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Abstract. Identifying synchronizations could significantly improve test-
ing and debugging of multithreaded programs because it could substan-
tially cut down the number of possible interleavings in those tests. There
are two general techniques to implement synchronizations: modularized
and ad-hoc. Identifying synchronizations in multi-threaded programs
could be quite challenging. It is because modularized synchronizations
are often implemented in an obscure and implicit way, and ad-hoc syn-
chronizations could be quite subtle. In this paper, we try to identify
synchronizations from a new perspective. We found that if a thread is
waiting for synchronizations, the code it executes during the wait is very
different from that after the completion of the synchronization. Based on
such an observation, we proposed an effective method to identify synchro-
nizations. It doesn’t depend on the understanding of source codes or the
knowledge of semantics of library routines. A system called SyncTester is
developed, and experiments show that SyncTester is effective and useful.

Keywords: synchronization identification, concurrency testing, multi-
threading.

1 Instruction

Many debugging and testing algorithms use guided or unguided interleaving
among threads as the basis of such tests, e.g. Eraser [I], FastTrack [3] and CTrig-
ger [4]. However, the number of interleaves in multi-threaded programs could be
enormous. It will make those algorithms very complicated and time consum-
ing. To reduce the number of possible interleavings, and thus reducing the time
complexity, these algorithms try to exploit synchronizations. It can also reduce
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false positives in the test results. Previous work [12] shows that synchronizations
could reduce 43-86% false data races found by Valgrind. Therefore, identifying
synchronizations in multithreaded programs is very desirable and important.

In general, there are 2 types of synchronizations: modularized [I2] and ad-hoc.
Modularized synchronization could be identified by their semantics [BI3[7]. And
most approaches identify ad-hoc ones by pattern-matching [7IRI12].

Identifying modularized synchronizations using their semantics could be te-
dious and error prone. There exist hundreds of libraries. Some of them have
many routines. E.g. GLIBC 2.16 has about 1200 routines [I4]. Some routines
provide implicit synchronization functions (e.g. read()/write()). Moreover, some
synchronization pairs could be from different libraries (e.g. pthread kill/sigwait).
Therefore, this work could be quite challenging for programmers.

To identify ad-hoc synchronizations, ISSTA08 [7] focuses on synchronizations
that consist of a spinning read and a corresponding remote store. It is dynamic.
Helgrind+ [8] and SyncFinder [12] focus on loops whose exit condition cannot
be satisfied in their loop bodies. SyncFinder is a static method, while Helgrind+
searches for such loops statically, but identifies the remote stores dynamically.
They are all based on the synchronization patterns summarized from various
application codes. Because of the complexity and the large amount of codes,
this process is time consuming and may miss or misjudge some patterns. To
identify complex patterns, elaborate inter-procedural pointer analysis may be
needed. However, there are still many cases pointer analysis cannot handle.

In this paper, we try to identify synchronizations from a different perspective.
We leverage the essential feature of a synchronization that it forces a thread
to wait when the thread may violate the intended order imposed by the pro-
grammer. Our scheme depends on neither the patterns nor the knowledge of
library routines, thus labor-intensive pattern collection/recognition and learning
of library routines are avoided. Moreover, our proposed scheme works on binary
executable, which is an advantage when source code is not available. Overall,
our work makes the following contributions:

(1) Propose a synchronization identification scheme from a new perspective.
It can be used to identify both modularized and ad-hoc synchronizations in
multi-threaded programs regardless of their implementation.

(2) Implement a prototype system, SyncTester. Experimental results on real
programs show that it is very effective and useful.

(3) Introduce helper processes to do contrast test. With their help, SyncTester
can avoid perturbation to the program execution.

2 Synchronization Testing

Our scheme tries to identify synchronization by monitoring the execution of a
program. A multi-threaded program is tested for several executions. In each
execution, we select a different thread as the testing thread and all other are
executing threads. We propose two algorithms: a forward test and a backward
test. They identify synchronizations according to the intended order between
the testing thread and the executing threads. Fig.1 gives an overview of it.
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2.1 Forward Test

Synchronizations are used to control the orders among operations in different
threads. A synchronization involves at least two threads: one is waiting (waiting
thread) for a certain operation from another (triggering thread). We refer to the
waiting action in the waiting thread as waiting operation, and the operation that
wakes up the waiting thread as triggering operation. A waiting operation and its
corresponding triggering operation form a synchronization pair (sync pair).

