatures. We present a signature scheme
in which the signer can show that the secret key and the signatures are gen-
erated “correctly”, i.e., by using accountable randomness. This essentially
ensures that a signature has been created using a specific algorithm.

Our Contribution in Detail. In this section we give a high level explanation
of the technical ideas and the approaches used in this paper.

Our notion and its relation with strong randomness. In the case of de-
terministic computations the notion of privacy-preserving accountability would
essentially fall into the well-known application area of zero-knowledge proofs
[11]. However, we model randomized computations: consequently we want that
even the randomness is accountable, i.e., correctly generated. While such a no-
tion, called strong accountable randomness, has already been introduced in [2],
we show that it is not realizable without random oracles (see Section 3.1).

Recall that strong accountable randomness requires that the pseudo-
randomness of the generated values must hold even against the party who knows
the seed. Clearly, this is a very strong property. A random oracle helps its realiza-
tion as it essentially destroys any algebraic properties or relations that one may
recognize in such values. But without the help of this “magic” tool, it is clear
that the party computing the values knows at least how they were computed.

2 We are aware that the UC framework has flaws. Our results, however, can be straight-
forwardly migrated to other simulation-based composability frameworks [23,18,16].
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Our impossibility result left us with two opportunities: (1) either define
privacy-preserving accountability for randomized computations in the strongest
possible way (i.e., so as to imply strong randomness) but be aware that it would
be realizable only using random oracles, or (2) define a slightly weaker version
of accountable randomness. Although the first option would be preferable, a
careful analysis revealed that its efficient realization is very unlikely. Indeed, any
meaningful notion of privacy-preserving accountable computation fulfilling the
properties we have in mind will need zero-knowledge proofs in order to be re-
alized. At the same time, these proofs would have to involve a pseudo-random
generator that satisfies strong randomness by using a hash function modeled
as a random oracle. We are not aware of any hash function that allows for
efficient zero-knowledge proofs and whose actual implementation maintains un-
predictability properties close to the ideal ones of a random oracle (i.e., its use in
a scheme does not fall prey to trivial attacks). This is why we decided to follow
the second approach.

On realizing accountable signatures. While focusing on more specific ap-
plications of our accountability system, we asked how to efficiently prove state-
ments that involve the randomness generated by our system. For instance, many
cryptographic protocols rely on correctly distributed randomness, but such ran-
domness usually cannot be revealed (thus CSAR is not a solution). In particular,
this property is very interesting for digital signatures as it would allow for the
accountability of this primitive, namely the signer could show that the secret
key and the signatures are generated correctly (i.e., by using accountable ran-
domness) and at the same time the signer does not leak such confidential data
to the auditor.

Towards this goal, the technical challenge is that for the combination of Groth-
Sahai proofs and our specific pseudo-random generator random values that need
to be hidden can only be group elements.3 We are not aware of any signature
scheme, from the literature, in which all random values (e.g., the secret key and
the randomness) can be computed using our pseudo-random generator. In this
work we propose the construction of such a signature scheme which thus satisfies
our notion of accountability.

2 Preliminary: The UC Framework

In this work, we formulate and prove our results in a composable, simulation-
based model, in which the security of a protocol is obtained by comparison
with an idealized setting where a trusted machine is available. More specifically,
we use the UC framework [6]. Our results also apply to other simulation-based
composability frameworks, such as IITM [18], RSIM [23], or GNUC [16].

We consider attackers that are global, static and active, i.e., an attacker that
controls some parties and that controls the entire network. Such attackers are
typically modelled in the UC framework by only considering protocols parties
that have a designated communication tape for directly passing messages to

3 In particular, every known pseudo-random function compatible with Groth-Sahai
outputs group elements.
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the attacker. Since the attacker controls the network, it can decide whether,
in which order, and to whom network message are passed. Additionally every
protocol party has a communication tape for directly passing messages to the
so-called environment, a PPT machine that represents any user of the protocol,
such as the web-browser or an operating system.

The security of a protocol is defined by comparing the execution of the proto-
col, i.e., of all protocol parties, with an idealized setting, called ideal world. The
ideal world is defined just as the real world except for the existence of designated,
incorruptible machines, called ideal functionalities. These ideal functionalities
represent a scenario in which the same functionality is executed using a trusted
machine to whom all parties have direct access. Formally, an ideal functional-
ity directly communicates with the environment via so-called dummy parties,
which forward all messages as instructed. This ideal functionality characterizes
the leakage of the protocol and the possibilities of the attacker to influence the
outcome of the protocol.

The security of a protocol π is defined by comparison with its corresponding
ideal functionality F as follows: a protocol π UC-realizes an ideal functionality F
if for all probabilistic polynomial-time (PPT) attackers A (against the protocol)
there is a PPT attacker S (against the ideal functionality) such that no PPT
machine (the environment E) can distinguish an interaction with π and A from
an interaction with F and S. A protocol π is considered UC-secure if it UC-
realizes the corresponding ideal functionality.

