
Highly-Scalable Searchable Symmetric

Encryption with Support for Boolean Queries

David Cash1, Stanislaw Jarecki2, Charanjit Jutla3, Hugo Krawczyk3,
Marcel-Cătălin Roşu3, and Michael Steiner3

1 Rutgers University
david.cash@cs.rutgers.edu

2 University of California Irvine
stasio@ics.uci.edu

3 IBM Research
{csjutla,hugokraw,rosu,msteiner}@us.ibm.com

Abstract. This work presents the design and analysis of the first search-
able symmetric encryption (SSE) protocol that supports conjunctive
search and general Boolean queries on outsourced symmetrically-
encrypted data and that scales to very large databases and arbitrarily-
structured data including free text search. To date, work in this area
has focused mainly on single-keyword search. For the case of conjunctive
search, prior SSE constructions required work linear in the total num-
ber of documents in the database and provided good privacy only for
structured attribute-value data, rendering these solutions too slow and
inflexible for large practical databases.

In contrast, our solution provides a realistic and practical trade-off
between performance and privacy by efficiently supporting very large
databases at the cost of moderate and well-defined leakage to the out-
sourced server (leakage is in the form of data access patterns, never as
direct exposure of plaintext data or searched values). We present a de-
tailed formal cryptographic analysis of the privacy and security of our
protocols and establish precise upper bounds on the allowed leakage. To
demonstrate the real-world practicality of our approach, we provide per-
formance results of a prototype applied to several large representative
data sets, including encrypted search over the whole English Wikipedia
(and beyond).

1 Introduction

Outsourcing data storage to external servers (“the cloud”) is a major industry
trend that offers great benefits to database owners. At the same time, data
outsourcing raises confidentiality and privacy concerns. Simple encryption of
outsourced data is a hindrance to search capabilities such as the data owner
wanting to search a backup or email archive, or query a database via attribute-
value pairs. This problem has motivated much research on advanced searchable
encryption schemes that enable searching on the encrypted data while protecting
the confidentiality of data and queries.

R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part I, LNCS 8042, pp. 353–373, 2013.
c© International Association for Cryptologic Research 2013

354 D. Cash et al.

Searchable Symmetric Encryption (SSE) is a cryptographic primitive ad-
dressing encrypted search. To securely store and search a database with an SSE
scheme, a client first uses a special encryption algorithm which produces an
encrypted version of the database, including encrypted metadata, that is then
stored on an external server. Later, the client can interact with the server to
carry out a search on the database and obtain the results (this is called the
symmetric setting as there is only one writer to the database, the owner, who
uses symmetric encryption – the public key variant of the problem has also been
extensively studied, see further related work).

An important line of research (e.g., [23,11,6,8,7,19]) gives practical construc-
tions of SSE that support searching for documents that contain a single specified
keyword. In these schemes, the server’s work scales with the size of the result
set (independently of the database size) and the leakage to the server is limited
to the set of returned (encrypted) documents and a few global parameters of
the system, such as total data size and number of documents. While efficient
and offering good privacy, all of these SSE schemes are severely limited in their
expressiveness during search: A client can only specify a single keyword to search
on, and then it receives all of the documents containing that keyword. In prac-
tical settings, like remotely-stored email or large databases, a single-keyword
search will often return a large number of documents that the user must then
download and filter herself to find the relevant results.

Conjunctive and Boolean Search. To provide a truly practical search ca-
pability, a system needs to at least support conjunctive search, namely, given a
set of keywords find all documents that contain all these keywords. Clearly, this
problem can be reduced to the single-keyword case by performing a search for
each individual keyword and then letting the server or client do the intersection
between the resultant document sets. This often results in inefficient searches
(e.g., half the database size if one of the conjunctive terms is “gender=male”)
and significant leakage (e.g., it reveals the set of documents matching each key-
word). Yet, this näıve solution is the only known sublinear solution to SSE
conjunctive search (other than those using generic techniques such as FHE or
ORAM). All other dedicated solutions require server work that is linear in the
size of the database. Of these solutions, the one that provides the best privacy
guarantees is due to Golle et al. [13], with variants presented in later work, e.g.,
[1,3]. They show how to build for each conjunctive query a set of tokens that
can be tested against each document in the database (more precisely, against an
encoded version of the document’s keywords) to identify matching documents.
These solutions only leak the set of matching documents (and possibly the set
of attributes being searched for) but are unsuited for large databases due to
the O(d) work incurred by the server, where d is the number of documents or
records in the database. This cost is paid for every search regardless of the size
of the result set or the number of documents matching each individual con-
junctive term. Moreover, these solutions require either O(d) communication and
exponentiations between server and client or O(d) costly pairing operations (as
well as dedicated cryptographic assumptions). Another serious limitation of this

Highly-Scalable Searchable Symmetric Encryption 355

approach is that it works only for structured attribute-value type databases and
does not support free text search. In addition, none of the above solutions extend
to general Boolean queries.

The Challenge of Large Databases and the Challenge of Being Imper-
fect. In this work we investigate solutions to conjunctive queries and general
Boolean queries that can be practical even for very large databases where linear
search is prohibitively expensive. Our application settings include databases that
require search over tens of millions documents (and billions of document-keyword
pairs), with search based on attribute-value pairs (as in relational databases) and
free text - see below for specific numbers used in evaluating our prototype. To
support such scale in a truly practical way one needs to relax absolute privacy
and allow for some leakage beyond the result set.

As an example, compare the case of a conjunction of two highly-frequent
keywords whose intersection returns a small number of documents but whose
individual terms are very frequent (e.g., search for “name=David AND gen-
der=Female”), with the case of a conjunction that returns the same number
of documents but all the individual terms in the conjunction are themselves
infrequent. Search complexity in these two cases, even in the case of plaintext
data (hence in any encrypted solution), is likely to be different and noticeable to
the searching server, except if searches are artificially padded to a full database
search hence leading to O(d) complexity1. Note that even powerful tools, such as
ORAM, that can be used to search on encrypted data in smaller-scale databases
already incur non-trivial leakage if the search performance is to be sublinear.
Indeed, the mere computational cost, in number of ORAM operations, of a
given search is sufficient to distinguish between the two cases above (of all high-
frequency conjunctive terms vs. all small-frequency terms) unless the searches are
padded to the maximal search size, resulting in O(d) search cost. Thus, resorting
to weaker security guarantees is a necessity for achieving practical conjunctive
search. Not only this presents design challenges but also raises non-trivial theo-
retical challenges for analyzing and characterizing in a precise way the form and
amount of leakage incurred by a solution.

Ideally, we would like to run the search with complexity proportional to the
number of matches of the least frequent term in the conjunction, which is the
standard of plaintext information retrieval algorithms. In addition, the computa-
tional efficiency of database processing and of search is of paramount importance
in practice. Generic tools such as FHE [10] or ORAM [12] are too costly for very
large databases, although they may be used as sub-components of a solution if
applied to small data subsets.