Waiting operations have two forms, as shown in Fig.2. The waiting thread
may be blocked by a library call or spinning on a code segment. The triggering
operation should be a library call or a shared memory store instruction respec-
tively. So we take all the library calls and shared memory store instructions as
potential triggering operations (PTO). When a thread is waiting for a certain
operation, we say that it is in a suspended state, and such a thread is executing
a potential waiting operation (PWO). When the corresponding triggering oper-
ation occurs, waiting thread will exit the suspended state and go on to execute
its subsequent codes, as [CODE] shown in Fig.2. The code it executes during a
suspended state is different from that after it exits this state.

Then we design a sync-pair identification scheme. Algorithm 1 shows its de-
tails. When testing thread encounters a PTO, we suspend its execution until
all executing threads enter suspended states (Line 14-16). Then we execute the
PTO. If it makes an executing thread exit a suspended state, we probably find
a sync pair (Line 23-29).The italic light-grey codes are the specific techniques to
improve the scheme.

This algorithm is “safe” in the sense that we allow only one testing thread
in each test. Hence, if all the PTOs in the testing thread are not real triggering
operations, executing threads will continue running to their completion without
being suspended. If none of the suspended executing threads exits its suspended
state after a PTO is executed, the testing thread will continue executing until a
real triggering operation releases an executing thread.

It is important to identify whether a thread is in a suspended state or not. A
basic block vector (BBV) [9] records the executing frequencies of all basic blocks
in a time quantum. Every thread builds its own BBVs during execution. When
a thread is in a suspended state, the BBVs of its continuous quanta should be
very similar. When a threads BBVs in continuous quanta have small differences
[9) and contain same blocks, this thread is marked as in a suspended state.
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Algorithm 1 Forward Test

: Input: Set<Thread> Threads, including all threads in a multi-
threaded program
2: Map<Thread, PWO> pwOp := @;
3: Map<Thread,Process> helpProc D;
4: Set<Thread> testingThreads = Threads;
5: Set<Thread> execThreads;
6: //Algorithm begins
7: testingThreads = ThreadGroup(testingThreads);
8: for testThread € testingThreads do
9:  //Each iteration of this for loop is a pass of execution
10:  while testThread is not finished do

11: execThreads:= Threads \ {testThread}

12: /lexecThreads are executing freely.

13: nextOp := NextPTO(testThread);

14: while not AllThreadSuspended(execThreads) do
15: sched_yield();

16: end while

17: if not RepeatOp(nextOp) then

18: execThreads:= TypeMatching(execThreads, nextOp);
19: for t€ execThreads do

20: pwOp[t] := t’s current PWO;

21: helpProc/[t] := CreateHelperProc(t);

22: end for

23: Execute(testThread, nextOp);

24: for t€ execThreads do

25: if not Suspended(t) && Suspended(helpProc/t]) then
26: RecordSyncPair(nextOp, pwOp([t]);
27: end if

28: Terminate(helpProc[t]);

29: end for

30: else

31: Execute(testThread, nextOp);

32: end if

33:  end while

34: end for

Algorithm 2 Backward Test

1: Input: Set<Thread> Threads, including all threads in a multi-
threaded program
Set<SyncPair
found by forward test
: Set<Thread> targetThreads = Threads;
: Set<Thread> execThreads;
: targetThreads = ThreadGroup(targetThreads);

2
3
4
5: for testingThread € targetThreads Do
6:
7
8

SyncPairs, including sync pairs

//Each iteration of this for loop is a pass of execution
execThreads := Threads \ {testingThread}
1 /lexecThreads are executing freely
9:  while testingThread is not finished do

10: nextOp := NextReadOp(testingThread);

11: if not AllThreadSuspended(execThreads) then

12: ‘WaitForSuspending(execThreads);

13: end if

14: wrOp = LastWriteOp(nextOp);