For modeling setups, such as a PKI or a CRS, often ideal functionalities,
such as FCRS, are used in description of the protocol. A setting in which both
ideal functionalities and protocols occur is called a hybrid world. These ideal
functionalities directly communicate with the protocol parties, since (formally)
the protocol parties are part of the environment from the perspective of these
ideal functionalities. These hybrid world can also be used to abstract away from
cryptographic subprotocols, such as authenticated channels.

3 Defining Accountable Computation

In this section, we introduce a rigorous definition of accountable computation.
As discussed in the introduction, this notion has to work for randomized systems,
and thus have to guarantee accountable randomness. Towards this goal, we will
first show that the previous notion of accountable randomness considered in [2]
cannot be realized in the standard model. Then we will introduce our relaxed
definition, for which we discuss efficient realizations in Section 4.

We consider a setting with a party Ve, called the auditor, that performs
the audit and a computation party that performs the computation and, upon
request, produces proofs that the computation has been correctly performed.
Assuming an evaluation function Eval for computing results, an accountable
computation scheme is a collection of three algorithms: Setup is run to generate
the system’s parameters that are distributed to every party and to the verifier;
Prov is run by the party to prove statements about a computation and it
produces a log; V is run by the verifier on input the log to check its correctness.
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On (init) from E
for honest P

draw random values
r1, . . . , rn ← {0, 1}η

store (rand1, . . . , randn) :=
(r1, . . . , rn)

send (init) to A
output (initd) to E

On (getrand, i) from A
send randi to A

On (comp, i, sid) from E
for honest P

set re := (randi)
store proofs(sid , i) := (re, 1)
send (re, i, sid) to A and E

On (comp, i, sid) from E for malicious
P

send (comp, i, sid) to A
wait for a response (output , re, b, sid ′)
from A
store proofs(sid ′, i) := (re, b)
output (output) to E

On (vr, i, sid) from E for honest Ve

let (re, b) := proofs(sid , i)
if b = 1
then output (randi, i, 1) to E
else output (re, i, 0) to E

On (vr, i, sid) from E for malicious Ve

send (vr, i, sid) to A
wait for a response m from A
output m to E

Fig. 1. The ideal functionality Fsr for strong randomness generation

For deterministic computations and for proofs that should not hide any secrets
(e.g., decryption keys) previous work offers efficient solutions [15,14]. In the case
of randomized computations, however, the computing party additionally needs
to prove that the randomness has been honestly generated, e.g., in order to
prove that signature key does not intentionally leave a trapdoor for malicious
third parties. Therefore, randomized accountable computation needs a fourth
algorithm Init, that is run in a trusted set-up phase and in which the computing
party gets a secret seed and the auditor a corresponding public seed.

Backes, Druschel, Haeberlen, and Unruh studied the problem of accountable
randomness and introduced the notion of strong randomness [2]. The authors
even presented an efficient construction that satisfies this property; however,
their realization guarantees strong randomness only in the random oracle model.
In the next section, we show that realizing their notion in the standard model
is impossible.

Notation. In the description of the ideal functionalities and the protocol tem-
plate, we use for persistently stored variables the font variable and for values the
font value.

3.1 Strong Randomness Is Not Realizable

Backes, Druschel, Haeberlen, and Unruh define strong randomness by means of
an ideal functionality Fsr. This ideal functionality (formally explained in Figure
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1) basically offers an interface for a computing party P to send commands to
compute a pseudo-random generator, and Fsr offers an interface for auditors
Ve to verify that these (pseudo-)random values are correctly distributed and
unpredictably for the party that computes them. In addition, Fsr has an ini-
tialization phase, in which random values randi are drawn uniformly at random,
and Fsr offers the attacker A a randomness oracle: upon a query (getrand, i),
Fsr responds with randi.

The Ideal Functionality Fsr. Beside an initialization phase (via the command
init), Fsr offers two commands comp and vr. If a party is malicious, Fsr allows
the attacker to determine the behavior for these commands. For honest parties,
upon (comp, i, sid) the pseudo-random element with the index i is generated (and
internally stored in proofs(sid , i)). For honest parties, the flag b in proofs(sid , i)
is set to 1 and for malicious parties, the flag is set to 0. Upon (vr, i, sid), Fsr

reads proofs(sid , i) and if b = 1 then it outputs the real random element and
otherwise the stored element re.

