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Abstract. We study ballot independence for election schemes:

– We formally define ballot independence as a cryptographic game and
prove that ballot secrecy implies ballot independence.

– We introduce a notion of controlled malleability and show that it is
sufficient for ballot independence. We also show that non-malleable
ballots are sufficient, but not necessary, for ballot independence.

– We prove that ballot independence is sufficient for ballot secrecy
under practical assumptions.

Our results show that ballot independence is necessary in election schemes
satisfying ballot secrecy. Furthermore, our sufficient conditions enable
simpler proofs of ballot secrecy.

1 Introduction

Voters should be able to express their free will in elections without fear of retri-
bution; this property is known as privacy. Cryptographic formulations of privacy
depend on the specific setting and ballot secrecy1 [2–4] has emerged as a de facto
standard privacy requirement of election schemes.

– Ballot secrecy. A voter’s vote is not revealed to anyone.

Ballot secrecy provides privacy in an intimidation-free environment and stronger
properties such as receipt-freeness and coercion resistance [5] provide privacy
in environments where intimidation may occur. Bernhard et al. [6–8] propose
a cryptographic formalisation of ballot secrecy. However, we show that their
definition allows election schemes that reveal voters’ votes to be proven secure
and we strengthen the definition to prevent this issue.

Ballot independence [4, 9] is seemingly related to ballot secrecy.

– Ballot independence. Observing another voter’s interaction with the election
system does not allow a voter to cast a meaningfully related vote.

� The full version of this paper is available as an IACR Cryptology ePrint [1].
1 The terms privacy and ballot secrecy occasionally appear as synonyms in the liter-
ature and we favour ballot secrecy because it avoids confusion with other privacy
notions, such as receipt-freeness and coercion resistance, for example.
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Indeed, Cortier and Smyth [4, 10, 11] attribute a class of ballot secrecy attacks
to the absence of ballot independence. However, ballot independence has not
been formally defined and its relationship with ballot secrecy is unknown. We
provide a definition of ballot independence and show that ballot secrecy and
ballot independence coincide in practical settings.

In traditional paper-based elections, physical mechanisms can be used to
achieve privacy, for instance, ballots are completed in isolation inside polling
booths, placed into locked ballot boxes, and mixed with other ballots before
tallying. (See Schneier [12] for a detailed, informal security analysis of Papal
elections.) By comparison, the provision of ballot secrecy is more difficult in
end-to-end verifiable election schemes, since ballots are posted on publicly read-
able bulletin boards. Nonetheless, ballot secrecy is a de facto standard property
of election schemes and, hence, must be satisfied. The aforementioned physical
mechanisms also provide an assurance of ballot independence in paper-based
elections, however, the motivation for election schemes satisfying ballot inde-
pendence is unclear, indeed, Bulens, Giry & Pereira [13, §3.2] question whether
ballot independence is a desirable property of election schemes and highlight
the investigation of voting schemes which allow the submission of related votes
whilst preserving ballot secrecy as an interesting research direction. Moreover,
in the context of the Helios [14, 15] election scheme, Desmedt & Chaidos [16]
present a protocol which allows Bob to cast the same vote as Alice, with Alice’s
cooperation, and claim that Bob cannot learn Alice’s vote. In this paper, we
study the relationship between ballot secrecy and ballot independence and show
that the two properties coincide in practical settings.

Contribution and Outline. In Section 3 we show that the definition of ballot
secrecy by Bernhard et al. allows election schemes that reveal voters’ votes to be
proven secure and we present a stronger definition of ballot secrecy to prevent
this issue. In Section 4 we propose a definition of ballot independence and give
sufficient conditions to achieve this notion, including a definition of controlled-
malleable encryption. In Section 5 we prove that ballot secrecy implies ballot
independence, thereby providing an argument to end the ballot independence
debate: ballot independence is a necessary property of election schemes (assum-
ing ballot secrecy is required). In addition, we critique (Section 5.1) the results
by Desmedt & Chaidos and argue that their security results do not support
their claims. In Section 6 we present a practical class of election schemes (which
includes Helios) for which ballot secrecy and ballot independence coincide.

Related work. The concept of independence was introduced by Chor et al. [17]
and studied in the context of election schemes by Gennaro [9]. Cortier and
Smyth [4, 10, 11] have discovered attacks on ballot secrecy in several election
schemes and considered the relationship to independence [4, Section 7]; their
evidence suggests ballot secrecy implies ballot independence in homomorphic
voting systems such as Helios. However, Cortier & Smyth did not make any
formal claims, because ballot independence had not been formally defined. By
comparison, in this paper, we present a formal definition of ballot independence
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and prove that ballot secrecy implies ballot independence. Bernhard, Pereira &
Warinschi [7] show that a non-malleable encryption scheme is sufficient to build
an election scheme satisfying ballot secrecy and our work generalises their result.

2 Preliminaries

We adopt standard notation for the application of probabilistic algorithms: if
A is a probabilistic algorithm, then A(x1, . . . , xn; r) is the result of running A
on input x1, . . . , xn and coins r. We let y ← A(x1, . . . , xn) denote picking r at
random and assigning the output of A(x1, . . . , xn; r) to the variable y. If S is
a finite set, then x ← S assigns a uniformly chosen element of S to x. If α is
neither a probabilistic algorithm nor a set, then x ← α assigns α to x. Vectors
are denoted using boldface, for example, x. We extend set membership notation
to vectors: we write x ∈ x (respectively, x �∈ x) if x is an element (respectively,
x is not an element) of the vector x.

