
GPUMAFIA: Efficient Subspace Clustering

with MAFIA on GPUs

Andrew Adinetz1,2 Jiri Kraus3, Jan Meinke1, and Dirk Pleiter1

(NVIDIA Application Lab at Forschungszentrum Jülich)

1 JSC, Forschungszentrum Jülich, 52425 Jülich, Germany
2 Research Computing Center, Lomonosov Moscow State University

3 NVIDIA GmbH, Germany

Abstract. Clustering, i.e., the identification of regions of similar objects
in a multi-dimensional data set, is a standard method of data analytics
with a large variety of applications. For high-dimensional data, subspace
clustering can be used to find clusters among a certain subset of data
point dimensions and alleviate the curse of dimensionality.

In this paper we focus on the MAFIA subspace clustering algorithm
and on using GPUs to accelerate the algorithm. We first present a num-
ber of algorithmic changes and estimate their effect on computational
complexity of the algorithm. These changes improve the computational
complexity of the algorithm and accelerate the sequential version by 1–2
orders of magnitude on practical datasets while providing exactly the
same output. We then present the GPU version of the algorithm, which
for typical datasets provides a further 1–2 orders of magnitude speedup
over a single CPU core or about an order of magnitude over a typical
multi-core CPU. We believe that our faster implementation widens the
applicability of MAFIA and subspace clustering.

1 Introduction

Cluster analysis is a valuable data mining tool. With high-dimensional data oc-
curring in many real applications, traditional all-attribute clustering algorithms
encounter problems. Often data points form a cluster only in some dimensions,
called significant dimensions, while their coordinates in other dimensions show
no correlation. Sets of significant dimensions may differ for different clusters.
This is part of what is commonly referred to as the curse of dimensionality [1].

Subspace clustering algorithms attempt to find clusters that exist only in
subsets of dimensions of the original data, i.e., in subspaces. As they discard in-
significant dimensions, they are especially useful in applications where analysis
of high-dimensional data is required. In biological research, subspace clustering is
used to study gene expression, e.g., to find groups of genes with similar function
or to find individuals with similar gene expression. Customer recommendation
systems use subspace clustering to find groups of individuals with similar pref-
erences. It is also used to find groups of thematically related documents [2].

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 838–849, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

GPUMAFIA: Efficient Subspace Clustering with MAFIA on GPUs 839

Here we consider an application to Monte Carlo simulations of protein fold-
ing. Proteins are long chains of amino acids that usually adopt a unique three-
dimensional shape. This shape is necessary to perform their particular function,
e.g., enable an important chemical reaction at body temperature. How these
chain molecules are able to fold reliably into these unique shapes (conforma-
tions) remains an open question. During simulations millions of conformations
are generated and similar conformations have to be grouped into clusters to de-
termine the relative sizes of the clusters. The relative weights relate directly to
the free energy, an important physical quantity that tells us, which is the con-
formation most likely seen in experiments. If the largest clusters are of similar
size, a protein might transition between these different states.

While distance-based clustering works, the complexity of the algorithm makes
it infeasible to do an exhaustive clustering of all data points. Subspace clustering
offers a chance to find the relevant clusters using a d-dimensional state vector
that can be calculated with linear complexity. Nevertheless, these algorithms
can be computationally expensive. For a d-dimensional dataset, there are 2d − 1
possible axis-parallel subspaces. This may result in long run-times. (In practice,
the number of subspaces to consider is often much lower.)

Here we focus on MAFIA (Merging of Adaptive Finite IntervAls) [3], a sub-
space clustering algorithm which applies an adaptive grid method. This reduces
the computational requirements while providing similar quality of cluster search.
We improve MAFIA by, first, using a number of algorithmic techniques, and sec-
ond, providing a GPU implementation.

The contributions of this paper are as follows:

– We present a number of algorithmic improvements to the MAFIA subspace
clustering algorithm, which gives 1–2 orders-of-magnitude performance in-
crease for the use cases considered here while producing the same output.

– We present a GPU port of MAFIA, which gives an additional 1–2 orders-of-
magnitude improvement over a single CPU core, or an order-of-magnitude
improvement over a typical multi-core CPU-only system. To our knowledge,
this is the first implementation of a subspace clustering algorithm on GPU.