For any (reasonable) two-party protocol Π , we show how the environment E
can, in the standard model, easily distinguish whether it is communicating with
Π and the real attacker A or Fsr and a simulator. Assume that the computing
party P is compromised. Recall that E knows all secrets of P, in particular, any
secret information used to compute the pseudorandom generator. We assume
A to be the dummy attacker that simply forwards everything. E performs the
following steps:

1. Send the command (comp, i, sid) to P.
2. Since P is compromised, A has to answer for P. Since A is the dummy

attacker, A forwards this duty to E .
3. E computes the honest output (re, i) of that party P on its own, typically

the output of a pseudo-random function on some seed and input i.
4. E sends the honestly computed output (re, i) as a response to A.
5. A dutifully forwards the output (re, i) to the compromised P.
6. P sends the honestly computed output (re, i) over the network, i.e., to A.
7. A simply delivers the message to Ve.
8. E sends (vr, i, sid) to Ve and waits for a response ((re ′, i′), b)
9. E outputs 1 if (re, i) = (re ′, i′) and b = 1; otherwise output 0

In the ideal setting, the attacker A will actually be the simulator. Now, if
the simulator behaves differently from the attacker in steps 2, 5 or 7 (i.e., it
does not let E compute the answer for P, does not forward the output (re, i)
to the compromised P, or it does not deliver the message in step 7), then E
can use this unexpected behavior to distinguish the two settings. Thus, the
simulator has to act towards E as the dummy attacker (see step 5). At this point
we have two possible cases for the answer of Fsr to the environment upon the
command (vr, i, sid): (i) either b = 0, or (ii) b = 1. In the case when b = 0,
the environment will output 0 regardless of the value re ′. If b = 1, recall that
Fsr outputs (re ′, i′) = (randi, i), where randi is uniformly chosen. Namely, Fsr

replaces the value re sent by the simulator. Since randi is uniformly chosen, with
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overwhelming probability we have that randi �= re. Hence, in the ideal setting E
will output 0 with overwhelming probability. In contrast, in the real setting the
environment always outputs 1 if b = 1 and 0 if b = 0.

We stress that in the random oracle model, this argument does not go through.
Indeed, to compute re in step 3, E might have to query the RO. At that point
the simulator could program the output of the RO such that it coincides with
the uniformly chosen randi

4. The main problem with this notion of strong ran-
domness is realizing it against such a strong distinguisher (i.e., the environment)
in UC. Since the seed of a pseudo-random function cannot be hidden from the
environment, the latter can easily distinguish random values from the output of
the pseudorandom function. We remark that the ideal functionality given in [2] is
presented in a simplified setting where prover and verifier are the same machine.
This can be done by assuming that the verifier is always honest (as verification
is a public procedure). It is not hard to see that our counter-example works for
this simplified setting as well. Indeed, we are not making any assumption on the
honesty of the verifier.

3.2 Our Notion of Accountable Computation

In the standard model, it is not possible to realize strong randomness (see Sec-
tion 3.1). The main problem is that the output of the pseudo-random generator
has to be unpredictable even to the party that performs the computation. Unsur-
prisingly, such a result cannot hold in the standard model. Therefore, we weaken
the definition of strong randomness in order to adapt it and make it realizable
in the standard model. To do so, intuitively we require that the outputs of the
pseudo-random generator be indistinguishable from random as long as the seed
remains hidden. However, since our main goal is to provide accountability for
the computations performed by the system, we directly integrate this (weaker)
definition of strong randomness into a fully-fledged definition of accountable
randomized computation.

Protocol Template for Real Accountable Computation. The core of an
accountable computation scheme are four algorithms (Setup, Init,Prov,V)
that will be used by the parties P and Ve in a canonical protocol.

This protocol template assumes authenticated channels between party P

and auditor Ve. This assumption corresponds to the common assumption that
accountable systems have to maintain a tamper-evident record that provides
non-repudiable evidence of all the actions that are sent via these authenticated
channels. This authenticated channel is abstracted as an ideal functionality Fauth

that guarantees that the network attacker cannot send messages on behalf of P.
Typically, such an authenticated channel is realized using a PKI and by attaching
a digital signature to every message5. Moreover, we introduce two set-up func-
tionalities. The first set-up is a standard CRS functionality Fcrs that is needed

4 Roughly speaking, this is the approach taken by the proof in [2].
5 The functionality Fauth is standard, we do not present its definition here. We refer
the interested reader to previous work [6].
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for creating non-interactive zero-knowledge proofs. Technically, Fcrs runs the
Setup algorithm and distributes its output to all parties. The second set-up
assumption models the initial trusted phase in which P receives a seed, for gen-
erating pseudorandom values, and Ve receives a corresponding public informa-
tion, which will enable Ve to later check whether the pseudorandom values are
generated correctly. This set-up assumption is modeled as a functionality Fpkif

that internally runs the Init algorithm and accordingly distributes the result,
i.e., the seed to P and the public information to Ve. The goal of having Fpkif is
to ensure that the seed is generated truly randomly, even at a malicious party
P. In practice this assumption can be realized in several ways, e.g., P and Ve

run a parallel coin tossing protocol, Init is executed in a trusted hardware or
in a phase of the protocol where P is guaranteed to behave honestly, or Init is
externally executed by a trusted entity who securely distributes the output. We
stress that, even if not very efficient, this phase has to be run only once.