2.1 Non-malleable Encryption

Let us recall the standard syntax for asymmetric encryption schemes.

Definition 1 (Asymmetric encryption scheme). An asymmetric encryp-
tion scheme is a triple of efficient algorithms (Gen,Enc,Dec) such that:

– The key generation algorithm Gen takes a security parameter 1n as input
and outputs a key pair (pk , sk), where pk is a public key and sk is a private
key.

– The encryption algorithm Enc takes a public key pk and message m as input,
and outputs a ciphertext c.

– The decryption algorithm Dec takes a private key sk and ciphertext c as
input, and outputs a message m or the special symbol ⊥ denoting failure.

Moreover, the scheme must be correct: for all (pk , sk) ← Gen(1n), we have for
all messages m and ciphertexts c ← Encpk (m), that Decsk (c) = m with over-
whelming probability.

Non-malleability [18–20] is a standard computational security model used
to evaluate the suitability of encryption schemes. Intuitively, if an encryption
scheme satisfies non-malleability, then an adversary is unable to construct a
ciphertext “meaningfully related” to a challenge ciphertext, thereby capturing
the idea that ciphertexts are tamper-proof. Formally, Definition 2 recalls the
non-malleability game proposed by Bellare et al. [19].

Definition 2 (Non-malleable encryption). Let Π = (Gen,Enc,Dec) be an
asymmetric encryption scheme, A = (A1, A2) be an adversary, and

NM-CPAA,Π(n) := |SuccCPA
A,Π (n)− SuccCPA

A,Π,$(n)|
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where SuccCPA
A,Π (n) and SuccCPA

A,Π,$(n) are defined below, and n is a security pa-
rameter.

SuccCPA
A,Π (n) = Pr [(pk , sk)← Gen(1n); (M, s)← A1(pk );

x←M ; y ← Encpk (x); (R,y)← A2(M, s, y);

x← Decsk (y) : y �∈ y ∧ ⊥ �∈ x ∧ R(x,x)]

SuccCPA
A,Π,$(n) = Pr [(pk , sk)← Gen(1n); (M, s)← A1(pk );

x, x′ ←M ; y ← Encpk (x); (R,y)← A2(M, s, y);

x← Decsk (y) : y �∈ y ∧ ⊥ �∈ x ∧ R(x′,x)]

In the above games we insist that the message space is valid (that is, |x| = |x′|
for any x, x′ ← M given non-zero probability in the message space) and sam-
plable in polynomial time, and the relation R is computable in polynomial time.
We say Π satisfies NM-CPA if for all probabilistic polynomial-time adversaries
A and security parameters n, there exists a negligible function negl such that
NM-CPAA,Π(n) ≤ negl(n).

3 Election Schemes and Ballot Secrecy

Based upon Bernhard et al. [6–8], we define a syntax for election schemes as
follows.

Definition 3 (Election scheme). An election scheme is a tuple of efficient
algorithms (Setup,Vote,BB,Tally) such that:

– The setup algorithm Setup takes a security parameter 1n as input and out-
puts a bulletin board bb, vote space m, public key pk , and private key sk,
where bb is a multiset and m is a set.

– The vote algorithm Vote takes a public key pk and vote v ∈ m as input, and
outputs a ballot b.

– The bulletin board algorithm BB takes a bulletin board bb and ballot b as
input, where bb is a multiset. It outputs bb∪{b} if successful (i.e., b is added
to bb) or bb to denote failure (i.e., b is not added).

– The tally algorithm Tally takes a private key sk and bulletin board bb as
input, where bb is a multiset. It outputs a multiset v representing the election
result if successful or the empty set ∅ to denote failure, and auxiliary data
aux .

Moreover, the scheme must satisfy the following correctness property: for all
parameters (bb0,m, pk , sk) ← Setup(1n), votes v ∈ m, multisets bb, ballots
b ← Votepk (v), bulletin boards bb′ ← BB(bb, b) and tallying data (v, aux ) ←
Tallysk (bb) and (v′, aux ′)← Tallysk (bb

′), we have with overwhelming probability
that bb′ = bb ∪ {b} and if v �= ∅, then v′ = v ∪ {v} and |v| = |bb|, otherwise,
v′ = ∅.
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In comparison with earlier presentations by Bernhard et al., Definition 3 is
stricter, since we explicitly define the bulletin board and election result as mul-
tisets. Moreover, the correctness condition, asserting that the election result
corresponds to the multiset of votes cast, is new. Although the correctness con-
dition restricts the applicability of our definition – for example, we cannot model
schemes with weighted votes nor schemes which only reveal the winning candi-
date (as opposed to the number of votes for each candidate) – we believe it
is useful for simplicity. In addition, there are some minor differences in error
handling and we merge some functionality into a single function2.

We demonstrate the applicability of our definition by recalling the construc-
tion (Definition 4) for election schemes proposed by Bernhard et al. [6, 7]. We
stress that more sophisticated schemes can also be captured – for example, Bern-
hard et al. [6–8] model Helios – but the following scheme is sufficient for our
purposes.