– We present performance analysis, which enables us to justify the algorithmic
improvements and parallelization for CPU and GPU architectures.

This paper is organized as follows. Section 2 presents a brief overview of subspace
clustering algorithms together with some performance data. It also provides a
summary of existing GPU implementations of clustering algorithms. MAFIA
is described in section 3 together with an analysis of the operation count. We
present the details of algorithmic improvements and GPU implementation in
section 4. Finally, we analyse and discuss performance improvements in section
5 and present our conclusions in section 6.

2 Related Work

Subspace clustering is a relatively new field of research. The first two algorithms
for finding clusters in subspaces, CLIQUE [4] and PROCLUS [5] were proposed in

840 A. Adinetz et al.

1998 and 1999, respectively. MAFIA [3] was introduced shortly thereafter. For a
parallel verion, pMAFIA, see [6]. Alternative subspace clustering algorithms are:
SeqClus [7], LCM-nCluster [8], Maxncluster [9], and DiSH (Detecting Subspace
cluster Hierarchies) [10]. The latter scales super-linearly with the number of
points. A good survey of existing subspace clustering algorithms can be found
in [2] which, however, does not include a comparison of performance or quality.
This has been done elsewhere. For example, in [11] MAFIA and FINDIT are
compared. In 2004, both required around 10 minutes to process a 20-dimensional
4-million point set with 5 hidden 5-dimensional clusters. [12] indicates that run-
times of SUBCLU can be on the order of several hours even for relatively small
dataset. However, SUBCLU is also better at finding subspace clusters, compared
to CLIQUE. In [9] Maxncluster is compared to MAFIA and STATPC. Another
good survey of subspace clustering performance is [13], which, however, excludes
MAFIA.

As clustering algorithms are generally computationally intensive and paral-
lelizeable, they are prime candidates for implementation on GPUs. K-means is
perhaps the most widely implemented GPU clustering algorithm [14, 15, 16].
CAMPAIGN, an open-source clustering library [17], comprises an implementa-
tion of K-means and other algorithms. Other clustering algorithms implemented
on GPUs include fuzzy clustering [18, 19], multi-level clustering [20] and density-
based clustering [21]. A distinguishing characteristic of MAFIA is that most of
its time is spent in operations on sets of data points, as opposed to the points
themselves. To the best of our knowledge, there is no publicly available GPU
implementation of a subspace clustering algorithm.

3 Algorithm Analysis

MAFIA starts with breaking each dimension into bins, counting points in each
bin, and building windows as part of an adaptive grid approach. Initially, each
window is a candidate dense unit of dimensionality 1 (1-CDU). CDUs that are
dense enough become dense units (DUs). MAFIA then builds CDUs of increasing
dimensionality; an a-CDU is build by merging two (a − 1)-DUs which are the
same in (a − 2) dimensions. (a − 1)-DUs which were not joined into a-DUs are
then added to the list of terminal DUs. Finally, connected groups of DUs of
the same dimensionality are merged into clusters. For a high-level pseudo-code
version of the algorithm see Alg. 1. Note that the collections used are arrays,
not sets, and may therefore contain duplicate elements.

The algorithm can be broken into three phases: the loop over the dimension
of CDUs is the middle phase, and what precedes and follows are the initial and
final phases, respectively. The main kernel of the initial phase is the histogram
construction histogram. During the same phase also the adaptive grid is built
(windows). The kernels of the middle phase are CDU generation (gen), CDU
deduplication (dedup), finding dense CDUs or point counting (pcount), and
check for unjoined DUs (unjoin). For gen, dedup and unjoin, an O(N2) al-
gorithm is used, while for pcount, each point is just checked against bounds of

GPUMAFIA: Efficient Subspace Clustering with MAFIA on GPUs 841

Algorithm 1. High-level pseudo-code for MAFIA algorithm

n — number of points, d — number of dimensions
pij — point coordinates, 1 ≤ i ≤ n, 1 ≤ j ≤ d
α — threshold parameter, Nb — min. #bins, NM — max. # windows, Nuw —
#windows for uniform dimensions
for j = 1→ d do

Dj ← max1≤i≤n pij −min1≤i≤n pij
hj ← histogram(p, j, Nb)
W ←W ∪ adaptiveGrid(hj, Nuw, NM)

end for
w ∈ W |tw ← αn(rw−lw)