Our Contributions. We develop the first non-generic sublinear SSE schemes
supporting conjunctive keyword search (and more general Boolean queries, see
below) with a non-trivial combination of security and efficiency. The schemes per-
formance scales to very large datasets and arbitrarily-structured data, including
free-text search. We attain efficiency by allowing some forms of access-pattern

1 A costly alternative is to pre-compute all n-term conjunctions in time O(|W|n).

356 D. Cash et al.

leakage, but with a much better leakage profile than the näıve solution implied
by single-keyword SSE, as discussed above. Further, we establish the security of
our solution via an explicit and precise leakage profile and a proof that this is
all the leakage incurred by this solution. Our formal setting follows a simulation-
based abstraction that adapts the SSE models of Curtmola et al. [8] and Chase
and Kamara [7], and assumes an adaptive adversarial model. The essence of the
security notion is that the view of the server (the attacker in this setting) can be
efficiently simulated given a precisely-defined leakage profile but without access
to the actual plaintext data. Such a profile may include leakage on the total size
of the database, on access patterns (e.g., the intersection between two sets of
results) and on queries (e.g., repetition of queries), but never the direct exposure
of plaintext data or searched values. Thus, a protocol proven secure ensures that
the server holding the encrypted data and serving the queries does not learn
anything about the data and queries other than what can be deduced from the
specified leakage2. The characterization of leakage and the involved proof of se-
curity that we present are central technical contributions that complement our
protocol design work.

The centerpiece of the protocol design is a “virtual” secure two-party protocol
in which the server holds encrypted pointers to documents, the client holds a
list of keywords, and the output of the protocol is the set of encrypted point-
ers that point to documents containing all the client’s keywords. The client is
then able to decrypt these pointers and obtain the matching (encrypted) docu-
ments but the server cannot carry this decryption nor can it learn the keywords
in the client’s query. While this underlying protocol is interactive, the level of
performance targeted by our solutions requires avoiding multiple rounds of in-
teraction. We achieve this by a novel approach that pre-computes parts of the
protocol messages and stores them in encrypted form at the server. Then, dur-
ing search, the client sends information to the server that allows to unlock these
pre-computed messages without further interaction. Our implementation of this
protocol, which we name OXT, uses only DH-type operations over any Diffie-
Hellman group which enables the use of the secure and most efficient DH elliptic
curves (with additional common-base optimizations).3 The complexity of our
search protocols is independent of the number of documents in the database.
To search for documents containing w1, . . . , wn, the search complexity of our
scheme scales with the number of documents matching the estimated least fre-
quent keyword in the conjunction. We note that while building a search based
on term frequency is standard in information retrieval, our solution seems to be
the first to exploit this approach in the encrypted setting. This leads not only
to good performance but also improves privacy substantially. All our solutions
support search on structured data (e.g., attribute-value databases) as well as on
free text, and combinations of both.

2 See the discussion in Section 6 on “semantic leakage”.
3 We also present a scheme (BXT in Section 3.1) that only uses symmetric-key opera-
tions but provides less privacy, and a pairings-based scheme (PXT in the full version
[5]) that optimizes communication at the expense of more computation.

Highly-Scalable Searchable Symmetric Encryption 357

Boolean Queries. Our solution to conjunctive queries extends to answer any
Boolean query. This includes negations, disjunctions, threshold queries, and
more. The subset of such queries that we can answer efficiently includes any
expression of the form “w1 ∧ φ(w2, . . . , wm)” (intended to return any document
that matches keyword w1 and in addition satisfies the (unconstrained) formula
φ on the remaining keywords)4. The search complexity is proportional to the
number of documents that contain w1. Surprisingly, the leakage profile for such
complex expressions can be reduced to the leakage incurred by a conjunction
with the same terms w1, w2, . . . , wn, hence allowing us to re-use the analysis
of the conjunctive case to the much more general boolean setting. Finally, any
disjunction of the above forms can also be answered with an additive cost over
the disjunction expressions.

Further Extensions. In [4] we report on further practical enhancements to our
protocols, including support for dynamic databases (i.e., allowing additions, dele-
tions and modification of documents in the database). Our protocols can also be
applied to the multi-client setting [7,17,18] where a data owner outsources its en-
crypted data to an external server and enables other parties to perform queries on
the encrypted data by providing them with search tokens for specific queries. In
this case, one considers not only leakage to the server but also leakage to clients
beyond the information that their tokens are authorized to disclose. In subsequent
work [16], we address issues of authorization in this setting as well as the chal-
lenging problem of hiding the queries not only from the server but also from the
token provider - see for example IARPA’s SPAR program and its requirement for
supporting private queries on very large databases [14]. See also [21] for an inde-
pendent, concurrent work in the latter setting from which a solution to the SSE
problem can also be extracted. Finally, in ongoing work, we are extending the set
of supported queries with range queries, substring matching, and more.

Implementation. To show the practical viability of our solution we prototyped
OXT and ran experiments with two data sets: the Enron email data set [9] with
more than 1.5 million documents (email messages and attachments) where all
words, including attachments and envelope information, have been indexed; and
the ClueWeb09 [20] collection of crawled web-pages from which we extracted sev-
eral databases of increasing size with the largest one consisting of 13 million doc-
uments (0.4TB of HTML files). Approximately one third of the latter database is
a full snapshot of the English Wikipedia. The results of these tests show not only
the suitability of our conjunction protocols for data sets of medium size (such as
the Enron one) but demonstrate the scalability of these solutions to much larger
databases (we target databases of one or two orders of magnitude larger). Existing
solutions that are linear in the number of documents would be mostly impractical
even for the Enron dataset. Refer to Section 5 for more information on implemen-
tation and performance. More advanced results are reported in [4].

4 An example of such query on an email repository is: Search for messages with Alice
as Recipient, not sent by Bob, and containing at least two of the words {searchable,
symmetric, encryption}.

358 D. Cash et al.

Other Related Work and Research Questions. See full version [5] for more
discussion on related work and Section 6 for several interesting research questions
arising from our work.

2 Definitions and Tools

2.1 SSE Syntax and Security Model

Searchable Symmetric Encryption. A database is composed of a collection
of d documents, each comprised of a set of keywords Wi (we use “documents”
generically; they can represent text documents, records in a relational database
- in which case keyword are represented as attribute-value pairs, a combination
of both, etc.). The output from the SSE protocol for a given search query are
indices (or identifiers) ind corresponding to the documents that satisfy the query.
A client program can then use these indices to retrieve the encrypted documents
and decrypt them. This definition allows to decouple the storage of payloads
(which can be done in a variety of ways, with varying types of leakage) from the
storage of metadata that is the focus of our protocols.