15: if MatchHappenBefore(nextOp, wrOp, SyncPairs) &&

not RepeatedOp(nextOp, wrOp) && not LockOp (nextOp,
wrOp) && wrOp is not in testingThread then

16: CreateHelperProcBT(nextOp, wrOp);
17: end if

18: Execute(testingThread, nextOp);

19:  end while

20: end for

21: //Define <rdOp, wrOp> as a Backward Test Pair
22: CreateHelperProcBT(OP rdOp, OP wrOp) begin
23:  Fork(); //Create Helper Process

24:  if this is helper process then

25: //The following codes execute concurrently with main
process

26: RestoreToPreviousValue(this, wrOp);

37: if Suspended(this) then

28: helperProc2 = CreateHelperProcess(this);

29: ResetToCurrentValue(helperProc2, wrOp);

30: if Suspended|(this) != Suspended(helperProc2) then

31: RecordSyncPair(wrOp, rdOp);

32: endif

33: end if

34: Terminate(this, se/perProc2);/Kill helper processes

35 endif

36: end

In the following cases, the differences of a threads continuous BBVs will be small.
The thread is (1) blocked by a system call, (2) has exited or (3) spinning on a code
segment. In the first two cases, the thread is no longer executing, and will not build
BBVs, and all the elements of its BBVs are 0.The differences of its BBVs are 0.

When a thread exits its suspended state, it starts to execute other code seg-
ments. So, if we find a thread executes blocks different from those in the sus-
pended state, it has exited its previous suspended state.

TO T1
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Fig. 3. Motivation of Backward test
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2.2 Backward Test

Algorithm 1 can identify many sync pairs. However, in some special cases, it may
miss some sync pairs. For example, in Fig.3, “flag=1" and “while(!flag)” form
a sync pair. Assume there is a long latency operation (LLO) in T1. We refer to
an operation as a LLO if it lasts for several time quanta and can continue to
execute without being triggered by other threads. When T1 is executing a LLO,
Algorithm 1 may mistake T1 as entering a suspended state and miss this sync
pair. To counter this difficulty, we propose a backward test.

Note that the forward test suspends the testing thread at each potential trig-
gering operation. It allows executing threads to run ahead of the testing thread
and enter suspended states. However, LLOs can distort it. The proposed back-
ward test targets sync pairs whose triggering operations execute before the wait-
ing operations. The sync pair shown in Fig.3 can be identified if we use a backward
test and select T1 as the testing thread.

If triggering operation executes before waiting operation, the waiting oper-
ation will not spin or be blocked. This is because the triggering operation has
removed the wait condition. Therefore, when a shared variable is read by the
main program or library, we restore the shared variable to its previous value.
If this thread is blocked or spinning on a shared variable, we treat the corre-
sponding library routine (or code segment) and the operation that performs the
previous store to the shared variable as a sync pair.

However, restoring a shared variable to its previous value will cause errors to
the programs execution. Therefore, we perform such a test in a separate process,
called helper process. Helper processes are created (by fork() syscall in Linux)
when we encounter read operations to shared variables or library calls. They
communicate with the main process via pipes. Because they need to inherit the
current context of the main process, they can’t be created in advance.

This is called a backward test. Fig.4 is its schematic, and Algorithm 2 is its
details. Note that Algorithm 2 defines the backward test pair in Line 21.

Helper Process Isolation. Helper processes inherit the context of the main
process. They share some resources with the main process, such as file descriptors
and shared memory. If they access these resources, they will interfere with the
execution of main process. Hence we need to handle system calls and shared
memory in helper processes appropriately.

We classify system calls into 3 types and handle them in helper processes
differently. (Type 1) System calls that don’t access such shared resources, invoke
them as usual, e.g. gettimeofday(), futex(); (Type 2) System calls that get data
from shared resources only, e.g. read(), get these data from the main process.
(Type 3) System calls that store data or change status of shared resources, ignore
them and get their return values from main process, e.g. open(), write().