The computing party P is initialized before its first run (via init), and then
it can be invoked (via comp) as a subroutine for computing programs (storing
proofs about the execution) and publicly announcing the results. Moreover, P
reacts to network requests (via vr) to prove statement about its announced
results. The auditor Ve is invoked by Fpkif for the initialization of P (via init),
and then can be invoked (via vr) as a subroutine to verify publicly announced
results. Last, Ve reacts to network announcements of P (via cp) that a result
has been computed. The computing party P, upon init, queries both set-up
functionalities Fcrs and Fpkif in order to receive the public parameters and the
seed for the pseudo-random generator. Upon an invocation (comp, p, s , sid) with
a program p and secret inputs s , P computes the program, adds a proof to the
log and publicly announces the result. Upon a network message (vr, re, p, sid)
from the authenticated channel with Ve, P outputs the corresponding proof, or
an error message if such a proof does not exist.

The auditor Ve, upon being called by an initialization message (init) from
the seed generation, queries in turn Fcrs for the CRS and then stores all values.
Upon a network message (prf, re, p, cnt , sid) over the authenticated channel
Fauth with P, Ve stores the message and notifies the environement. Upon an
invocation (vr, re, p, cnt , sid), the auditor first asks via Fauth the computing
party P for a proof, and then verifies this proof and outputs the result to the
environment.

Ideal Functionality for Accountable Computation. The desired security
properties for accountable randomized computation are captured by the ideal
functionality described in Figure 2. The functionality offers the same interface to
the environment as the protocol template and represents the “ideal” behavior of
the protocol. In addition, however, the functionality explicitly allows the attacker
to intercept messages, and it internally maintains a randomness function Rase

for modeling pseudorandomness.
The ideal functionality has interfaces to both the channel from the environ-

ment to P and the channel from the environment toVe. Therefore, we distinguish
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On (init) from E
for honest P

se
$← {0, 1}η

se := se; cnt := 0
send (init) to A
output (initd, cnt)
to E from P

On (comp, p, s , sid)
from E for honest P

if p ∈ LR then
store tc := cnt
run re := Eval

Rase(p, cnt, s)
sta(sid) := (re, p, cnt)
wit(re, p, cnt , sid) := s
pe(sid) := (prf, re, p, tc, sid)
cnt := cnt+ 1
send (prf, re, p, tc, sid) to A
P outputs (re, p, tc, sid) to E

On (deli, sid) from A
let (prf, re, p, cnt , sid) := pe(sid)
store sta(sid) := (re, p, cnt)
Ve outputs (cp, re, p, cnt , sid) to E

Rase: When called on (cnt)

if P is honest then
r

$← Rg(F); output r
else
r := Eval(F, cnt , se); output r

On (vr, re, p, cnt , sid) from E for hon-
est Ve

if (re, p, cnt) = sta(sid) then
send (vr, re, p, cnt , sid) to A
wait for a response (deli, s ′, sid)
if P is honest
then secr := wit(re, p, cnt , sid)
else secr := s ′

if (re, pg) = (re, p) ∧ re =
Eval

Rase(p, tc, secr, se)
then output (re, p, 1) to E
else output (re, pg, 0) to E

Fig. 2. The ideal functionality for accountable computation

from which of these channels an environment message comes and to which we
output messages. Moreover, the functionality maintains internal (shared) data-
structures, such as sta and wit which are used for verification, and se which is used
for pseudo-random values.

Upon (init) for P, the functionality honestly draws a random seed and no-
tifies the attacker that it has been initialized. Upon (comp, p, s , sid), the ideal
functionality computes the program on the inputs, stores the secret inputs for
later verification, and publicly announces the result. Upon a message (deli, sid)
by the attacker, the statement is registered in pg and the environment is notified.
Upon (vr, re, p, cnt , sid), the functionality recomputes the result with the stored
witness. We stress that for malicious parties the attacker is allowed to give the
witnesses for the statement in the deli message. Otherwise, the simulator does
not work, because the real protocol does not reveal the proof earlier.

In contrast to the real protocol, for honest P the functionality returns truly
random values as a result of Rase, instead of the result of the pseudorandom
function. This basically models that the pseudo-random generation should satisfy
the usual notion of pseudorandomness, in which the challenger is always honest.
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We stress that for dishonest parties P (and honest Ve) our ideal functionality
still guarantees that the PRF has been honestly computed. Malicious parties in
the ideal model are canonically modeled by merely forwarding the input to the
attacker and storing its results in the internal data-structures, such as sta.