SSE Scheme Syntax and Correctness. Let λ be the security parameter.
We will take identifiers and keywords to be bit strings. A database DB =
(indi,Wi)

d
i=1 is represented as a list of identifier/keyword-set pairs, where indi ∈

{0, 1}λ and Wi ⊆ {0, 1}∗. We will always write W =
⋃d

i=1 Wi (we think of the
ind values as identifiers that can be revealed to the outsourced server, e.g., a
randomization of the original document identifiers; in particular these are the
identifiers that will be used to retrieve query-matching documents). A query
ψ(w̄) is specified by a tuple of keywords w̄ ∈W∗ and a boolean formula ψ on w̄.
We write DB(ψ(w̄)) for the set of identifiers of documents that “satisfy” ψ(w̄).
Formally, this means that indi ∈ DB(ψ(w̄)) iff the formula ψ(w̄) evaluates to true
when we replace each keyword wi with true or false depending on if wi ∈ Wi

or not. Below we let d denote the number of documents in DB, m = |W| and
N =

∑
w∈W |DB(w)|.

A searchable symmetric encryption (SSE) scheme Π consists of an algorithm
EDBSetup and a protocol Search between the client and server, all fitting the
following syntax. EDBSetup takes as input a database DB, and outputs a secret
key K along with an encrypted database EDB. The search protocol is between
a client and server, where the client takes as input the secret key K and a
query ψ(w̄) and the server takes as input EDB. At the end of the protocol the
client outputs a set of identifiers and the server has no output. We say that
an SSE scheme is correct if for all inputs DB and queries ψ(w̄) for w̄ ∈ W∗, if
(K,EDB)

$← EDBSetup(DB), after running Search with client input (K,ψ(w̄))
and server input EDB, the client outputs the set of indices DB(ψ(w̄)).

Security of SSE. We recall the semantic security definitions from [8,7]. The
definition is parametrized by a leakage function L, which describes what an
adversary (the server) is allowed to learn about the database and queries when

Highly-Scalable Searchable Symmetric Encryption 359

interacting with a secure scheme. Formally, security says that the server’s view
during an adaptive attack (where the server selects the database and queries)
can be simulated given only the output of L.
Definition 1. Let Π = (EDBSetup, Search) be an SSE scheme and let L be a
stateful algorithm. For algorithms A and S, we define experiments (algorithms)
RealΠA (λ) and IdealΠA,S(λ) as follows:

RealΠA (λ) :A(1λ) chooses DB. The experiment then runs (K,EDB)← EDBSetup
(DB) and gives EDB toA. ThenA repeatedly chooses a query q. To respond, the
game runs the Search protocol with client input (K, q) and server input EDB
and gives the transcript and client output to A. Eventually A returns a bit that
the game uses as its own output.

IdealΠA,S(λ) : The game initializes a counter i = 0 and an empty list q. A(1λ)
chooses DB. The experiment runs EDB ← S(L(DB)) and gives EDB to A.
Then A repeatedly chooses a query q. To respond, the game records this as
q[i], increments i, and gives to A the output of S(L(DB,q)). (Note that here,
q consists of all previous queries in addition to the latest query issued by A.)
Eventually A returns a bit that the game uses as its own output.

We say that Π is L-semantically-secure against adaptive attacks if for all adver-
saries A there exists an algorithm S such that Pr[RealΠA (λ) = 1]−Pr[IdealΠA,S(λ)
= 1] ≤ neg(λ).

We note that in the security analysis of our SSE schemes we include the client’s
output, the set of indices DB(ψ(w̄)), in the adversary’s view in the real game, to
model the fact that these ind’s will be used for retrieval of encrypted document
payloads.

2.2 T-Sets

We present a definition of syntax and security for a new primitive that we call a
tuple set, or T-set. Intuitively, a T-set allows one to associate a list of fixed-sized
data tuples with each keyword in the database, and later issue keyword-related
tokens to retrieve these lists. We will use it in our protocols as an “expanded
inverted index”. Indeed, prior single-keyword SSE schemes, e.g. [8,7], can be seen
as giving a specific T-set instantiation and using it as an inverted index to enable
search – see Section 2.3. In our SSE schemes for conjunctive keyword search, we
will use a T-set to store more data than a simple inverted index, and we will
also compose it with other data structures. The abstract definition of a T-set
will allow us to select an implementation that provides the best performance for
the size of the data being stored.

T-Set Syntax and Correctness. Formally, a T-set implementation Σ =
(TSetSetup,TSetGetTag,TSetRetrieve) will consist of three algorithms with the
following syntax: TSetSetup will take as input an array T of lists of equal-length
bit strings indexed by the elements of W. The TSetSetup procedure outputs

360 D. Cash et al.

a pair (TSet,KT). TSetGetTag takes as input the key KT and a keyword w
and outputs stag. TSetRetrieve takes the TSet and an stag as input, and re-
turns a list of strings. We say that Σ is correct if for all W, T, and any
w ∈ W, TSetRetrieve(TSet, stag) = T[w] when (TSet,KT)← TSetSetup(T) and
stag ← TSetGetTag(KT , w). Intuitively, T holds lists of tuples associated with
keywords and correctness guarantees that the TSetRetrieve algorithm returns the
data associated with the given keyword.

T-Set Security and Implementation. The security goal of a T-set imple-
mentation is to hide as much as possible about the tuples in T and the keywords
these tuples are associated to, except for vectors T[w1],T[w2], . . . of tuples re-
vealed by the client’s queried keywords w1, w2, (For the purpose of T-set
implementation we equate client’s query with a single keyword.) The formal def-
inition is similar to that of SSE (think of the SSE setting for single-keyword
queries) and we provide it in [5] where we also show a specific T-set implemen-
tation that achieves optimal security, namely, it only reveals (an upper bound
on) the aggregated database size N =

∑
w∈W |DB(w)| We refer to such a T-set

implementation as optimal.

2.3 T-Sets and Single Keyword Search

Here we show how a T-set can be used as an “secure inverted index” to build an
SSE scheme for single-keyword search. The ideas in this construction will be the
basis for our conjunctive search SSE schemes later, and it essentially abstracts
prior constructions [8,7]. The details of the scheme, called SKS, are given in

EDBSetup(DB)

– Select key KS for PRF F , and parse DB as (indi,Wi)
d
i=1.

– Initialize T to an empty array indexed by keywords from W = ∪d
i=1Wi.

– For each w ∈ W, build the tuple list T[w] as follows:

• Initialize t to be an empty list, and set Ke ← F (KS, w).

• For all ind ∈ DB(w) in random order: e
$
← Enc(Ke, ind); append e to t.

• Set T[w]← t.

– (TSet,KT)← TSetSetup(T).
– Output the key (KS ,KT) and EDB = TSet.

Search protocol

– The client takes as input the key (KS, KT) and a keyword w to query.
It computes stag← TSetGetTag(KT , w) and sends stag to the server.

– The server computes t← TSetRetrieve(TSet, stag), and sends t to the client.
– Client sets Ke ← F (KS, w); for each e in t, it computes ind ← Dec(Ke, e) and

outputs ind.