Djw

CDUs← {{w} |w ∈ ws}, a← 1
while DUs �= ∅ ∨ a = 1 do

if a > 1 then
CDUs← {u1 ∪ u2|(u1, u2) ∈ pairs(DUs) ∧ canMerge(u1, u2)}

end if
CDUs← dedup(CDUs) � deduplication
u ∈ CDUs|nsu ← ‖{i ∈ 1→ n|∀w ∈ u : lw ≤ pijw < rw}‖ � point counting
newDUs← {u ∈ CDUs|∀w ∈ u : nsu ≥ tw}
termDUs← termDUs ∪ {u ∈ DUs| � ∃u1 ∈ newDUs : u ∈ u1} � unjoined check
a← a+ 1, DUs← newDUs

end while
G← {termDUs, {(u1, u2) ∈ pairs(termDU)|haveCommonFace(u1, u2)}}
cs← connectedComponents(graph)
c ∈ cs|indsc ← {i ∈ 1→ n|pi ∈ c} � index lists

each window belonging to each CDU. The final phase consists of building the
DU graph and finding connected components (graph), as well as building lists
of points belonging to given clusters (list). The graph and windows kernels do
not process large amounts of data, and are ignored in our performance analysis.

We now estimate the computational complexity of the kernels in a special
case. We assume that the dataset consists of n d-dimensional points, from which a
fraction f belongs to m clusters, all of dimensionality k. Furthermore, to simplify
analysis, we assume that clusters are arranged in such a way that (a − 1)-DUs
belonging to different clusters do not merge, i.e., they do not have a common
(a − 2)-sub-DU. If the overlap does occur, the complexity of the middle phase
becomes even higher, and so does the gain from using GPUs.

Table 1 lists the operation counts for each kernel for fixed DU dimensionality a
and the total costs which is obtained by summing over a = 1, . . . , k. We dropped
components with lesser order-of-magnitude and used Stirling’s approximation.
When a-CDUs are being generated, there arem

(
k

a−1

)
(a−1)-DUs. The number of

operations to check any pair for merging is a, which gives the cost of generating
a-CDUs. There arem

(
k
a

)
a-CDUs generated. Each a-CDU is generated a(a+1)/2

times, as this is the number of (a − 1)-DU pairs which merge into this a-CDU,
which gives the cost of deduplication. Points must be counted for each a-CDU,
and a dimensions must be checked for each point, which gives the cost of counting

842 A. Adinetz et al.

Table 1. Operation count for fixed dimensionality a as well as the total costs

Kernel Costs for fixed a Total costs

histogram — O(nd)

gen a
2
m
(

k
a−1

)
(m

(
k

a−1

)− 1) O(m2
√
k4k)

dedup a
2

ma(a+1)
2

(
k
a

)
(ma(a+1)

2

(
k
a

)− 1) O(m2k4
√
k4k)

pcount man
(
k
a

)
mnk 2k−1

unjoin am2
(

k
a−1

)(
k
a

)
O(m2

√
k4k)

list — O(nf)

points. For unjoined check, each (a−1)-DU should be checked against all a-DUs,
and the cost of a single check is a.

4 Optimization

We first introduce a number of algorithmic improvements. Kernel costs in Table 1
show that there are two possible performance bottlenecks:

– If the number of points is large and the cluster dimensionality is small then
the pcount kernel will dominate.

– For small to average numbers of points and big cluster dimensionality, kernels
with operation counts independent of the number of points, i.e., gen, unjoin,
and, most importantly, dedup will start to dominate.

We first optimize the dedup kernel by replacing the originally used O(N2)
algorithm by O(N logN) set deduplication, where the set is implemented as a
tree. (N is the number of CDUs at current iteration.) CDU order is defined
as lexicographic order of sequences of dimension and window numbers. We also
merge the kernels dedup and gen: A newly generated CDU will be added to
the set only if there has not been one previously generated.

We then consider the kernels gen and unjoin. For gen, we build a map from
(a − 2)-subsequences to lists of (k − 1)-DUs containing that subsequence. A
(a − 1)-DU belongs to the list only if it contains the subsequence. For unjoin,
we similarly build a set of possible (a−1) subsequences of a-DUs and check each
(a−1)-DU against that set. Both kernels then also have O(N logN) complexity.