Processes may use shared memory to communicate with other processes. We
transform shared memory in the helper process into private. We back up the
data in shared memory, detach it and then map private one. The range of shared
memory can be got by system call instrumentation in main process.
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2.3 Perturbation Elimination

Long Latency Operations (LLOs). Take the forward testing as an exam-
ple. When an executing thread enters a LLO, our scheme may misidentify the
executing thread as entering a suspended state. When the testing thread exe-
cutes a potential triggering operation, if this executing thread happens to exit its
misidentified suspended state, the forward test will mistakenly identify the LLO
as a waiting operation. A false sync pair will be identified, i.e. a false positive.

The key to distinguish a LLO from a true waiting operation is the manner
it exits the suspended state. A LLO can exit the suspended state by itself after
finishing its work. But a waiting operation cannot exit the suspended state until
another thread executes its corresponding triggering operation.

Fig.5 shows how to distinguish LLOs in forward test (Line 21 & 25 Algo-
rithm 1). When testing thread (T0) encounters a potential triggering operation
(flag=1;), a helper process is created by the executing thread (T1). Note that
the helper process does not interact with the testing thread (i.e. ‘flag’ is always
0 in the helper process). After the testing thread has executed “flag=1;", we
compare the state of T1 and helper process. If T1 and the helper process both
exits the suspended state (Fig.5(b)), it means that the operation that made T1
enter a suspended state is a LLO. Otherwise we find a real sync pair (Fig.5(a)).

In the backward testing (Line 28-30 Algorithm 2), we take a similar approach
to handle LLOs. When the helper process enters a suspended state, we create
a second helper process using the first helper processs context. In the second
helper process, we reset the value of the shared variables restored by the first
helper process to the same as that in main process. If one helper process exits
the suspended state while the other dose not, it means that there is a helper
process waiting for the new values of these shared variables. We could treat this
backward test pair as a sync pair.

Lock/Unlock Operations. When the helper process tests a lock operation
in backward test, it restores the values of the lock variables to those before an
unlock operation. These values make the helper process have held the lock and
will be blocked by this lock operation. In order to avoid identifying lock /unlock
operations as sync pairs, when we encounter a library routine at the first time,
we create a helper process to test whether it is a lock operation or not. This
helper process creates two threads and each of them invokes this library routine
with the same arguments. From the definitions of ABI, we will know where the
arguments are (e.g. register or stack). If one of these two threads is blocked and
the other is not, this library routine is treated as a lock operation and will not
form sync pairs. (LockOp() in Line 15 Algo.2)

2.4 Efficiency Issues

Efficiency is always a concern in testing multi-threaded programs. There are two
ways to improve it. One is to reduce the number of testing threads, and the
other is to reduce the number of testing points in testing threads. Testing points
include potential triggering operations and backward test pairs.
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Fig. 5. Handling LLOs in forward test

Reducing Testing Threads. To reduce the number of testing threads, we
divide the threads in a program into groups. If two threads are similar in their
executions, the sync pairs they executed are likely to be the same. Hence, we
put such two threads in a group. In each group, we select only one thread as
testing thread (ThreadGroup() in Line 7 Algo.1 and Line 4 Algo.2).

In order to group threads, we calculate the difference between the BBVs of
their executions. If the difference is smaller than a threshold, the executions of
the two threads are likely to be similar. They are put into the same group.

This is heuristic. To reduce the probability of missing sync pairs due to thread
grouping, we build a sync-op set. It contains triggering and waiting operations
of sync pairs we found and their calling contexts. After all testing threads are
tested, if we find that a thread executes an operation in the sync-op set with
a different calling context and this operation doesn’t belong to a sync pair, we
select this thread as testing thread and do another pass of test.

TO T1 TO T1 TO T1 TO T1
foo()sy, foo();\,_>< for(+++) for(+++) barrier() Alag = 1;
X+t >‘§‘> N\ cond_signal();—»cond wait() arrler(),
flag while(!flag); ) barrier(); «#barrier(); Y, \Whlle( 'ﬂag)><

(a) Irrelevant PTO and (b) Routines never (c) Sync Pairs in loops (d) Impossible backward
PWO form a Sync Pair test pair

Fig. 6. Cases to reduce number of testing points

Reducing Testing Point. Fig.6 shows some cases, in which we can reduce the
number of testing points. We propose the following schemes targeting them.