Fig. 1. SKS: Single-Keyword SSE Scheme

Highly-Scalable Searchable Symmetric Encryption 361

Figure 1. It uses as subroutines a PRF F : {0, 1}λ × {0, 1}λ→ {0, 1}λ, and a
CPA secure symmetric encryption scheme (Enc,Dec) that has λ-bit keys.

3 SSE Schemes for Conjunctive Keyword Search

Existing SSE schemes for conjunctive queries ([13] and subsequent work) work
by encoding each document individually and then processing a search by testing
each encoded document against a set of tokens. Thus the server’s work grows
linearly with the number of documents, which is infeasible for large databases.
In addition, these schemes only work for attribute-value type databases (where
documents contain a single value per attribute) but not for unstructured data,
e.g., they cannot search text documents.

Here we develop the first sub-linear conjunctive-search solutions for arbitrarily-
structured data, including free text. In particular, when querying for the documents
that match all keywordsw1, . . . , wn, our search protocol scales with the size of the
(estimated) smallest DB(wi) set among all the conjunctive terms wi.

The näıve solution. To motivate our solutions we start by describing a straight-
forward extension of the single-keyword case (protocol SKS from Figure 1) to
support conjunctive keyword searching. On input a conjunctive query w̄ =
(w1, . . . , wn), the client and server run the search protocol from SKS indepen-
dently for each term wi in w̄ with the following modifications. Instead of return-
ing the lists t to the client, the server receives Kei , i = 1, ..., n, from the client
and decrypts the e values to obtain a set of ind’s for each wi. Then, the server
returns to client the ind values in the intersection of all these sets. The search
complexity of this solution is proportional to

∑n
i=1 |DB(wi)| which improves, in

general, on solutions whose complexity is linear in the number of documents in
the whole database. However, this advantage is reduced for queries where one of
the terms is a very high-frequency word (e.g., in a relational database of personal
records, one may have a keyword w = (gender,male) as a conjunctive term, thus
resulting in a search of, say, half the documents in the database). In addition,
this solution incurs excessive leakage to the server who learns the complete sets
of indices ind for each term in a conjunction.

Our goal is to reduce both computation and leakage in the protocol by tying those to
the less frequent terms in the conjunctions (i.e., terms w with small sets DB(w)).

3.1 Basic Cross-Tags (BXT) Protocol

To achieve the above goal we take the following approach that serves as the basis
for our main SSE-conjunctions scheme OXT presented in the next subsection.
Here we exemplify the approach via a simplified protocol, BXT. Assume (see
below) that the client, given w̄ = (w1, . . . , wn), can choose a term wi with a
relatively small DB(wi) set among w1, . . . , wn; for simplicity assume this is w1.
The parties could run an instance of the SKS search protocol for the keyword w1

after which the client gets all documents matching w1 and locally searches for
the remaining conjunctive terms. This is obviously inefficient as it may require

362 D. Cash et al.

retrieving many more documents than actually needed. The idea of BXT is indeed
to use SKS for the server to retrieve TSet(w1) but then perform the intersection
with the terms w2, . . . , wn at the server who will only return the documents
matching the full conjunction. We achieve this by augmenting SKS as follows.

During EDBSetup(DB), in addition to TSet, a set data structure XSet is built
by adding to it elements xtag computed as follows. For each w ∈ W, a value
xtrap = F (KX , w) is computed where KX is a PRF key chosen for this purpose;
then for each ind ∈ DB(w) a value xtag = f(xtrap, ind) is computed and added to
XSet where f is an unpredictable function of its inputs (e.g., f can be a PRF used
with xtrap as the key and ind as input). The Search protocol for a conjunction
(w1, . . . , wn), chooses the estimated least frequent keyword, say w1, and sets,
as in SKS, Ke ← F (KS , w1), stag ← TSetGetTag(KT , w1). Then, for each i =
2, . . . , n, it sets xtrapi ← F (KX , wi) and sends (Ke, stag, xtrap2, . . . , xtrapn) to
the server. The server uses stag to retrieve t = TSetRetrieve(TSet, stag). Then,
for each ciphertext e in t, it decrypts ind = Dec(Ke, e) and if f(xtrapi, ind) ∈ XSet
for all i = 2, . . . , n, it sends ind to the client.5

Correctness of the BXT protocol is easy to verify. Just note that a doc-
ument indexed by ind includes a word w represented by stag if and only if
xtag = f(xtrap, ind) ∈ XSet. Regarding implementation of XSet, it can use any
set representation that is history-independent, namely, it is independent of the
order in which the elements of the set were inserted. For TSet security and
implementation see Section 2.

Terminology (s-terms and x-terms): We will refer to the conjunctive term cho-
sen as the estimated least frequent term among the query terms as the s-term
(‘s’ for SKS or “small”) and refer to other terms in the conjunction as x-
terms (‘x’ for “cross”); this is the reason for the ‘s’ and ‘x’ in names such as
stag, xtag, stag, xtrap, etc.

The server’s work in BXT scales with n·|DB(w1)|, where w1 is the conjunction’s
s-term. This represents a major improvement over existing solutions which are
linear in |DB| and also a significant improvement over the näıve solution when-
ever there is a term with relatively small set DB(w1) that can be identified by
the client, which is usually the case as discussed in Section 3.1. Communication
is optimal (O(n)-size token plus the final results set) and computation involves
only PRF operations.

Security-wise this protocol improves substantially on the above-described näıve
solution by leaking only the (small) set of ind’s for the s-term and not for x-terms.
Yet, this solution lets the server learn statistics about x-terms by correlating in-
formation from different queries. Specifically, the server can use the value xtrapi
received in one query and check it against any ind found through an s-term of
another query. But note that direct intersections between x-terms of different
queries are not possible other than via the s-terms (e.g., if two queries (w1, w2)
and (w′

1, w
′
2) are issued, the server can learn the (randomly permuted) results of

(w1, w
′
2) and (w′

1, w2) but not (w2, w
′
2).

5 While in SKS one can choose to let the server decrypt the ind’s directly instead of
the client, in BXT this is necessary for computing the xtag’s.

Highly-Scalable Searchable Symmetric Encryption 363

In settings where computation and communications are very constrained BXT
may provide for an acceptable privacy-performance balance. In general, however,
we would like to improve on the privacy of this solution even if at some perfor-
mance cost. We do so in the next section with the OXT protocol, so we omit a
formal analysis BXT – we note that the security of BXT needs the set of ind’s to
be unpredictable, a condition not needed in the other protocols.

Choosing the S-Term. The performance and privacy of our conjunction pro-
tocols improves with “lighter” s-terms, namely, keywords w whose DB(w) is of
small or moderate size. While it is common to have such terms in typical con-
junctive queries, our setting raises the question of how can the client, who has
limited storage, choose adequate s-terms. In the case of relational databases one
can use general statistics about attributes to guide the choice of the s-term (e.g.,
prefer a last-name term to a first-name term, always avoid gender as the s-term,
etc.). In the case of free text the choice of s-term can be guided by term fre-
quency which can be made available, requiring a small state stored at the client
or retrieved from the server. We extend on this topic in the full version [5].