The optimizations described are simple but, to the best of our knowledge,
they have never been implemented so far. As will be shown in the next section
the improvement can be large.

For pcount, no point index optimization is possible due to high data di-
mensionality. What MAFIA really needs to do is to compute the intersection of
window point sets, and then calculate its cardinality. We use bit arrays to rep-
resent those sets, and store the sets of dense windows only. The intersection can
now be computed using simple bit-wise and operations. The number of points is
given by the number of enabled bits. The actual operation count thus reduces by

GPUMAFIA: Efficient Subspace Clustering with MAFIA on GPUs 843

Table 2. Same as Table 1 but for improved kernels

Kernel Costs for fixed a Total costs Total costs
(optimized) (unoptimized)

bitarray — O(mnk) —

gen (a− 1)am
(

k
a−1

)
log{m(

k
a−2

)} O(m(k + logm)k22k) O(m2
√
k4k)

dedup ama(a+1)
2

(
k
a

)
log{m(

k
a

)} O(m(k + logm)k32k) O(m2k4
√
k4k)

pcount
man(ka)

32
mnk
64

2k mnk
2

2k

unjoin 2am(a− 1)
(
k
a

)
log{m(

k
a−1

)} O(m(k + logm)k22k) O(m2
√
k4k)

about 32× because now 1 operation taking 32-bit operands is sufficient to pro-
cess 32 points. This also reduces memory bandwidth requirements while upfront
costs for building the bit arrays are small.

In Table 2 we show how the algorithmic improvements and the use of bit
arrays improves the operation count. The costs of gen, dedup and unjoin
still grow exponentially with k, but the exponent is reduced from 4 to 2, which
makes the algorithm applicable to datasets with higher k. Costs of point counting
are cut by a factor of 32×, which makes the algorithm applicable to larger
datasets with the same cluster configuration. Note that as a side effect, the
algorithmic improvements also reduced dependency on the number of clusters
of gen, dedup and unjoin kernels from m2 to m logm, which is beneficial for
real-world applications with datasets containing many clusters.

We now consider parallelization and porting of the most performance critical
kernels to the GPU. For CPU parallelization we use OpenMP, GPU kernels are
implemented using CUDA.

In case of the kernel histogram we parallelize both the dimension and point
loops. For the latter, CPU threads compute private histograms, which are then
summed up. On the GPU shared-memory atomics are used. (Further speed-up
may be obtained using warp-synchronous non-atomics operations.)

pcount is a doubly nested loop, the outer over the CDUs and the inner over
bit array words. On the CPU both are parallelized. On the GPU, the loops are
mapped into different dimensions of the CUDA thread-block grid. Each thread
adds up points from several words (128 in the current implementation) of bit
arrays using __popc(), a CUDA built-in function, to count bits in each word, and
global-memory atomics to compute the final point count. We also implemented
precomputing of bit array indices in shared memory, and allocated bit arrays
using cudaMallocPitch(), which cumulatively resulted in a 73% performance
improvement over the initial GPU version.

bitarray is also a doubly nested loop, the outer over windows and the inner
over words or points. Parallelization is thus similar as for pcount. On the GPU
global-memory atomics are used to set individual bits. We found the memory
access pattern to be better for the point-per-thread approach than for using a
separate thread for each word.

844 A. Adinetz et al.

0,01

0,10

1,00

10,00

100,00

1000,00

10000,00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ti
m

e,
 s

Cluster dimensionality
w/o improvements with improvements

(a) Speed-up due to algorithmic improve-
ments as a function of the cluster dimen-
sionality k.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ac
ce

le
ra

tio
n

#threads

ideal scaling acceleration

(b) Scaling of MAFIA as a function of the
number of OpenMP threads.

Fig. 1. CPU-only implementation of MAFIA

5 Performance Evaluation and Discussion

We implemented MAFIA as a standalone application. For benchmarking we used
a dual-socket server comprising 2 8-core Intel Xeon E5-X2670 CPUs running at
2.60GHz, plus an NVIDIA Tesla K20X (Kepler) GPU. For the experiments,
hyper-threading and frequency scaling on CPU were turned off, and ECC was
turned on on the GPU.