4 Instantiations of Accountable Computation Schemes

Now that we have a clear definition of accountable randomized computation, we
will show how it can be realized by means of suitable cryptographic tools. First,
we describe below a generic paradigm to achieve this notion. However, since
in the most generic case this generic construction may lead to rather inefficient
instantiations, we will then show how to realize efficient accountable randomized
computation for a significant class of computations.
A generic construction. The basic idea is to use UC-secure protocols for
non-interactive zero-knowledge proofs, a perfectly binding commitment, and a
pseudorandom function. Moreover, we assume the availability of ideal function-
alities for the generation of the common reference string, the random sampling of
a seed for the PRF, and for implementing authenticated channels (e.g., using sig-
natures). At a high level, the generic scheme works as follows. In the setup phase,
the parties ask for the common reference string for the NIZK proof system. Next,
to initialize the system, every user invokes the ideal functionality in order to ob-
tain a random seed se of a pseudorandom function Fse . It also samples random
coins opense , and computes a commitment C = Com(se; opense), which is pub-
lished in the authenticated log. The pair se, opense is instead maintained by the
party. Later, whenever a party is asked to compute a function p on inputs s , it
will compute re = p(s) and will create a proof π using the NIZK proof system for
the NP statement “∃s : output = p(s)”. To prove correctness of randomness gen-
eration, i.e., that r = Fse(cnt), the user can use the same approach and generate
a proof for the statement “∃(se, opense) : r = Fse(cnt)∧C = Com(se; opense)”.
The proof Π = (p, re, π, cnt) is published in the log. Finally, the auditor can
verify proofs by running the verification procedure of the NIZK proof system.

4.1 Useful Tools and Definitions

Before describing our efficient instantiation, here we introduce the algebraic tools
and the cryptographic primitives that will be useful in our construction.

Bilinear groups. Let G(1k) be an algorithm that on input the security pa-
rameter 1k outputs a tuple ppBM = (p,G1,G2,GT , e) such that: p is a prime of
at least k bits, G1,G2,GT are groups of order p, and e : G1 × G2 → GT is an
efficiently computable and non-degenerate bilinear map.

The q-Decisional Diffie-Hellman Inversion (q-DDHI, for short) problem in G1

(same definition would hold in G2) is defined as follows.

Definition 1 (q-DDHI). Let (p,G1,G2,GT , e)
$← G(1k), g1 ∈ G1 be a genera-

tor, and x
$← Zp be chosen at random. Let T be the tuple (g1, g

x
1 , g

x2

1 , . . . , gx
q

1 ),
and Z be a randomly chosen element of G1. We define the advantage of an
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adversary A in solving the q-Decisional Diffie-Hellman Inversion problem as
AdvqDDHI

A (k) =
∣
∣Pr[A(p, T, g1/x) = 1]− Pr[A(p, T, Z) = 1]

∣
∣, where the proba-

bility is taken over the random choices of G, x, Z and the random coins of A.
We say that the q-DDHI Assumption holds in G1 if for every PPT algorithm A,
and for any q polynomial in k, the advantage AdvqDDHI

A (k) is negligible.

Groth-Sahai proof system. Groth and Sahai [13] describes a way to generate
efficient, non-interactive, witness-indistinguishable proofs for statements in the
language LGS of so-called “pairing product equations”. If {Xi}mi=1 ∈ G1 and
{Yi}ni=1 ∈ G2 are variables, and {Ai}ni=1 ∈ G1, {Bi}mi=1 ∈ G2, ai,j ∈ Zp and
tT ∈ GT are constants, LGS is the language of equations of the following form:

n∏

i=1

e(Ai,Yi)
m∏

i=i

e(Xi,Bi)
m∏

i=1

n∏

j=1

e(Xi,Yj) = tT

The Groth-Sahai proof system can be instantiated in prime order groups by
assuming its security based on either the SXDH or Decision Linear assumptions.

The main technique behind Groth-Sahai proofs is the use of specific commit-
ment schemes that allow to commit to elements in G1 or G2. In particular, the
proof system generates a common reference string which can be of two different
and indistinguishable forms. When the CRS is instantiated for perfect soundness,
the commitment is perfectly binding, whereas in the witness-indistinguishability
setting the CRS leads to a perfectly hiding commitment. More importantly, the
two modes of generation are computationally indistinguishable under the SXDH
(resp. DLin) assumption, and both modes allow trapdoors that work as fol-
lows. In the perfectly binding setting, commitments have the form of ElGamal
(resp. Boneh-Boyen-Shacham) ciphertexts, and the trapdoor is the decryption
key, which thus allows to make the commitments extractable. In the perfectly
hiding setting, instead, the trapdoor allows to equivocate the commitments, i.e.,
to create a commitment to some (random) value gr1, and to later open it to a
different value gx1 . These trapdoors are usually referred to as the extraction and
simulation trapdoor respectively.