Definition 4 (Enc2Vote). Given an asymmetric encryption scheme Π = (Gen,
Enc,Dec), we define the election scheme Enc2Vote(Π) as follows.

– Setup takes a security parameter 1n as input and outputs (∅,m, pk , sk), where
(pk , sk)← Gen(1n) and m is the encryption scheme’s message space.

– Vote takes a public key pk and vote v ∈ m as input, and outputs Encpk (v).
– BB takes a bulletin board bb and ballot b as input, where bb is a multiset.

If b ∈ bb, then the algorithm outputs bb (denoting failure), otherwise, the
algorithm outputs bb ∪ {b}.

– Tally takes as input a private key sk and a bulletin board bb, where bb is a
multiset. It outputs the multiset {Decsk (b) | b ∈ bb} and auxiliary data ⊥.

Intuitively, given an asymmetric encryption scheme Π satisfying NM-CPA, the
construction Enc2Vote(Π) derives ballot secrecy from Π until tallying and the
Tally algorithm maintains ballot secrecy by returning the number of votes for
each candidate as an unordered multiset of votes3.

Ballot Secrecy. Ballot secrecy is a de facto standard property of election
schemes and, based upon Bernhard et al. [6–8], we formalise a cryptographic
game for ballot secrecy (Definition 5). We will describe the differences between

2 In essence, the tally algorithm defined by Bernhard et al. outputs a tally τ and an
additional algorithm is used to compute the election result v from τ . We combine the
functionality of these two algorithms into a single function but distinguish between
the result v and auxiliary data aux , which is typically used to store signatures of
knowledge proving that the election result has been correctly computed from the
bulletin board.

3 Definition 4 rectifies a mistake in the presentation by Bernhard, Pereira & Warin-
schi [7] which outputs a vector of votes (rather than a multiset) ordered by the time
at which each vote was cast and therefore does not provide ballot secrecy, since there
is a mapping between the order in which votes were cast and the votes. (Bernhard et
al. [6] avoid this problem in a similar fashion.)
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our formalisation and earlier presentations after our definition. Informally, our
game proceeds as follows. First, the challenger executes the setup algorithm to
construct a bulletin board bb0, a vote space m, a public key pk , and a private
key sk ; the challenger also initialises a bulletin board bb1 as a copy of bb0 and
selects a random bit β. Secondly, the adversary executes the algorithm A1. The
algorithm A1 has access to an oracle O as follows: O(v0, v1) allows the adversary
to honestly cast a vote v0 ∈ m on bulletin board bb0 and honestly cast a vote
v1 ∈ m on bulletin board bb1, where the votes are cast using ballots constructed
by the Vote algorithm; O(b) allows the adversary to cast a ballot b, where b
is constructed by the adversary and might be rejected by the bulletin board;
and O() returns the bulletin board bbβ. Thirdly, the challenger computes the
election result v as follows: if the honestly cast votes on the bulletin board bb0
correspond to the honestly cast votes on the bulletin board bb1, then the chal-
lenger reveals the election result for bbβ , otherwise, the challenger reveals the
election result for bb0, thereby preventing the adversary from trivially revealing
β when the honestly cast votes differ. (The distinction between bb0 and bb1 is
trivial when the honestly cast votes differ, because the adversary can test for the
presence of honestly cast votes in the election result.) Formally, we introduce
the multisets L0 and L1 to record the honestly cast votes on bulletin boards bb0
and bb1, and model the correspondence between bulletin boards as an equality
test on L0 and L1, that is, we compute (v, aux )← Tallysk (bbα) such that α = β,
if L0 = L1, and α = 0, otherwise. Finally, the adversary executes the algorithm
A2 on the election result v and any state information s provided by A1. The
election scheme satisfies ballot secrecy if the adversary has less than a negligible
advantage over guessing the bulletin board she interacted with.

Definition 5 (IND-SEC: Ballot secrecy). Let Γ = (Setup,Vote,BB,Tally) be
an election scheme, A = (A1, A2) be an adversary, and IND-SECA,Γ (n) be the
quantity defined below, where n is the security parameter.

2 · Pr [L0 ← ∅;L1 ← ∅; (bb0,m, pk , sk)← Setup(1n); bb1 ← bb0; β ← {0, 1};
s← AO

1 (m, pk); (v, aux )← Tallysk (bbα) : A2(bbβ , v, aux , s) = β]− 1

In the above game, L0 and L1 are multisets, the oracle O is defined below, and
the bit α is defined as follows: if L0 = L1, then α = β, otherwise, α = 0.

– O(v0, v1) executes L0 ← L0 ∪ {v0};L1 ← L1 ∪ {v1}; b0 ← Votepk (v0); b1 ←
Votepk (v1); bb0 ← BB(bb0, b0); bb1 ← BB(bb1, b1), if v0, v1 ∈ m.

– O(b) assigns bb′β ← bbβ, executes bbβ ← BB(bbβ , b) and if bbβ �= bb′β, then
executes bb1−β ← BB(bb1−β , b).

– O() outputs bbβ.

We say Γ satisfies ballot secrecy if for all probabilistic polynomial-time adver-
saries A and security parameters n, there exists a negligible function negl such
that IND-SECA,Γ (n) ≤ negl(n).