(1)Match the type/address of synchronization operations. (Type-
Matching() in Line 18 Algo.1 and LastWriteOp() in Line 14 Algo.2)

In Fig.6(a), the waiting operation and triggering operation of a modularized
sync pairs should be library routines, while an ad-hoc sync pair should consist
of a spin loop and a store operation. So, when we encounter a library call, we
can skip testing store operations to shared variable, and vice versa.

Furthermore, for an ad-hoc sync pair in the forward test, its waiting operation
and triggering operation should access the same shared variable. According to
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the shared variables read by executing threads during a suspended state, we can
skip store operations that access other shared variables in the testing thread.

(2)Use history of routines. (RepeatOp() in L.17 Algo.1 & L.15 Algo.2)

After analyzing various popular library routines, we found that a library rou-
tine with blocking function can only be unblocked by a few specific library rou-
tines. If a pair of library routines is tested for several times and they never form
a sync pair, as shown in Fig.6(b), it is most likely that they are not a sync pair
at all. So, when we encounter the same library pair, skip the test on them.

(3)Accelerate test in loops. (RepeatOp() in L.17 Algo.1 & L.15 Algo.2)

There exist sync pairs that are in loops as shown in Fig.6(c). Such sync pairs
appear in every iteration and we need not to test them every time.

If a sync pair is found repeatedly, we assume it is in a loop. In forward test,
we record the potential triggering operations (excluding its triggering operation)
appear between two occurrences of its waiting operation, and skip them when
the waiting operation appears again. In the backward test, we skip testing it.

(4)Use results of the forward test. (MatchHappenBefore() in L.15 Algo.2)

Sync pairs define happens-before relations between code segments. We can
utilize sync pairs identified in a forward test to reduce testing points in a back-
ward test. The happen-before relation defined by barrier() in Fig.6(d) ensures
that the store (flag=1;) in a backward test pair executes before its corresponding
read (while(!flag);). Then the read can’t get the old value before the store and
we don’t need to test such cases in a backward test.

3 Evaluation

SyncTester is implemented using Pin [I6]. It uses Pins API to instrument in-
structions that may access shared variables, code blocks, library routines and
system calls. It then collects information and controls the execution of target
programs. For example, SyncTester instruments store instructions and syscalls.
It then records a shared variables previous value for the backward test.

We evaluated SyncTester on a series of multi-threaded programs. The test
programs are from benchmark suites, such as SPLASH2 [10] and STAMP [11],
or applications, such as PBZIP2, PFSCAN, and Apache Httpd. We con-figured
SPLASH2 using POSIX thread library and configured STAMP with a simple
software TM provided by its web site. Our experiments are run on a server with
two 2.27GHz Intel Xeon E5520 quad-core processors and 8GB DRAM.

3.1 Effectiveness

In order to evaluate SyncTesters effectiveness, we compare it with two exist-
ing dynamic test schemes, ISSTAO8 and Helgrind+. We implement ISSTA08’s
algorithm [7] and use Helgrind+’s newest version. These two approaches are de-
signed to identify ad-hoc sync pairs. So, we compare them only for ad-hoc sync
pairs. The results show that SyncTester found more sync pairs than ISSTAO8
and Helgrind+ did, and it introduced very few false positives as shown in Table
1. In fact, SyncTest covered all sync pairs found by ISSTA08 and Helgrind+.
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Table 1. ‘All’ column shows the number of identified sync pairs. ‘FP’ column shows
the number of false positives and we verify them manually. The results of SyncTester
are in the form of X(modularized)/Y (ad-hoc). FT and BT columns show the results of
forward test and backward test, respectively.