3.2 Oblivious Cross-Tags (OXT) Protocol

The BXT scheme is vulnerable to the following simple attack: When the server
gets xtrapi for a query (w1, . . . , wn), it can save it and later use it to learn if any
revealed ind value is a document with keyword wi by testing if f(xtrapi, ind) ∈
XSet. This allows an honest-but-curious server to learn, for example, the number
of documents matching each queried s-term with each queried x-term (even for
terms in different queries). This attack is possible because BXT reveals the keys
that enable the server to compute f(xtrapi, ·) itself.

One way to mitigate the attack is to have the client evaluate the function
for the server instead of sending the key. Namely, the server would send all the
encrypted ind values that it gets in t (from the TSet) to the client who will
compute the function f(xtrapi, ind) and send back the results. However, this fix
adds a round of communication with consequent latency, it allows the server to
cheat by sending ind values from another query’s s-term (from which the server
can compute intersections not requested by the client), and is unsuited to the
multi-client SSE setting [7] discussed in the introduction (since the client would
learn from the inds it receives the results of conjunctions it was not authorized
for). Note that while the latter two issues are not reflected in our current formal
model, avoiding them expands significantly the applicability of OXT.

These issues suggest a solution where we replace the function f(xtrap, ·) (where
xtrap = F (KX , w)) with a form of oblivious shared computation between client
and server. A first idea would be to use blinded exponentiation (as in Diffie-
Hellman based oblivious PRF) in a group G of prime order p: Using a PRF Fp

with range Z∗
p (and keysKI ,KX), we derive a value xind = Fp(KI , ind) ∈ Z∗

p and

define each xtag to be gFp(KX ,w)·xind. The shared computation would proceed by
the client first sending the value gFp(KX ,wi)·z where z ∈ Z∗

p is a blinding factor;

364 D. Cash et al.

EDBSetup(DB)

– Select key KS for PRF F , keys KX , KI ,KZ for PRF Fp (with range in Z∗
p), and

parse DB as (indi,Wi)
d
i=1.

– Initialize T to an empty array indexed by keywords from W.
– Initialize XSet to an empty set.
– For each w ∈ W, build the tuple list T[w] and XSet elements as follows:
• Initialize t to be an empty list, and set Ke ← F (KS, w).
• For all ind in DB(w) in random order, initialize a counter c← 0, then:
∗ Set xind← Fp(KI , ind), z ← Fp(KZ , w ‖ c) and y ← xind · z−1.
∗ Compute e← Enc(Ke, ind), and append (e, y) to t.
∗ Set xtag← gFp(KX ,w)·xind and add xtag to XSet.

• T[w]← t.
– (TSet,KT)← TSetSetup(T).
– Output the key (KS ,KX ,KI ,KZ ,KT) and EDB = (TSet,XSet).

Search protocol

– The client’s input is the key (KS,KX ,KI ,KZ ,KT) and query w̄ = (w1, . . . , wn).

It sends to the server the message (stag, xtoken[1], xtoken[2], . . .) defined as:

• stag← TSetGetTag(KT , w1).
• For c = 1, 2 . . . and until server sends stop

∗ For i = 2, . . . , n, set xtoken[c, i]← gFp(KZ ,w1 ‖ c)·Fp(KX ,wi)

∗ Set xtoken[c] = xtoken[c, 2], . . . , xtoken[c, n].

– The server has input (TSet,XSet). It responds as follows.

• It sets t← TSetRetrieve(TSet, stag).
• For c = 1, . . . , |t|
∗ retrieve (e, y) from the c-th tuple in t
∗ if ∀i = 2, . . . , n : xtoken[c, i]y ∈ XSet then send e to the client.

• When last tuple in t is reached, send stop to C and halt.

– Client sets Ke ← F (KS, w1); for each e received, computes ind← Dec(Ke, e) and
outputs ind.

Fig. 2. OXT: Oblivious Cross-Tags Protocol

the server would raise this to the power xind and finally the client would de-blind
it by raising to the power z−1 mod p to obtain gFp(KX ,wi)·xind. Unfortunately, this
idea does not quite work as the server would learn xtag = gFp(KX ,wi)·xind and
from this, and its knowledge of xind, it would learn gFp(KX ,wi), which allows
it to carry out an attack similar to the one against BXT. This also requires
client-server interaction on a per-xind basis, a prohibitive cost.

In the design of OXT we address these two problems. The idea is to precompute
(in EDBSetup) the blinding part of the oblivious computation and store it in the
EDB. I.e., in each tuple corresponding to a keyword w and document xind, we
store a blinded value yc = xind · z−1

c , where zc is an element in Z∗
p derived (via

a PRF) from w and a tuple counter c (this counter, incremented for each tuple
in t associated with w, serves to ensure independent blinding values z).

Highly-Scalable Searchable Symmetric Encryption 365

During search, the server needs to compute the value gFp(KX ,wi)·xind for each
xind corresponding to a match for w1 and then test these for membership in XSet.
To enable this, the client sends, for the c-th tuple in t, a n-long array xtoken[c]
defined by xtoken[c, i] := gFp(KX ,wi)·zc , i = 1, . . . , n, where zc is the precomputed
blinding derived by from w (via a PRF) and the tuple counter c. The server then
performs the T-set search to get the results for w1, and filters the c-th result
by testing if xtoken[c, i]yc ∈ XSet for all i = 2, . . . , n. This protocol is correct

because xtoken[c, i]yc = gFp(KX ,wi)·zc·xind·z−1
c = gFp(KX ,wi)·xind, meaning that the

server correctly recomputes the pseudorandom values in the XSet.
Putting these ideas together results in the OXT protocol of Figure 2. Note

that the client sends the xtoken arrays (each holding several values of the form
gFp(KX ,wi)·z) until instructed to stop by the server. There is no other communi-
cation from server to client (alternatively, server can send the number of elements
in TSet(w) to the client who will respond with such number of xtoken arrays).6

Note that while the description above is intended to provide intuition for the
protocol’s design, assessing the security (leakage) of OXT is non-trivial, requiring
an intricate security analysis that we provide in Section 4.

OXT consists of a single round of interaction, where the message sent by
the client is of size proportional to |DB(w1)|, 7 and the response to the client is
minimal, consisting only of the result set (i.e., the set of encrypted ind’s matching
the query). The computational cost of OXT lies in the use of exponentiations,
however, thanks to the use of very efficient elliptic curves (we only require the
group to be DDH) and fixed-base exponentiations, this cost is practical even for
very large databases as demonstrated by the performance numbers in Section 5.