Our game captures a setting where an adversary can cast ballots on behalf of
a subset of voters, whom we call dishonest voters, and controls the distribution
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of votes cast by the remaining voters, whom we call honest voters, but honest
voters always cast ballots constructed by the Vote algorithm. Furthermore, at
the end of the election, the adversary obtains the election result. Intuitively, if
the adversary loses the game, then the adversary is unable to distinguish between
the bulletin boards bb0 and bb1, hence, the adversary cannot distinguish between
an honest ballot b0 ∈ bb0 and an honest ballot b1 ∈ bb1, therefore, voters’ votes
cannot be revealed. On the other hand, if the adversary wins the game, then
there exists a strategy to distinguish honestly cast ballots. We stress that a
unanimous election result will always reveal all voters’ votes and we tolerate this
factor in our game by challenging the adversary to guess the bit β, rather than
the distribution of votes.

Comparing IND-SEC and earlier definitions. In comparison with earlier defini-
tions by Bernhard et al. [6–8], Definition 5 permits α ∈ {0, 1}, whereas, earlier
presentations implicitly4 insist α = 0. It follows that Definition 5 allows the
adversary to access auxiliary data generated by tallying bbβ , whereas, earlier
definitions only allow the adversary to access the auxiliary data generated by
tallying bb0. Accordingly, earlier definitions implicitly assume that auxiliary data
cannot be used to violate ballot secrecy, indeed, this corresponds to the descrip-
tion by Bernhard et al. [6, §2.2]: “[ballot secrecy] is satisfied if an adversary
[...] cannot learn anything about the votes of [...] honest voters beyond what can
be inferred from the election result.” Unfortunately, however, it is possible that
the auxiliary data can reveal voters’ votes. For example, a variant of Enc2Vote
(Definition 4) could define auxiliary data that maps ballots to decrypted ballots,
thereby violating ballot secrecy; indeed, as highlighted in Footnote 3, Bernhard,
Pereira & Warinschi [7] provided such a mapping in their variant of Enc2Vote.
As discussed, we permit α ∈ {0, 1}, rather than α = 0, thereby strengthening
Definition 5 in comparison with earlier definitions and, thus, overcoming the
limitations of previous works.

4 Ballot Independence

Intuitively, if an election scheme satisfies ballot independence, then an adversary
is unable to construct a ballot that will be accepted by the election’s bulletin
board and be meaningfully related to a non-adversarial ballot from the bul-
letin board [4, Section 7.2], thereby capturing the notion that accepted ballots
are tamper-proof. Building upon inspiration from non-malleable encryption, we
formalise ballot independence as a non-malleability game.

4.1 Non-malleability Game

The concept of non-malleability and first formalisation is due to Dolev, Dwork
& Naor [18,20]. Bellare et al. [19] build upon these results to introduce NM-CPA

4 Earlier presentations do not explicitly define a bit α, however, they always tally bb0
and this implicitly corresponds to α = 0 in Definition 5.
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(Definition 2) and based upon NM-CPA, we formalise ballot independence (Def-
inition 6) as a pair of cryptographic games: SuccBB

A,Π and SuccBB
A,Π,$. The first

three steps of both games are identical. First, the challenger sets up the keys,
vote space, and bulletin board. Secondly, the adversary gets the vote space m,
the public key pk and the board bb as input and must return a distribution M
on the vote space. The adversary may also read the board and submit ballots
of his own. Thirdly, the challenger samples a vote v from M . At this point the
two games diverge: in SuccBB

A,Π , the challenger constructs a ballot Votepk (v) and

adds it to the bulletin board; whereas, in SuccBB
A,Π,$, the challenger samples a

second vote v′ from M , constructs a ballot Votepk (v
′) and adds it to the bulletin

board. Fourthly, the adversary must compute a relation R which is intended to
distinguish the election results produced by the two games. Finally, the chal-
lenger tallies the election and evaluates the relation R on the vote v and, after
removing the challenge vote, the election result. The adversary’s advantage is the
difference between the probabilities that his relation is satisfied in each game.

Definition 6 (NM-BB: Ballot independence). Let Γ = (Setup,Vote,BB,
Tally) be an election scheme, A = (A1, A2) be an adversary, and

NM-BBA,Γ (n) := |SuccBB
A,Π(n)− SuccBB

A,Π,$(n)|

where SuccBB
A,Π(n) and SuccBB

A,Π,$(n) are defined below, and n is the security
parameter.

SuccBB
A,Π(n) = Pr [(bb,m, pk , sk)← Setup(1n); (M, s)← AO

1 (m, pk);

v ←M ; b← Votepk (v); bb← BB(bb, b); R← AO
2 (s);

(v, aux )← Tallysk (bb) : R(v, v\{v})]

SuccBB
A,Π,$(n) = Pr [(bb,m, pk , sk)← Setup(1n); (M, s)← AO

1 (m, pk);

v, v′ ←M ; b← Votepk (v
′); bb← BB(bb, b); R← AO

2 (s);

(v, aux )← Tallysk (bb) : R(v, v\{v′})]

In the above games we let O be defined as follows: O(b) executes bb← BB(bb, b)
and O() outputs bb. Moreover, we insist the vote space sampling algorithm M
and the relation R are computable in polynomial time, and for all v ← M we
have v ∈ m. We say Γ satisfies NM-BB (or ballot independence) if for all prob-
abilistic polynomial-time adversaries A and security parameters n, there exists
a negligible function negl such that NM-BBA,Γ (n) ≤ negl(n).