For lack of space, we refer the interested reader to [13] for a detailed
and formal description of the Groth-Sahai proof system. Here we recall that
such a scheme is defined by three algorithms (GS.Setup,GS.Prove,GS.Ver)
that allow to, respectively, generate the parameters, create proofs and ver-
ify proofs. Moreover, for security, the system is also equipped with “ex-
traction” and “simulation” algorithms (GS.ExtractSetup,GS.Extract,
GS.SimSetup,GS.SimProve). In its basic instantiation, the Groth-Sahai
scheme provides witness-indistinguishable proofs. However, Groth and Sahai in-
terestingly show that for certain cases these techniques can be used to achieve
zero-knowledge [13]. A significant case is the one in which all the equations being
simultaneously satisfied have the constant value tT = 1, the identity element in
GT . Other statements have been shown to be modifiable in order to obtain zero-
knowledge-friendly statements. We refer the interested reader to [13] for more
details. For the sake of our work, we denote this subset of LGS that allows for
zero-knowledge proofs as LGS−ZK.



50 M. Backes, D. Fiore, and E. Mohammadi

The pseudorandom number generation. As a tool for generating the ran-
domness in our accountable computation we use the following pseudorandom

function Fs(c) = g
1

s+c

1 , which is also known as Boneh-Boyen weak signature [5],
and Dodis-Yampolskiy PRF [9]. The function is proven pseudo-random under
the q-DDHI assumption in G1, and for a domain D of size q where q is polyno-
mial in the security parameter. We observe that the restriction on the domain’s
size is not a severe limitation in our setting as we will use the function in a
stateful way to generate a sequence of values Fs(1), Fs(2), . . .. The number of
values is bounded by the the system’s running time which is polynomial in the
security parameter. More importantly for our application, the function is known
to allow for efficient Groth-Sahai proofs. The idea of using zero-knowledge proofs
to show the correctness of the outputs of a pseudorandom function is somewhat
similar to the notion of simulatable verifiable random functions [7], with the only
exception that in the latter case proofs do not need to be fully zero-knowledge.
Belenkiy, Chase, Kohlweiss, and Lysyanskaya point this out [3] and propose a
construction based on Groth-Sahai proofs.

4.2 An Efficient Instantiation of Accountable Computation

In this section we show how to realize accountable randomized computation for
the language LGS−ZK of pairing product equations with zero-knowledge state-
ments. It is worth noting that using LGS−ZK one can prove the simultaneous
satisfiability of multiple algebraic equations whose degree is up to 2. In the de-
scription of our scheme we give an explicit description of the algorithms F and
F.Prove for the generation and the verification of the generated pseudorandom
values. These algorithms are however a specific case of computations and proofs.

– Setup(1k): generate the description of bilinear groups ppBM =

(p,G1,G2,GT , g1, g2, e) and the parameters ppGS
$← GS.Setup(ppBM ) of

the Groth-Sahai proof system. Return pp = (ppBM , ppGS).

– Init(pp): as a seed, sample a random value s
$← Zp and random opening

opens. The party keeps a secret key fsk = (s, opens) while a public verifica-
tion key is fpk = Com(gs2; opens) is published to the log.

– Prov(pp, fsk , p, s): compute re = p(s), run π
$← GS.Prove(ppGS, St ,w)

where the statement St is created from the program p and the result re,
whereas the witness is the secret input s . Output Π = (p, re, π, cnt).

– F(pp, fsk , cnt): increment the counter cnt ← cnt +1, and output y = g
1

s+cnt

1 .
– F.Prove(pp, fsk , cnt): proving the correctness of a pseudorandom value y =

F(pp, fsk , cnt) basically consists in creating a composable NIZK proof π for
the language LPRF = {fpk , cnt , y : ∃s, opens : fpk = Com(gs2; opens) ∧ y =

g
1

s+cnt

1 }6. Output Π = (F, y, π, cnt).
– V(pp, fpk , Π): parse Π as (p, re, π, cnt). Use the verification algorithm

of Groth-Sahai to verify the proof π with respect to (public) values
fpk , p, re, cnt .

6 Belenkiy et al. show in [3] how to create such a proof using Groth-Sahai.
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In terms of performances, the efficiency of the above instantiation heavily
depends on the efficiency of the Groth-Sahai scheme. It is worth noting that
although at the end our solution is not as efficient as CSAR, it is though the
first providing such a strong privacy guarantee.