ISSTAO08 Helgrind+ SyncTester Pruned LLOs p.uned Lock/

Benchmarks All FP All. FP Al FP FT BT FT BT Unlock
BARNES 1 0 2 2 5/2 3 5/2 5/1 4 235 4
FMM 4 0 8 2 10/8 1 10/4 10/5 12 197 23
OCEAN-C 0 0 0 15 20/0 0 20/0 20/0 0 0 6
OCEAN-NC 0 0 0 40 19/0 0 19/0 19/0 0 0 6
RADIOSITY 0 0 0 7 3/2 0 3/2 3/0 3 11 10
RAYTRACE 0 0 0 9 1/0 1 1/0 1/0 0 0 3
VOLREND 2 0 2 5 5/2 0 5/2 5/1 5 16 5
WATER-S 0 0 0 5 7/0 0 7/0 7/0 0 0 7
WATER-N 0 0 0 5 9/0 0 9/0 9/0 0 0 9
INTRUDER 1 1 2 5 3/2 0 3/0 0/2 3 0 3
LABYRINTH 0 0 1 3 2/1 0 2/0 0/1 2 0 3
PFSCAN 0 0 1 3 3/2 0 3/0 0/2 0 0 4
PBZIP2 0 0 0 0 5/5 0 5/0 0/5 17 0 13
Apache Httpd 0 0 * * 1/7 1 1/2 0/5 0 0 21

* Maybe the version of Apache HT'TPD is not fit for Helgrind+, Helgrind+ exits unexpectedly
during our test to Apache Httpd. So we don’t get such data.

FPs in Helgrind+ are probably because it searches for spinning loops on binary
codes statically. And it is not accurate enough. For SyncTester, backward test
restores a shared variable’s value and don’t know the relationship among different
shared variables. This inconsistency brings FPs in some regular loops. And no
FP is found in forward test.

The last 3 columns of Table 1 shows the results of perturbation elimination.
In those experiments, we found that LLOs include some long loops and library
routines. We can prune both of them no matter how they are implemented.

However, because we can’t restore the states of system kernel, the backward
test may miss some modularized sync pairs due to system calls, e.g. pthread kill()
and sigwait(). Such cases can be found by the forward test.

3.2 Efficiency Issues

Reducing the Number of Testing Threads. We set a threshold on the
difference of BBVs in thread grouping. Different thresholds will result in different
thread groupings, as shown in Table 2. “Real Thread Groups” column shows the
best groupings found manually. It gives the minimum number of testing threads.
We check the results in Table 2 and find that if the number of thread group is
no fewer than this amount, the testing threads selected will contain all threads
in the “Real Thread Groups”. This happens to be the most prevalent case. It
shows that our thread grouping scheme is quite effective. Finally, we choose 0.4
as the threshold. It is chosed as a tradeoff between accuracy and efficiency. In
this case, labyrinth misses a sync pair, but it is found in the sync-op set.

The last 4 columns of Table 2 shows the results of thread grouping when the
number of worker threads changes. For programs with many threads, it is likely
that most threads execute similar codes, and this scheme will also reduce the
number of testing threads. If we test a program with different testing threads,
these tests can run concurrently. This will also save testing time.
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Reducing the number of Testing Points. Table 3 is the results of testing
point reduction. It shows that there are not many testing points in most pro-
grams. It also shows the number of testing points pruned by optimizations. For
most benchmarks, more than 97% testing points can be pruned. If we have to
test all of them, the efficiency of SyncTester will become quite unacceptable. In
the backward test, we perform test in helper processes. Because helper processes
can run concurrently, this can reduce the time overhead caused by them.

Table 2. Results of Thread Grouping

# thread groups under Real # worker threads

Benchmarks #ths different threshold Thread #total (threshold = 0.4)
0.1 0.2 0.3 04 0.5 1 Groups tPreads "4 8 16
BARNES 4 1 1 1 1 1 1 1 N 1 1
FMM 4 4 4 2 2 2 1 1 N 2 6 4
OCEAN-C 4 2 1 1 1 1 1 1 N 1 1 1
OCEAN-NC 4 1 1 1 1 1 1 1 N 1 1 1
RADIOSITY 4 4 3 1 1 1 1 1 N 1 2 3
RAYTRACE 4 4 2 2 1 1 1 1 N 1 2 4
VOLREND 4 3 2 2 2 2 1 1 N 2 2 4
WATER-S 4 2 1 1 1 1 1 1 N 1 1 1
WATER-N 4 2 2 2 1 1 1 1 N 1 1 2
INTRUDER 4 3 3 2 2 1 1 2 N 2 3 3
LABYRINTH 4 1 1 1 1 1 1 2 N 1 1 1
PFSCAN 5 4 4 4 4 4 4 2 1+N 4 4 6
PBZIP2 8 6 6 6 6 6 5 5 44N 6 5 5
Apache HTTPD 7 4 4 4 4 4 4 4 3+N 4 4 4

Table 3. Testing Points Reduction. Columns 2 and 3 are the real testing points during
tests. Columns 4 to 7 are testing points pruned by our 4 schemes.