Intuitively, if an adversary wins the game, then the adversary is able to construct
a relation R which holds for a challenge ballot b ← Votepk (v) but fails for
b ← Votepk (v

′). However, we must avoid crediting the adversary for trivial and
unavoidable relations which hold iff the challenge vote appears in the election
result, hence, we remove the challenge vote from the election result. By contrast,
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if the adversary can derive a ballot containing the challenge vote and the bulletin
board accepts such a ballot, then the adversary can win the game. For example,
suppose an election scheme allows the bulletin board to accept duplicate ballots
and witness that an adversary can win the game as follows, namely, the adversary
selects M as a uniform distribution on m, calls O(b) with the challenge ballot
b, and defines a relation R(v, v) that holds iff v ∈ v. In this setting, R(v, {v})
always holds at the end of SuccBB

A,Π , whereas, R(v, {v′}) holds with probability

1/m at the end of SuccBB
A,Π,$, since v

′ is sampled independently from v. Finally, if
an adversary loses the game, then the adversary is unable to construct a suitable
relation, hence, there is no ballot which the bulletin board will accept such that
the ballot is related to Votepk (v) but not Votepk (v

′), therefore, the adversary
cannot cast a ballot which is meaningfully related to an honest voter’s ballot.

Comparing NM-BB and NM-CPA. The main distinction between the notion
of non-malleability (Definition 2) and our definition of ballot independence is:
NM-CPA universally quantifies over ciphertexts, whereas, NM-BB quantifies over
ballots accepted by the bulletin board. It follows that non-malleability for en-
cryption is intuitively stronger than ballot independence, since non-malleability
for encryption insists that the adversary cannot construct ciphertexts meaning-
fully related to the challenge ciphertext, whereas, ballot independence tolerates
meaningfully related ballots, assuming that they are rejected by the bulletin
board algorithm BB. For example, suppose an adversary A includes the chal-
lenge ciphertext in the vector y and observe that this adversary cannot win
NM-CPAA,Π(n), due to the constraint y �∈ y; by comparison, suppose an ad-
versary B copies the challenge ballot b and observe that this adversary can win
NM-BBB,Γ (n). Nonetheless, for ballot independence, the bulletin board must
not contain meaningfully related ballots and, hence, checking for meaningfully
related ballots is a prerequisite of the bulletin board algorithm BB.

Non-malleable Ballots are Sufficient. Non-malleability for encryption pre-
vents the adversary from constructing a ciphertext meaningfully related to the
challenge ciphertext and, hence, it follows that non-malleable ballots are suffi-
cient for ballot independence. Indeed, we can derive non-malleable ballots in our
Enc2Vote construction using encryption schemes satisfying NM-CPA.

Proposition 7. Given an encryption scheme Π satisfying NM-CPA, the election
scheme Enc2Vote(Π) satisfies ballot independence.

In Proposition 7, it is sufficient for the bulletin board algorithm, defined by
Enc2Vote(Π), to reject ballots that already appear on the bulletin board since
non-malleability prevents the adversary from creating ballots meaningfully re-
lated to honest voters’ votes (except for exact copies). The proof is essentially
the same as that of [7, Theorem 4.2].
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4.2 Indistinguishability Game

Our non-malleability game (NM-BB) captures an intuitive notion of ballot inde-
pendence, however, the definition is relatively complex and security proofs in this
setting are relatively difficult. Bellare & Sahai [21] observed similar complexities
with definitions of non-malleability for encryption and show that NM-CPA is
equivalent to a simpler, indistinguishability-based notion. In a similar direction,
we introduce an indisinguishability game IND-BB for ballot independence and,
based upon Bellare & Sahai’s proof, show that our games NM-BB and IND-BB
are equivalent.

We model ballot independence as an indistinguishability game between an
adversary and a challenger (Definition 8). Informally, the game proceeds as fol-
lows. First, the challenger initialises the bulletin board bb, defines the vote space
m, and constructs a key pair (pk , sk). Secondly, the adversary executes the algo-
rithm A1 on the public key pk and vote space m, and outputs the triple (v0, v1, s),
where v0, v1 ∈ m and s is some state information. Thirdly, the challenger ran-
domly selects a bit β, computes a challenge ballot b, and updates the bulletin
board with b. Fourthly, the adversary executes the algorithm A2 which outputs
some state t. Next, the challenger computes the election result v. Finally, the
adversary executes the algorithm A3 on the input t and v\{vβ}. The election
scheme satisfies ballot independence if the adversary has less than a negligible
advantage over guessing the bit β.

Definition 8 (IND-BB: Ballot independence). Let Γ = (Setup,Vote,BB,
Tally) be an election scheme, A = (A1, A2, A3) be an adversary, n be the security
parameter and IND-BBA,Γ (n) the cryptographic game defined below.

2 · Pr [(bb,m, pk , sk)← Setup(1n); (v0, v1, s)← AO
1 (m, pk ); β ← {0, 1};

b← Votepk (vβ); bb← BB(bb, b); t← AO
2 (s); (v, aux )← Tallysk (bb) :

A3(t, v\{vβ}) = β]− 1

In the above game we let O be defined as follows:

– O(b) executes bb← BB(bb, b)
– O() outputs bb

Moreover, we insist that v0, v1 ∈ m. We say Γ satisfies IND-BB (or ballot in-
dependence) if for all probabilistic polynomial-time adversaries A and security
parameters n, there exists a negligible function negl such that IND-BBA,Γ (n) ≤
negl(n).