To prove the security of our accountable computation we will show that it
realizes the ideal functionality of accountable randomized computation. In using
the above instantiation in our protocol template we require the generation of
different GS parameters ppGS for every prover party. Generating different GS
parameters, i.e., a different CRS, for every party avoids the need of being able
to extract and simulate with the same CRS, which in turn allows us to use more
efficient GS constructions. We stress that it is possible to use a strengthened GS
proof system that allows for simultaneous simulation and extraction with the
same CRS, and then to use only one CRS for all parties. However, since in our
scenario we anyway assume the distribution of a public key for every prover, our
restriction of using many CRS would not significantly weaken the set-up model.

Theorem 1. Let Π be our protocol’s template instantiated with the algorithms
from Section 4.2, and let F be the ideal functionality from Figure 2. If the q-
DDHI assumption holds in G1 and Groth-Sahai is secure, then Π securely UC-
realizes F .
For lack of space, the proof of this theorem appears in the full version.

5 Using Verifiable Randomness Privately: Signatures

The previous section describes an accountable randomized computation for the
language LGS−ZK of pairing product equations (of a certain form), and for a
specific pseudorandom function Fs(x). It is worth noting that the generated
(pseudo)randomness have a specific structure: the values are elements of the
group G1. While in general one can use a suitable hash function in order to
generate, e.g., binary strings out of group elements, such an arbitrary use of
the randomness does not always allow for efficient zero-knowledge proofs. To be
more concrete, if one wants to prove the correctness of a certain computation
in which a value R generated using Fs(cnt) is one of the secret inputs, then R
must be a variable in the language LGS−ZK, i.e., R must be in G1.

Such a situation leaves us with an open question about the uses of the ac-
countable randomness generated by our protocol. In this section, we address this
problem and we propose an application to an important cryptographic primitive:
digital signatures. In digital signatures, randomness is usually used to: (1) gen-
erate the secret signing key, (2) create the signature. If the randomness source is
bad, the signature might be forgeable. Our scheme assumes a good randomness
seed and given that seed proves that all signatures use “good” randomness.

5.1 An Accountable Signature Scheme

In this section, we tackle this problem and we propose a signature scheme that
fits the setting of our accountable randomized computation, i.e., that of bilin-
ear pairings. To achieve this goal, the faced technical challenge is that virtually
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all existing constructions use either secret keys or random values that are “in
the exponent”. We solved this problem by proposing a new scheme which has
the desired property, namely both the secret key and the randomness used in the
signing algorithm are group elements. The proposed construction works within
the accountable computation system. In particular, it uses the same pseudoran-
dom generator and shares the same state.

The Security Model. Our signature scheme is stateful, in the sense that
every message is signed with respect to a counter which gets incremented every
time (in particular, the same counter is never re-used), and the signature is
verified against the counter. For security, we consider the standard notion of
unforgeability under chosen message attack in the stateful setting. This model
considers an adversary that has access to a signing oracle and whose goal is to
produce a forgery that either verifies against a “new” counter (i.e., a counter
greater than the one in the system after the last query), or it verifies for an
“old” counter (i.e., one for which a signature was obtained from the oracle) but
for a message that is different from the one asked to the oracle.

Since our signature scheme is part of the accountability system (i.e., it shares
the same parameters) we have to model the fact that an adversary may ob-
tain additional information. For instance, it might ask for proofs about arbi-
trary statements. For this reason, we consider an extension of the unforgeability
game, in which the adversary is granted access to an additional oracle O(·)
which can be either one of the algorithms Prov(pp, fsk , ·, s), F(pp, fsk , cnt),
F.Prove(pp, fsk , cnt). We assume that F and F.Prove are computed on the
next counter, whereas Prov is evaluated on a program p chosen by the adver-
sary. For lack of space, a formal definition of our unforgeability experiment will
appear only in the full version.

Our Construction. Before describing our construction, we give a high level
description of our techniques. Our starting point is an idea, earlier proposed
by Bellare and Goldwasser, for building signature schemes from zero-knowledge
proofs [4]. Roughly speaking, Bellare-Goldwasser’s scheme works as follows. The
key generation consists of generating the seed s of a PRF and publishing its
commitment C as the public verification key. Next, to sign a message m one
computes the PRF on the message, y = fs(m), and proves in zero-knowledge
that y = fs(m) and s is the same value in the commitment C.

In our case, the pseudorandom function is computed on a state, the counter,
and thus we cannot apply it to an arbitrary message m. To solve this issue
we create a signature on m by using the randomness R = Fs(cnt) ∈ G1 and
computing a value σ = hm · R, where h is also random value that is kept as
the secret key. The actual signature is σ together with a zero-knowledge proof
that σ is indeed created as hm · Fs(cnt). The security relies on the soundness
and zero-knowledge properties of the proof system, and the observation is that
such value σ is essentially an information theoretic one-time MAC on m (if one
assumes that h is random and so is every R).
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More in detail, our construction works as follows. Let pp be the public pa-
rameters of the system consisting of a tuple pp = (p,G1,G2,GT , g1, g2, e, ppGS)
where ppGS are the parameters of a NIZK Groth-Sahai proof system.