Testing Points Pruned Testing Points

Benchmarks T BT Type RTN Loop Use FTs % Pruned

Match History Accel Results
BARNES 36 412 160K 27K 153K 3.8M 99.9892%
FMM 63 463 39K 2363 53K 125K 99.7608%
OCEAN-C 105 250 360K 1798 1186 36K 99.9110%
OCEAN-NC 146 251 364K 808 1157 53K 99.9055%
RADIOSITY 23 74 25 47 31 0 51.5000%
RAYTRACE 2 4 102K 514 0 0 99.9941%
VOLREND 41 33 25K 34 39 26K 99.8557%
WATER-S 111 21 230K 352K 0 2.26M 99.9980%
WATER-N 48 75 70K 1828 14K 3.61M 99.9975%
INTRUDER 60 6 87K 158K 0 379 99.9731%
LABYRINTH 156 15 22K 461 0 4735 99.3833%
PFSCAN 53 11 41 15K 0 0 98.2511%
PBZIP2 151 38 7062 51 0 0 97.4117%
Apache HTTPD 90 224 1566 385 0 0 86.1369%

3.3 Running Time

Finally, we measured the running time of SyncTester, which is shown in Fig.7.
Among these benchmarks, Apache HTTPD is a server. It is not easy to mea-
sure its running time. So we instead measure its throughput, i.e. the number of
processed requests per second. On average, the slowdown factor is 32X.
ISSTAO08 claims that its slowdown factor is 9X [7]. Although SyncTester is
slower, it identifies more sync pairs. And SyncTester can identify ad-hoc sync
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pairs whose triggering operations execute before waiting operations and modu-
larized sync pairs.Helgrind+ is a race detector. It identifies ad-hoc sync pairs to
prune false races. For SPLASH2 benchmarks, its slowdown factor is more than
2000X. However, we don’t compare it with our results because its main function
is to detect data races, not sync pairs.
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Fig. 7. Running Time of SyncTester
4 Related Work

ISSTAO08(7] treats spinning reads and remote stores as a common pattern of ad-hoc
synchronizations. However, if a remote store is executed before a spinning read,
the spinning read will execute only once and it will miss such synchronizations.
Helgrind+[§] tries to overcome such weaknesses of ISSTA08]7]. It searches for spin-
ning loops whose exit conditions depend on loop invariant variables in the binary
code and remote stores on the fly. However, in some complex cases, it may be diffi-
culty to find spinning loops in binary codes. There is also a hardware scheme [15]. It
uses some hardware buffers and detects spinning loops on the fly. SyncFinder [12]
searches for loops with loop-invariant exit conditions. It is a static approach. All of
its analysis is done on source code. It uses constant propagation to identify remote
stores. Because the source codes are not always available, and pointer analysis is
often not very precise, it may introduce some false positives and false negatives.

ATDetector [13] finds that address transfer (i.e. passing memory blocks’ ad-
dress between threads) also imposes implicit happens-before relation and could
prune false races. Address transfer ensures that accesses to the memory block in
the address sending thread happen before accesses in receiving thread.

5 Conclusion

In this paper, we showned that if a thread was held up in a synchronization by an-
other thread, the code it executes during the wait is very different from that after
the completion of the synchronization. From this observation, we propose a new
approach to identify sync pairs in multi-threaded programs, called SyncTester.
SyncTester can identify both modularized and ad-hoc sync pairs. It doesn’t de-
pend on the details of their codes and software implementation. Therefore, it has
a great flexibility and is often more accurate than many existing approaches. Ex-
perimental results show that SyncTester is quite effective and practical.
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