Intuitively, if an adversary wins the game, then the adversary is able to dis-
tinguish between challenge ballots b ← Votepk (v0) and b ← Votepk (v1). As per
our NM-BB game, we avoid trivial and unavoidable distinctions by removing the
challenge vote from the election result.

Our ballot independence games are based on standard security models for
encryption: NM-BB is based on non-malleability whereas IND-BB game is based
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on indistinguishability. Bellare and Sahai [21] have shown that non-malleability
is equivalent to a notion of indistinguishability for encryption and we adapt their
proof to show that NM-BB and IND-BB are equivalent.

Theorem 9 (NM-BB = IND-BB). Given an election scheme Γ , we have Γ
satisfies NM-BB if and only if Γ satisfies IND-BB.

Theorem 9 relates the advantage of an adversary casting a vote meaningfully
related to an honest voter’s vote to an advantage in guessing the honest voter’s
vote, in a setting where the election result does not contain the honest voter’s
vote. The proof of Theorem 9 can be found in the full version of our paper [1].

4.3 Controlled Malleability Is Sufficient

Recall that ballot independence tolerates meaningfully related ballots, assuming
they are rejected by the bulletin board. It follows intuitively that we can weaken
the requirement for an NM-CPA encryption scheme in Proposition 7, assuming we
modify Enc2Vote’s bulletin board algorithm to reject ballots meaningfully related
to existing ballots on the bulletin board. We start with a simple example. Given
an encryption scheme satisfying NM-CPA, we can derive a new encryption scheme
by prepending a random bit to all ciphertexts and removing this bit before
decryption. This new encryption scheme does not satisfy NM-CPA, however, we
can derive an election scheme satisfying ballot independence using Enc2Vote if
we modify Enc2Vote’s bulletin board algorithm as follows: given a bulletin board
bb and ballot b, reject b if it is identical to any ballot already on bb up to the
first bit. This example shows that non-malleable ballots are not necessary for
ballot independence. Let us now formalise a notion of controlled malleability5 ,
denoted NM-CPA/R (pronounced “NM-CPA modulo R”), which we will show is
sufficient for ballot independence.

Definition 10 (Controlled malleability). Let Π = (Gen,Enc,Dec) be an
asymmetric encryption scheme and R be an efficiently computable equivalence
relation on Π’s ciphertext space. We say that Π satisfies NM-CPA/R (or con-
trolled malleability) if for all efficient adversaries A the following probability is
negligible

Pr
[
(pk , sk)← Gen(1n);β ← {0, 1} : Achalβ ,dec(pk) = β

]

where the oracles chal and dec are defined as follows and each oracle may be
called once, in any order.

– chalβ takes two messages m0 and m1 of equal length as input, computes
c∗ ← Encpk(mβ), and outputs c∗.

– dec takes a vector c of ciphertexts as input. If chalβ has previously output
a ciphertext c∗ such that R(c, c∗) holds for some c ∈ c, then output ⊥,
otherwise, output Decsk(c).

5 The term is taken from Kohlweiss et al. [22] who introduce controlled malleability
for zero-knowledge proofs.
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Our definition generalises non-malleability for encryption, in particular, NM-CPA
= NM-CPA/R, when R is the identity. Moreover, we note that our definition
could be adapted to a notion of CCA2/R by allowing arbitrarily many decryption
queries. The construction Enc2Vote can be generalised to asymmetric encryption
schemes satisfying controlled malleability as follows.

Definition 11 (Enc2Vote/R). Suppose Π = (Gen,Enc,Dec) is an asymmetric
encryption scheme and R is an efficiently computable equivalence relation on
Π’s ciphertext space, we define Enc2Vote/R(Π) = (Setup,Vote,BB,Tally) as
follows. Let the Setup, Vote and Tally algorithms be given by Enc2Vote(Π). The
BB algorithm takes bb and b as input, where bb is a multiset. If there exists
b′ ∈ bb such that R(b, b′), then BB outputs bb, otherwise, BB outputs bb ∪ {b}.
Assuming that the relation R does not relate fresh, honestly generated cipher-
texts in Π ’s ciphertext space to other values (Definition 12), we can ensure
that Enc2Vote/R(Π) satisfies the correctness condition of election schemes and,
hence, Enc2Vote/R(Π) is an election scheme satisfying ballot independence by
(Proposition 13).

Definition 12 (Sparse relation). Let Π = (Gen,Enc,Dec) be an asymmetric
encryption scheme and R be an efficiently computable equivalence relation on Π’s
ciphertext space. We say R is a sparse relation if for all (pk, sk)← Gen, c and
m, we have c′ ← Enc(m, pk) yields R(c, c′) = 0 with overwhelming probability.

Proposition 13. Suppose Π is an asymmetric encryption scheme and R is an
efficiently computable and sparse equivalence relation on Π’s ciphertext space
such that Π satisfies NM-CPA/R. We have Enc2Vote/R(Π) satisfies ballot in-
dependence.

The proof of Proposition 13 is similar to the proof of [7, Theorem 4.2].