OXT leaks much less information to the server than BXT. Indeed, since the
server, call it S, learns neither the ind values nor xtrapj , j = 2, . . . , n, its ability
to combine conjunctive terms from one query with terms from another query
is significantly reduced. In particular, while in BXT S learns the intersection
between s-terms of any two queries, in OXT this is possible only in the following
case: the two queries can have different s-terms, but same x-term and there is
a document containing both s-terms (the latter is possible since if the s-terms
of two queries share a document ind and an x-term xtrap then the xtag value
f(xtrap, ind) will be the same in both queries indicating that ind and xtrap are
the same). The only other leakage via s-terms is that S learns when two queries
have the same s-term w1 and the size of the set DB(w1). Finally, regrading intra-
query leakage if C responds with the values xtagj , j = 2, . . . , n, in the same order
for all ind’s, then in case n > 2, S learns the number of documents matching any
sub-conjunction that includes w1 and any subset of w2, . . . , wn. If, instead, C

6 The same protocol supports single-keyword search (or 1-term conjunctions) by skip-
ping the c = 1, 2, . . . at both client and server, hence falling back to the SKS protocol
of Figure 1.

7 For typical choices of w1, such message will be of small or moderate size. For large
values of |DB(w1)| one can cap the search to the first k tuples for a threshold k, say
1000. For example, in the case of a 3-term conjunction and xtag values of size 16
bytes, this will result in just 32 Kbyte message.

366 D. Cash et al.

randomly permutes the values xtagj , j = 2, . . . , n before sending these values to
S, then S learns the maximal number of satisfied terms per tuple in TSet(w1),
but not the size of sets matching w1 ∧wi, i = 1, . . . , n, or any other proper sub-
conjunctions (except for what can be learned in conjunction with other leakage
information). In Section 4 we formally analyze the security of OXT making the
above description of leakage precise.

As noted before, even a leakage profile as the above that only reveals access
patterns can still provide valuable information to an attacker that possesses
prior information on the database and queries. We don’t discuss here specific
countermeasures for limiting the ability of an attacker to perform such statistical
inference – see [15] for an example of potential masking techniques.

3.3 Processing Boolean Queries with OXT

We describe an extension to OXT that can handle arbitrary Boolean query ex-
pressions. We say that a Boolean expression in n terms is in Searchable Normal
Form (SNF) if it is of the form w1∧φ(w2, . . . , wn) where φ is an arbitrary Boolean
formula (e.g., “w1 ∧ (w2 ∨ w3 ∨ ¬w4)”). OXT can be extended to answer such
queries: On input a query of the form w1 ∧ φ(w2, . . . , wn), the client creates a

modified boolean expression φ̂ in new boolean variables vi (i = 2, . . . , n), which
is just φ but with each wi replaced by vi. Thus, the client uses w1 as the s-term
and computes its stag as in OXT, and computes the xtrap (i.e. the xtoken ar-
ray) for all the other terms wi (i > 1). It then sends the stag and the xtraps
in the order of their index. It also sends the server the above modified boolean
expression φ̂. The server fetches the TSet corresponding to the stag as in OXT.
It also computes the xtag corresponding to each x-term, also as in OXT. But, it
decides on sending (to the Client) the encrypted ind corresponding to each tuple
in the TSet based on the following computation (which is the only different part
from OXT): for each i = 2, . . . , n, the server treats the variable vi as a boolean
variable and sets it to the truth value of the expression (xtoken[c, i])y ∈ XSet.
Then it evaluates the expression φ(v2, . . . , vn). If the result is true, it returns the
e value in that tuple to the Client.

OXT can also be used to answer any disjunction of SNF expressions. Actu-
ally, note that OXT can answer any Boolean query by adding to the database
a field true which all documents satisfy. Then a search for any expression
φ(w1, . . . , wn) can be implemented as “true ∧ φ(w1, . . . , wn)”, which is in SNF
and can be searched as in the SNF case above. Clearly, this will take time linear
in the number of documents but it can be implemented if such functionality is
considered worth the search complexity.

4 Security of OXT

In the full version [5] we provide a complete detailed analysis of OXT and its
extension to Boolean queries. Due to space constraints we illustrate the security
claim for the particular case of two-term conjunctions, but this restricted case is

Highly-Scalable Searchable Symmetric Encryption 367

representative of the general case. We start by describing the protocol’s leakage
profile, Loxt(DB,q), followed by a security theorem showing that this is all of
the information leaked by the protocol.

In describing the leakage profile of the OXT protocol we will assume an op-
timal T-set implementation (see Section 2) as the one presented in [5], namely,

with optimal leakage N =
∑d

i=1 |Wi|. We represent a sequence of Q two-term
conjunction queries by q = (s,x) where an individual query is a two-term con-
junction s[i] ∧ x[i] which we write as q[i] = (s[i],x[i]).

We define Loxt(DB,q), for DB = (indi,Wi)
d
i=1 and q = (s,x), as a tuple

(N,EP, SP,RP, IP) formed as follows:

– N =
∑d

i=1 |Wi| is the total number of appearances of keywords in documents.
– EP is the equality pattern of s ∈ WQ indicating which queries have the

equal s-terms. Formally, EP ∈ [m]Q is formed by assigning each keyword an
integer in [m] determined by the order of appearance in s. For example, if
s = (a, a, b, c, a, c) then EP = (1, 1, 2, 3, 1, 3). To compute EP[i] one finds the
least j such that s[j] = s[i] and then lets EP[i] = |{s[1], . . . , s[j]}| be the
number of unique keywords appearing at indices less than or equal to j.

– SP is the size pattern of the queries, i.e. the number of documents matching
the first keyword in each query. Formally, SP ∈ [d]Q and SP[i] = |DB(s[i])|.

– RP is the results pattern, which consists of the results sets (R1, . . . , RQ), each
defined by Ri = Iπ(s[i]) ∩ Iπ(x[i]).

– IP is the conditional intersection pattern, which is a Q by Q table with entries
defined as follows: IP[i, j] is an empty set if either s[i] = s[j] or x[i]
= x[j].
However, if s[i]
= s[j] and x[i] = x[j] then IP[i, j] = DB(s[i]) ∩ DB(s[j]).