We first conducted a CPU-only single-core test to evaluate the algorithmic
improvements. For this, we generated a series of datasets, each containing 105

30-dimensional points and a single embedded cluster, whose dimensionality k
varied from 3 to 17. The results of the evaluation are shown in Fig. 1a. For
small k, the cost of building the histograms dominates and optimization has
little effect. For increasing k the algorithmic improvements start to have an
increasingly large effect when the kernels pcount and later dedup start to
dominate execution time. For k = 17 we observe almost two orders of magnitude
speed-up. For further discussion, we consider only the version with all algorithmic
improvements applied.

Fig. 1b shows scaling of MAFIA as a function of the number of OpenMP
threads for 105 10-dimensional points and a single cluster with k = 10. We
observe a large deviation from perfect scaling for increasing number of threads.
Performance improvement does not saturate before all the cores are used.

To investigate acceleration on the GPU as well as CPU parallelization we
generated datasets comprising 107 20-dimensional points and 3 clusters, whose
dimensionality k varied from 3 to 16. The different clusters did not intersect in
any dimension, which ensures their successful detection by MAFIA. In Fig. 2a
and 2b we plot the execution time of each kernel as a function of k for the
CPU-only and the GPU-accelerated version, respectively. Runtime of MAFIA
grows exponentially with k in all cases, approximately doubling for each succes-
sive k, which agrees with operation counts in Table 2. For small k, initial and
final phases take significant part of the overall computing time. For higher val-
ues of k, the exponentially-growing middle phase, and most importantly for this

GPUMAFIA: Efficient Subspace Clustering with MAFIA on GPUs 845

parameter combination, point counting, dominate execution time. For CPU,
pcount dominates clearly. With k further increasing, gen, dedup and unjoin
start to play a greater role for both architectures, because their operation count
grows as k42k. For GPU, times spent in pcount and gen + dedup are already
comparable even for mid-range k, as only the former kernel has been ported to
GPU. Both CPU and GPU parallelization give considerable performance im-
provement over sequential version.

The histogram part for GPU time breakup mostly consists of transferring
initial data to device. As actual histogram computation takes only a small frac-
tion of the histogram time, it is not possible to hide data transfer.

For the pcount kernel, as the number of memory reads is known exactly, we
can estimate effective memory bandwidth achieved by the kernel. For K20X, this
is 368 GB/s, much higher than the specification value (250 GB/s) and Stream
benchmark value (180 GB/s). However, the kernel is still memory-bound, and the
high bandwidth achieved is due to sharing of the same windows, and therefore
same bit arrays, between neighboring CDUs, which enables caching to take effect.

Overall execution times are given in Fig. 3. seq stands for sequential version,
par4, par8 and par16 are 4-, 8- and 16-thread parallel versions, respectively,
and k20x is the GPU version. Accelerations for parallel vs. sequential CPU are
given in Fig. 4a, while Fig. 4b gives acceleration of GPU vs. sequential CPU
version. The GPU-accelerated version does outperform the parallel CPU-only
implementation in all the cases. For small k the acceleration is small due to the
time needed to transfer data to the GPU. For larger k, as the relative contribution
of pcount grows, so does the acceleration, peaking at 7× for k = 14. As not all
systems have 16 CPU cores, we believe that for a typical system, GPU will give
at least an order of magnitude acceleration over the parallel CPU version. When
compared to a single CPU core, GPU gives more than two orders of magnitude
acceleration. However, for k > 15 this value starts decreasing, due to increasing
role of sequential gen + dedup kernels.

To test the applicability of MAFIA to protein folding simulations, we used data
from a parallel tempering Monte Carlo simulation of the last 16 residues of pro-
tein G. This simulation produced 160000 independent conformations. For ease of