Design Paradigms and Discussion. We derive the following design paradigms
from our results: 1) use non-malleable ballots (Section 4.1), or 2) identify and
reject related ballots using controlled malleability. The latter paradigm is par-
ticularly useful when ballots contain malleable data such as voter identities or
pseudonyms, since we can tolerate malleability and provide provable security.
Moreover, it facilitates more realistic models of election schemes in comparison
with earlier work, for example, Bernhard et al. [6–8] abstractly model Helios
ballots as non-malleable ciphertexts, whereas, in practice, Helios ballots embed
non-malleable ciphertexts in malleable JavaScript Object Notation (JSON) data
structures (this is particularly relevant, since Smyth & Cortier [23, §4.1] have
shown that the JSON structures introduces vulnerabilities).

5 Ballot Secrecy Implies Ballot Independence

In this paper, all election schemes satisfy correctness: the bulletin board al-
gorithm BB adds honestly constructed ballots to the bulletin board, the tally
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algorithm Tally includes honest votes in the election result, and the number of
votes in an election result corresponds to the number of ballots (that is, each
ballot contains one vote). In this setting, an election scheme satisfying ballot
secrecy also satisfies ballot independence.

Theorem 14 (Ballot secrecy implies ballot independence). Given an
election scheme Γ satisfying ballot secrecy, we have Γ satisfies ballot indepen-
dence.

Proof (Proof sketch). The proof is by a standard reduction argument: given a
successful IND-BB adversary, we construct an adversary against IND-SEC. The
single challenge query on (v0, v1) becomes a pair of vote queries Vote(v0, v1) and
Vote(v1, v0), and oracle queries O(b) become ballot queries. When we obtain the
election outcome from the IND-SEC game, we remove v0 and v1 since this is
the distribution that the IND-BB adversary expects. Finally, we show that the
advantage translates between games. 
�
Theorem 14 relates an advantage in guessing an honest voter’s vote in a setting
where the election result does not contain the honest voter’s vote to an advantage
in the ballot secrecy game where the election result does include the honest
voter’s vote. It follows, by Theorem 9, that an advantage in casting a vote
meaningfully related to an honest voter’s vote translates into an advantage in
guessing an honest voter’s vote, hence, we have shown that ballot independence
is necessary for ballot secrecy in election schemes defined by Definition 3. The
proof of Theorem 14 can be found in the full version of our paper [1].

5.1 Critique of Desmedt and Chaidos’s Helios Variant

Intuitively, Theorem 14 contradicts the results by Desmedt & Chaidos [16], who
claim to provide a variant of the Helios election scheme which allows Bob to
cast the same vote as Alice, with Alice’s cooperation, whilst preventing Bob
from learning Alice’s vote. In their protocol, Bob selects Alice’s ballot from the
bulletin board and communicates with Alice to generate a new ballot that is
guaranteed to contain the same vote as Alice’s. Desmedt & Chaidos’s security
claim is true before the election result is announced, since Bob gains no advantage
in guessing Alice’s vote. However, after the election result is announced, the claim
is false. We can informally contradict this claim – using results by Cortier &
Smyth [4,10,11] – in an election with voters Alice, Bob and Charlie: if Bob casts
the same vote as Alice, then Bob can learn Alice’s vote by observing the election
result and checking which candidate obtained at least two votes (that is, Bob
can learn Alice’s vote when the election result is not unanimous). We believe
the erroneous claim by Desmedt & Chaidos is due to an invalid inference from
their computational security result. Indeed, although the result [16, Theorem 1]
is correct, their model does not support their claims for real world security:
Desmedt & Chaidos consider a passive adversary that cannot observe the election
result, whereas, we believe a practical notion of security must consider an active
adversary who can cast ballots and observe the election result, since this captures
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the capabilities of an attacker in the real world. Nonetheless, a weaker notion
of ballot secrecy may be satisfiable in Desmedt & Chaidos’s variant of Helios,
assuming Alice never cooperates with the adversary. Clearly, no claims can be
made about Bob’s knowledge of Alice’s vote in this setting. We have shown
Desmedt & Chaidos our results and Chaidos agrees with our findings [24].

5.2 Discussion

We have shown that election schemes satisfying ballot secrecy must also satisfy
ballot independence. However, we must concede that alternative formalisms of
election schemes may permit different results. Indeed, Cortier & Smyth [4, Sec-
tion 7.1] present a result to the contrary using anonymous channels, which are
implicitly excluded from our model. Moreover, our model also excludes settings
where the adversary cannot control a majority of voters and places some restric-
tions on the election result, namely, the election result is captured as a multiset
which reveals the number of votes for each candidate. In this setting, an election
result can be computed from a partial election result if the votes of the remaining
voters are known. This property is implicitly used in our proof of Theorem 14.
On the other hand, some practical election schemes do not have this property.
For example, consider an election scheme which announces the winning candi-
date, but does not provide a breakdown of the votes for each candidate [25–28].
It follows that knowledge of a partial election result can only be used to derive
the election result if the adversary controls a majority of voters. Similarly, given
an election result and knowledge of a minority of votes, a partial election result
which excludes the known votes cannot be derived. In this setting, we believe
election schemes can satisfy ballot secrecy but not ballot independence, since
casting a minority of related ballots is not sufficient to reveal a voter’s vote.
Formal treatment of this case and consideration of whether such schemes are
practical is a possible direction for future work.