– SigKeyGen(pp): use the pseudorandom function to generate h ←
F(pp, fsk , cnt) ∈ G1. Next, commit to h using random coins openh, set
vk = Com(h, openh) and sk = (h, openh).

– Sign(pp, fsk , sk ,m). Let m ∈ Zp \ {0} be the message, and let cnt be the
system’s counter for randomness generation. A signature on m is generated
as follows. First, use the pseudorandom function to generate randomness
R← F(pp, fsk , cnt). Next, compute σ ← hm ·R, C′

h = Com(h; open ′
h) CR =

Com(R; openR), C
′
R = Com(R, open′

R), a composable NIZK proof π1 for the
statement ∃(h, open ′

h, R, open ′
R) : σ = hm ·R∧C′

h = Com(h, open ′
h)∧C′

R =
Com(R; open ′

R), a composable NIZK proof π2 that ∃(gs2, opens, R, open′
r) :

CR = Com(R; openR) ∧R = Fs(cnt), and composable NIZK proofs πR and
πh proving that CR and C′

R, and vk and C′
h commit to the same values.

Output Σ = (σ,CR, C
′
R, C

′
h, π1, π2, πh, πR).

– SigVer(pp, vk ,m, cnt, Σ): use the verification algorithm of Groth-Sahai to
verify proofs π1, π2, πR, πh.

Theorem 2. If the Groth-Sahai proof system is secure, and the function Fs(x)
is pseudorandom, then the signature scheme is unforgeable.

For lack of space, the proof appears only in the full version.

6 Related Work

Previous work proposed the use of accountability for several goals, such as to
achieve real-world security [19], to incentivize cooperative behavior [8], to foster
innovation and competition in the Internet [20,1], and to design dependable
networked systems [24]. Systems have been built to provide accountability for
both deterministic and randomized systems. In the previous section we already
mentioned PeerReview [15] and its extension, CSAR [2]. Another example is
CATS [25], a network storage service with strong accountability properties. The
basic idea of CATS is to use a trusted publishing medium for publishing the
logs and to ensure their integrity. The logs are then checked against a set of
rules that describe the expected behavior of a node. Another system, repeat and
compare [22], uses the accountability approach to guarantee content integrity in
a peer-to-peer content distribution network built over untrusted nodes. Its basic
idea is to use a set of trusted nodes that locally reproduce a random sample
of the generated content and compare it to the one published by the untrusted
nodes. Recently, another system, NetReview [14], successfully built upon the idea
of PeerReview to enable the detection of faults caused by ISPs in the Border
Gateway Protocol (BGP).
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On the definitional side, Küsters, Truderung, and Vogt introduced a definition
of accountability and compared it to the notion of verifiability [17]. They show
that verifiability is weaker than accountability as the former does not require that
a malicious party is always detectable. We notice that our definition implicitly
assumes authenticated channels. Hence, it does not only capture verifiable com-
putation, but also accountable computation.

The idea of generating accountable randomness is closely related to the notion
of verifiable random functions (VRFs) [21], and simulatable VRFs [7]. In a nut-
shell, VRFs are pseudo-random functions that allow for publicly verifiable proofs
about the correctness of the function’s outputs. Moreover, all values for which
a proof has not been issued are guaranteed to remain pseudorandom. Although
this is intuitively the same requirement as in our case, there are a couple of dif-
ferences due to some technical details. The difference mainly deals with the fact
that our notion is simulation-based in a composability framework, and should
not reveal any information about the seed, a property which is not necessarily
captured by (simulatable) VRFs. To this extent, our techniques are related to
the extension of simulatable VRFs proposed by Belenkiy, Chase, Kohlweiss, and
Lysyanskaya [3], from which we borrow some of the technical ideas.

7 Conclusion and Future Work

In this paper we have investigated the notion of accountability for systems that
execute randomized computations and want to keep the inputs of these compu-
tations private. We formalized a rigorous definition that models all the essen-
tial security properties, and we showed an efficient instantiation for interesting
classes of computations based on techniques of the Groth-Sahai proof system.
Furthermore, we proposed a digital signature scheme that enjoys the accountabil-
ity properties of our system: the signer can convince an auditor that the secret
signing key and the signatures are correctly generated (i.e., by using good ran-
domness), and the auditor neither learns the signature key nor the randomness
used for the signatures. For future work, it would be interesting to explore exten-
sions of our scheme to provide accountability for other important cryptographic
primitives, such as encryption, as well as to investigate efficient instantiations
for richer classes of computations.
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