0

2,00

4,00

6,00

8,00

10,00

12,00

14,00

3 4 5 6 7 8 9 10 11 12 13

Ti
m

e,
 s

Cluster dimensionality
histogram bitarray gen+dedup pcount unjoin list

(a) 12 x86 CPU cores

0

0,30

0,60

0,90

1,20

1,50

1,80

2,10

3 4 5 6 7 8 9 10 11 12 13

Ti
m

e,
 s

Cluster dimensionality

histogram bitarray gen+dedup pcount unjoin list

(b) Kepler K20X GPU

Fig. 2. MAFIA execution time breakdowns in various settings

846 A. Adinetz et al.

0,1

1,0

10,0

100,0

1000,0

10000,0

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Va
lu

e
Ti

tle
Category Title

seq par4 par8 par16 k20x

Fig. 3. MAFIA execution times in different settings

0

3

6

9

12

15

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ac
ce

le
ra

tio
n

Cluster dimensionality

par16 vs. seq k20x vs. par16

(a) 16 vs. 1 CPU threads, K20X vs. 16
CPU threads

0

22

44

66

88

110

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ac
ce

le
ra

tio
n

Cluster dimensionality

k20x vs. seq

(b) K20X vs. 1 CPU core

Fig. 4. MAFIA acceleration in different settings

visualization, we take only 4 properties of the conformation to form the state vec-
tor: the temperature at which this confirmation was found, the energy of the con-
formation, the fraction of residues that is part of a strand called the strand content,
and the root-mean-square deviation (RMSD) to the native conformation. This
data set is not meant to stress the performance of the algorithm in terms of the
run-time (approximately 1 s). Rather, comparing expected and obtained results
is an additional check of both algorithm and implementation. Furthermore, it al-
lows to test how the parameters need to be adapted to deal with a real world data.
Finally, in combination with our analysis of the algorithm’s complexity the exam-
ple demonstrates that datasets of realistic size could be processed in just O(1)
minutes in case of larger cluster dimensionality k � 10.

Figure 5 shows the clusters that we obtained using 15 windows and α = 0.075.
The density threshold needs to be so small to detect the low energy clusters. At
α = 1.5 MAFIA didn’t detect any clusters. We chose 15 windows since there are
15 discrete values for the strand content.

MAFIA identified several low-energy as well as several high-energy clusters.
While the separation of structures into different clusters is not obvious, the fact
that we retain the original axes makes interpretation of the clusters easier than
interpreting clusters obtained from principal component analysis, for example.

GPUMAFIA: Efficient Subspace Clustering with MAFIA on GPUs 847

Fig. 5. Clusters of conformations from a Monte Carlo protein folding simulation in
the S-R-E subspace including a low-energy and a high-energy 4D cluster (spheres).
The images in the corners of the figure show the reference structure (lower left corner)
and a random selection of conformations from the low-energy (upper left corner) and
the high-energy (upper right corner) 4D clusters. The background contour plots show
the 2D histograms in the corresponding planes. On the right is the 1D histogram of
energy showing the initial fine bins, the 15 initial windows (lines) and the final merged
windows (light blue filled bars).

6 Conclusions

In this paper, we studied porting MAFIA to GPUs. We first performed a number
of algorithmic improvements, and then developed a GPU implementation. The
algorithmic changes resulted in an almost two-orders-of-magnitude improvement.
Porting to GPU accelerated the application by another order of magnitude. Our
results put MAFIA subspace clustering well within the limits of interactivity
even for large datasets with moderate cluster dimensionality (≤ 15).

Our MAFIA implementation can still be improved. The kernels gen, dedup
and unjoin can dominate execution time if the number of points is small. Thus,
parallelizing them should be considered, though it might be difficult, as they all
access a single set for reading and writing. Porting them to a GPU may also be
considered, though this is an even more difficult task. For datasets with larger
number of points, parallelization across multiple GPUs or even across cluster

848 A. Adinetz et al.

nodes is to be considered; as pcount performs only per-point operations, this
should be simple.

Also, as the run-time of the algorithm is significantly improved, I/O, and more
specifically, converting large input text files into data point arrays, which is part
of many work-flows involving MAFIA, becomes a bottleneck. One way to remove
it is to accelerate string-to-double parsing on GPU, and do this in pipelined
fashion. This would enable hiding initial data transfer to GPU, and improve the
overall performance without changing the current workflow. Restructuring the
implementation into a library accepting points from CPU or GPUmemory rather
than reading them from a file is another possibility for performance improvement.

Acknowledgements. We would like to thank Wilhelm Homberg for discussions
and support of this work.