6 Sufficient Conditions for Ballot Secrecy

The main distinctions between our ballot secrecy (IND-SEC) and ballot indepen-
dence (IND-BB) games are as follows.

1. The challenger in our ballot independence game explicitly defines a challenge
ballot and adds the ballot to the bulletin board, whereas, the challenger in
our ballot secrecy game provides the adversary with an oracle OB(·, ·).

The two formulations are similar, indeed, the challenger’s computation b ←
Votepk (vβ); bb ← BB(bb, b) is similar to an oracle call OB(v0, v1). Moreover, a
hybrid argument will show that it does not matter if we give the adversary only
one challenge ballot or many oracle calls.

2. The adversary in our ballot secrecy game has access to the auxiliary data
produced during tallying, but the adversary in our ballot independence game
does not.
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The second point distinguishes our two games; Theorem 14 shows that ballot
secrecy is stronger than independence and Footnote 3 gives a case where it is
strictly stronger: the presentation of the Enc2Vote construction by Bernhard,
Pereira & Warinschi provides ballot independence, but the auxiliary data maps
voters to votes, thereby violating ballot secrecy. Nonetheless, by restricting the
adversary’s access to auxiliary data we can show that the two games are equiv-
alent (Theorem 15) and, hence, in the absence of auxiliary data, ballot inde-
pendence is a sufficient condition for ballot secrecy, in particular, Enc2Vote and
Enc2Vote/R are constructions for election schemes satisfying ballot secrecy.

Theorem 15 (NM-BB = IND-SEC, without auxiliary data). Suppose Γ =
(Setup,Vote,BB,Tally) is an election scheme such that there exists a constant
symbol ⊥ and for all parameters (bb0,m, pk , sk)← Setup(1n), multiesets bb and
tallying data (v, aux )← Tallysk (bb), we have aux =⊥. It follows that Γ satisfies
ballot secrecy if and only if Γ satisfies ballot independence.

A proof of Theorem 15 can be found in the full version of this paper [1]. In
essence, the proof uses a standard hybrid argument to show that it is sufficient
to consider a variant of the IND-SEC game in which the adversary is restricted
to a single oracle call O(v0, v1) and shows that an adversary in this game can
be used to construct a successful adversary against IND-BB.

Intuitively, we can generalise Theorem 15 to election schemes in which the
auxiliary data can be simulated. Since the auxiliary data output by election
schemes typically consists of signatures of knowledge proving that the election
result has been correctly computed from the bulletin board, we expect many
practical election schemes will satisfy zero-knowledge auxiliary data, indeed,
Helios outputs partial ElGamal decryptions [29, 30] and proofs demonstrating
knowledge of discrete logarithms [31–33] which can be simulated. In this con-
text, we believe ballot secrecy and ballot independence coincide (Remark 16).
Unfortunately, formalising zero-knowledge is a complex issue – in particular,
the simulator needs some extra capabilities compared to the election officials
(otherwise the officials could publish simulated proofs!) – to which there is no
general solution and, hence, there is no general proof of Remark 16. Nonethe-
less, we believe Remark 16 can be shown to hold for particular formalisations of
zero-knowledge, for instance, a proof could be constructed in the programmable
random oracle model (the proof would essentially be that of Theorem 15 with
the simulator being run at the appropriate point; we briefly comment on this in
the proof of Theorem 15) and, hence, a proof of ballot secrecy can be reduced
to a proof of ballot independence.

Remark 16 (NM-BB = IND-SEC for zero-knowledge auxiliary data). Given an
election scheme Γ satisfying zero-knowledge auxiliary data (informally, zero-
knowledge auxiliary data means that the auxiliary data can be simulated given
the result), we have Γ satisfies ballot secrecy if and only if Γ satisfies ballot
independence.

Remark 16 suggests that ballot independence is a sufficient condition for bal-
lot secrecy in election schemes where auxiliary data can be simulated. Coupled
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with earlier results [8], this should facilitate a proof of ballot secrecy in Helios.
(Bernhard et al. [6] provide a proof of ballot secrecy in a variant of Helios which
uses the Naor & Yung transformation [34] to derive non-malleable ballots and
Bernhard, Pereira & Warinschi [8] prove that Helios satisfies ballot secrecy in
the special case of referendums, however, a full proof of ballot secrecy in Helios
is not currently known.)

7 Conclusion

We have formalised ballot independence in a variant of the model for election
schemes proposed by Bernhard et al. Our main results are as follows. Ballot
secrecy implies ballot independence; the converse holds too if there is no auxil-
iary data. Moreover, we have argued that ballot independence and ballot secrecy
coincide if auxiliary data is “zero knowledge;” since auxiliary data typically con-
sists of zero knowledge proofs, this assumption is realistic and holds for election
schemes such as Helios, for instance. Furthermore, we provide some sufficient
conditions for ballot independence and, hence, ballot secrecy: we show that non-
malleable ballots are sufficient but not necessary for independence and secrecy,
and introduce a weaker notion of controlled-malleable encryption which we show
is sufficient, moreover, this notion is better suited to modelling the way ballots
are handled in practice (for example, by Helios). In addition, we show that the
notion of ballot secrecy proposed by Bernhard et al. does not capture attacks
which rely on auxiliary data and we adopt a stronger definition. Furthermore,
we show that the variant of Helios proposed by Desmedt & Chaidos does not
satisfy ballot secrecy.
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