Understanding the Leakage Components. The parameter N can be re-
placed with an upper bound given by the total size of EDB but leaking such a
bound is unavoidable. The equality pattern EP leaks repetitions in the s-term
of different queries; this is a consequence of our optimized search that singles
out the s-term in the query. This leakage can be mitigated by having more than
one TSet per keyword and the client choosing different incarnations of the Tset
for queries with repeated s-terms. SP leaks the number of documents satisfy-
ing the s-term in a query and is also a direct consequence of our approach of
optimizing search time via s-terms; it can be mitigated by providing an upper
bound on the number of documents rather than an exact count by artificially
increasing Tset sizes. RP is a the result of the query and therefore no real leak-
age. Finally, the IP component is the most subtle and it means that if two
queries have different s-terms but same x-term, then the indexes which match
both the s-terms are leaked (if there are no documents which match both s-
terms then nothing is leaked). This “conditional intersection pattern” can be
seen as the price for the rich functionality enabled by our x-terms and XSet ap-
proach that allows for the computation of arbitrary boolean queries. Note that
on query q[i] = (s[i] ∧ x[i]) the OXT protocol lets the server compute a deter-
ministic function f(xtrap(x[i]), ind) of the x-term x[i] for all ind’s that match the
s-term s[i]. Therefore a repeated xtag value in two queries q[i] and q[j] implies

368 D. Cash et al.

that x[i] = x[j] and that DB(s[i]) and DB(s[j]) contain a common index. Even
though this index is not revealed to the server, we still model this information
by simply revealing DB(s[i]) ∩ DB(s[j]) if x[i] = x[j]. This “pessimistic” upper
bound on the leakage simplifies the leakage representation. As said, if the above
intersection is empty then no information about the equality of the x-terms
x[i],x[j] is revealed. The probability of non-empty intersections is minimized
by consistently choosing low-frequent s-terms. Note also that for queries with
s-terms belonging to the same field with unique per-document value (e.g., both
s-terms containing different last names in a database with a last-name field), the
IP leakage is empty.

Theorem 1. The SSE scheme OXT implemented with an optimal T-set is Loxt-
semantically-secure if all queries are 2-conjunctions, assuming that the DDH
assumption holds in G, that F and Fp are secure PRFs, and (Enc,Dec) is an
IND-CPA secure symmetric encryption scheme.

Proof Sketch. The proof of the theorem is delicate and lengthy, and is presented
in [5] for the general case of multi-term conjunctions (with extensions to the case
of Boolean queries). To get some intuition for why the scheme is secure, we start
by examining why each of the outputs of L is necessary for a correct simulation.
Of course, this does nothing to show that they are sufficient for simulation,
but it will be easier to see why this is all of the leakage once their purpose is
motivated. For the sake of this sketch we assume a non-adaptive adversary.

The size of the XSet is equal to the value N leaked. The equality pattern
EP (or something computationally equivalent to it) is necessary due to the fact
that the stag values are deterministic, so a server can observe repetitions of stag
values to determine if s[i] = s[j] for all i, j. The size pattern is also necessary
as the server will always learn the number of matches for the first keyword in
the conjunction by observing the number of tuples returned by the T-set. We
include the results pattern to enable the simulator to produce the client results
for queries in way consistent the conditional intersection pattern.

The final and most subtle part of the leakage is the conditional intersec-
tion pattern IP. The IP is present in the leakage because of the following pas-
sive attack. During the computation of the search protocol, the values tested
for membership in the XSet by the server have the form f(xtrap(wi), ind) =
gFp(KX ,wi)·Fp(KI ,ind), where wi is the i-th x-term in a search query and ind is an
identifier for a document that matched the s-term in that query. As we explain
above, the leakage comes from the fact that f is a deterministic function, and
so these values will repeat if and only if (except for a negligible probability of a
collision) (1) the two queries involve the same x-term and (2) the sets of indexes
which match the s-terms involved in these queries have some indexes in common.

Our proof makes formal the claim that the output of L is sufficient for a
simulation. We outline a few of the technical hurdles in the proof without dealing
with the details here. For this discussion, we assume that reductions to PRF
security and encryption security go through easily, allowing us to treat PRF
outputs as random and un-opened ciphertexts as encryptions of zeros.

Highly-Scalable Searchable Symmetric Encryption 369

We first handle the information leaked by the XSet. An unbounded adversary
could compute the discrete logarithms of the XSet elements and derive informa-
tion about which documents match which keywords. We want to show however
that a poly-time adversary learns nothing from the XSet due to the assumed
hardness of the DDH problem. Formally, we need to show that we can replace
the elements of XSet with random elements that carry no information about the
database, but there is a technical difficulty: some of the exponents (specifically,
the xind values) that will play the roll of hidden exponents in the DDH reduction
are used in the computation of the xtrap values, and these are revealed in the
transcripts. A careful rearrangement of the game computation will show that
this is not as bad as it seems, because the xind values are “blinded out” by the z
values. We stress that this requires some care, because the z values are also used
twice, and we circumvent this circularity by computing the XSet first and then
computing the transcripts “backwards” in way that is consistent with the XSet.
Now a reduction to DDH becomes clear, as the XSet values can be dropped in
obliviously as real-or-random group elements.

With the XSet leakage eliminated, the rest of the work is in showing that the
simulator can arrange for a correct-looking pattern of “repeats” in the documents
matched and in the values tested against the XSet. While riddled with details,
this is intuitively a rather straightforward task that is carried out in the latter
games of the proof.

5 OXT Implementation and Experimental Results

This section reports the status of the OXT implementation and several latency
and scalability measurements, which should be viewed as providing empirical
evidence to the performance and scalability claims made earlier in the paper.
Additional details on the implementation can be found in the full version [5].
Prototype. The realization of OXT consists of EDBSetup, which generates the

EDB, Client, which generates the stag and the xtoken stream, and EDBSearch,
which uses the EDB to process the Client’s request. All three use the same crypto-
graphic primitives, which leverage the OpenSSL 1.0.1 library. As the DH groups
we use NIST 224p elliptic curve. The overall C code measures roughly 16k lines.

To scale beyond the server’s RAM, the TSet is realized as a disk-resident paged
hash table. Each tuple list T[w] in the TSet is segmented into fixed-size blocks
of tuples keyed by a tag stagc. This tag is derived by a PRF from the list’s stag
and a segment counter. EDBSearch uses page-level direct I/O to prevent buffer
cache pollution in the OS, as the hash table pages are inherently uncachable,
and parallelizes disk accesses using asynchronous I/O (aio * system calls). The
XSet is realized as a RAM-resident Bloom filter [2], which enables the sizing
the false positive rate to the lowest value that the server’s RAM allows. For the
experiments presented next, the false positive rate is 2−20 and the Bloom filter
XSet still occupies only a small fraction of our server’s RAM.

Data Sets. To show the practical viability of our solution we run tests on two
data sets: the Enron email data set [9] with more than 1.5 million documents

370 D. Cash et al.

(email messages and attachments) which generate 145 million distinct (keyword,
docId) pairs, and the ClueWeb09 [20] collection of crawled web-pages from which
we extracted several databases of increasing size, where the largest one is based
on 0.4TB of HTML files which generate almost 3 billion distinct (keyword, docId)
pairs. For the Enron email data, the TSet hash table and the XSet Bloom filter
are 12.4 GB and 252 MB, respectively. The corresponding sizes for the largest
ClueWeb09 data set are 144.4 GB and 9.7 GB, respectively.