References

[1] Bellman, R.: Dynamic Programming (Dover Books on Computer Science). Dover
Publications (2003)

[2] Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Trans. Knowl. Discov. Data 3(1), 1:1–1:58 (2009)

[3] Nagesh, H.S.: High Performance Subspace Clustering for Massive Data Sets. Mas-
ter’s thesis (1999)

[4] Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. SIGMOD Rec. 27(2),
94–105 (1998)

[5] Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms
for projected clustering. SIGMOD Rec. 28(2), 61–72 (1999)

[6] Nagesh, H., Goil, S., Choudhary, A.: Parallel Algorithms for Clustering High-
Dimensional Large-Scale Datasets. Kluwer (2001)

[7] Wang, H., Chu, F., Fan, W., Yu, P.S., Pei, J.: A fast algorithm for subspace
clustering by pattern similarity. In: Proceedings of the 16th SSDBM, pp. 51–62
(2004)

[8] Liu, G., Li, J., Sim, K., Wong, L.: Distance based subspace clustering with flexible
dimension partitioning. In: IEEE 23rd International Conference on Data Engineer-
ing, ICDE 2007, pp. 1250–1254 (April 2007)

[9] Liu, G., Sim, K., Li, J., Wong, L.: Efficient mining of distance-based subspace
clusters. Statistical Analysis and Data Mining 2(5-6), 427–444 (2009)

[10] Achtert, E., Böhm, C., Kriegel, H.-P., Kröger, P., Müller-Gorman, I., Zimek, A.:
Detection and visualization of subspace cluster hierarchies. In: Kotagiri, R., Radha
Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS,
vol. 4443, pp. 152–163. Springer, Heidelberg (2007)

[11] Parsons, L.: Evaluating subspace clustering algorithms. In: Workshop on Cluster-
ing High Dimensional Data and its Applications, SIAM International Conference
on Data Mining (SDM 2004), pp. 48–56 (2004)

[12] Kröger, P., Kriegel, H.P., Kailing, K.: Density-Connected Subspace Clustering for
High-Dimensional Data. In: SDM (2004)

GPUMAFIA: Efficient Subspace Clustering with MAFIA on GPUs 849

[13] Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace
projections of high dimensional data. Proc. VLDB Endow. 2(1), 1270–1281 (2009)

[14] Cao, F., Tung, A.K.H., Zhou, A.: Scalable clustering using graphics processors.
In: Yu, J.X., Kitsuregawa, M., Leong, H.-V. (eds.) WAIM 2006. LNCS, vol. 4016,
pp. 372–384. Springer, Heidelberg (2006)

[15] Wu, R., Zhang, B., Hsu, M.: Clustering billions of data points using GPUs. In:
UCHPC-MAW 2009, pp. 1–6. ACM, New York (2009)

[16] Hong-Tao, B., Li-li, H., Dan-Tong, O., Zhan-Shan, L., He, L.: K-Means on Com-
modity GPUs with CUDA. In: 2009 WRI World Congress on Computer Science
and Information Engineering, March 31-April 2, vol. 3, pp. 651–655 (2009)

[17] Kohlhoff, K.J., Sosnick, M.H., Hsu, W.T., Pande, V.S., Altman, R.B.: CAM-
PAIGN: An open-source Library of GPU-accelerated Data Clustering Algorithms.
Bioinformatics (2011)

[18] Kim, S., Wunsch, D.: A GPU based Parallel Hierarchical Fuzzy ART clustering.
In: The 2011 International Joint Conference on Neural Networks (IJCNN), July
31-August 5, pp. 2778–2782 (2011)

[19] Anderson, D., Luke, R., Keller, J.: Speedup of Fuzzy Clustering Through Stream
Processing on Graphics Processing Units. IEEE Transactions on Fuzzy Sys-
tems 16(4), 1101–1106 (2008)

[20] Chiosa, I., Kolb, A.: GPU-Based Multilevel Clustering. IEEE Transactions on
Visualization and Computer Graphics 17(2), 132–145 (2011)

[21] Böhm, C., Noll, R., Plant, C., Wackersreuther, B.: Density-based clustering using
graphics processors. In: Proceedings of the 18th ACM Conference on Information
and Knowledge Management, CIKM 2009, pp. 661–670. ACM, New York (2009)

	GPUMAFIA: Efficient Subspace Clustering
with MAFIA on GPUs
	1 Introduction
	2 Related Work
	3 Algorithm Analysis
	4 Optimization
	5 Performance Evaluation and Discussion
	6 Conclusions
	References