Experimental Results. All experiments were run on IBM Blades HS22 at-
tached to a commodity SAN system. Figure 3 shows the latency of queries on
one-term, called v, and three variants of two-term conjunctive queries on the
Enron data set. In one-term queries, the selectivity of v (the number of docu-
ments matching v) varies from 3 to 690492. As this query consists only of an
s-term, the figure illustrates that its execution time is linear in the cardinality of
TSet(v). The two-term conjunctive queries combine the previous queries with a
fixed reference term. In the first of these queries, the fixed term acts as an x-term:
each tuple retrieved from the TSet is checked against the XSet at the cost of an
exponentiation. However, as we perform these operation in parallel to retrieving
the TSet buckets from the disk, their cost is completely hidden by the disk I/O
latency. Micro-benchmarks show that the average cost of retrieving a bucket
which has a capacity of 10 tuples is comparable to ∼1, 000 single-threaded expo-
nentiations. Similarly, the client-side exponentiation in the OXT protocol can be
overlapped with disk and network I/O. It illustrates the fact that exponentia-
tions, over fast elliptic curves, are relatively cheap when compared to the cost of
accessing storage systems. The last two conjunctive queries use two fixed terms
with different selectivity, α and β, as s-terms. Their invariable execution time
is dominated by the cost of retrieving the TSet tuples corresponding to their
s-terms, irrespective the variable selectivity of the xterm v: the two horizontal
lines intersect with the single-term curve exactly where v corresponds to α and
β, respectively. This illustrates the importance of s-term selection, as discussed
in Section 3.1.

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000 1e+06

T
im

e
(s

)

Selectivity of Variable Term (v)

Selectivity of α: 15
Selectivity of β: 1948

v
v AND α
α AND v
β AND v

Fig. 3. Enron Performance Measurement:
Single Term & Conjunction

 0.001

 0.01

 0.1

 1

 10

 100

 1e+08 1e+09 1e+10

T
im

e
(s

)

Database size as total number of per-document-distinct words

constant small (10) result set
constant medium-size (10,000) result set

proportional small result set
proportional medium-size result set

Fig. 4. Clueweb09 Performance Measure-
ment: Scaling Database Size

Highly-Scalable Searchable Symmetric Encryption 371

To further assess the scalability of EDBSearch, we generated several EDBs from
increasingly larger subsets of the ClueWeb09 data set ranging from 408, 450 to
13, 284, 801 HTML files having a size from 20 to 410 GBs and from 142, 112, 027
to 2, 689, 262, 336 distinct (keyword, docId) pairs. To make these databases com-
parable, we injected several artificial and non-conflicting keywords to randomly
selected documents simulating words of various selectivity. Figure 4 confirms
that our implementation matches the scalability of our (theoretical) algorithms
even when our databases exceed the size of available RAM: If the size of the
result set is constant, then query time is largely independent of the size of the
database and for result sets where the size is proportional to the database size,
the cost is linear in the database size.

6 Conclusions and Research Questions

The premise of this work is that in order to provide truly practical SSE solutions
one needs to accept a certain level of leakage; therefore, the aim is to achieve
an acceptable balance between leakage and performance, with formal analysis
ensuring upper bounds on such leakage. Our solutions strike such a practical
balance by offering performance that scales to very large data bases; supporting
search in both structured and textual data with general Boolean queries; and
confining leakage to access (to encrypted data) patterns and some query-term
repetition only, with formal analysis defining and proving the exact boundaries
of leakage. We stress that while in our solutions leakage never occurs in the
form of direct exposure of plain data or searched values, when combined with
side-information that the server may have (e.g., what are the most common
searched words), such leakage can allow for statistical inference on plaintext
data. Nonetheless, it appears that in many practical settings the benefits of
search would outweigh moderate leakage (especially given the alternatives of
outsourcing the plaintext data or keeping it encrypted but without the ability
to run useful searches).

Our report on the characteristics and performance of our prototype points
to the fact that scalability can only be achieved by low-complexity protocols
which admit highly parallelizable implementations of their computational and
I/O paths. Our protocols are designed to fulfill these crucial performance re-
quirements.

There are interesting design and research challenges arising from this work.
What we call “the challenge of being imperfect” calls for trade-offs between
privacy and performance that can only be evaluated on the basis of a formal
treatment of leakage. Understanding the limits of what is possible in this do-
main and providing formal lower bounds on such trade-offs appears as a non-
trivial problem that deserves more attention. Some of these problems may still
be unresolved even for plaintext data. The seemingly inherent difference pointed
out in the introduction between the complexity of resolving conjunctions with
high-frequency terms versus conjunctions with low-frequency terms, but with a
similar-size result set, may be such a case. We do not know of a proven lower

372 D. Cash et al.

bound in this case although the work of Patrascu [22], for example, may point
to some relevant conjectured bounds.

Another important evaluation of leakage is what we refer to as “semantic leak-
age.” How much can an attacker learn from the data given the formal leakage
profile and side knowledge on the plaintext data? Clearly, the answer to this
question is application-dependent but one may hope for some general theory
in which these questions can be studied. The success of differential privacy in
related domains opens some room for optimism in this direction. Demonstrating
specific attacks in real-world settings is also an important direction to pursue.
We note that in some settings just revealing the size of the number of docu-
ments matching a query may leak important information on the query contents
(e.g., [15]). Therefore, developing masking techniques that include dummy or
controlled data to obscure statistical information available to the attacker seems
as an important research direction to strengthen the privacy of solutions as those
developed here. ORAM-related techniques can be certainly help in this setting,
especially given the progress on the practicality of these techniques in last years.

Yet another research direction is to characterize plaintext-search algorithms
that lend themselves for adaptation to the encrypted setting. The s-term and
x-term based search that we use is such an example: It treats data in “black-
box” form that translates well to the encrypted setting. In contrast, search that
looks at the data itself (e.g., sorting it) may not work in this setting or incur in
significantly increased leakage (e.g., requiring order-preserving or deterministic
encryption). Finally, it would be interesting to see more examples (in other two-
party, or multi-party, protocols) of our approach, which is central to the design
of OXT, of removing interaction from protocols by pre-computing and storing
some of the protocol messages during a pre-computation phase.

Acknowledgment. Supported by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Interior National Business Center (DoI /
NBC) contract number D11PC20201. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. Disclaimer: The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or implied, of
IARPA, DoI/NBC, or the U.S. Government.

References

1. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the Association for Computing Machinery 13(7), 422–426 (1970)

3. Byun, J.W., Lee, D.-H., Lim, J.-I.: Efficient conjunctive keyword search on en-
crypted data storage system. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS,
vol. 4043, pp. 184–196. Springer, Heidelberg (2006)

Highly-Scalable Searchable Symmetric Encryption 373

4. Cash, D., Jagger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner,
M.: Dynamic searchable encryption in very-large databases: Data structures and
implementation (manuscript, 2013)

5. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Highlyscal-
able searchable symmetric encryption with support for boolean queries. Report
2013/169, Cryptology ePrint Archive (2013), http://eprint.iacr.org/2013/169

6. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

7. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010)

8. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: Juels, A., Wright,
R.N., Vimercati, S. (eds.) ACM CCS 2006, pp. 79–88. ACM Press (October 2006)

9. EDRM (edrm.net). Enron data set,
http://www.edrm.net/resources/data-sets/edrm-enron-email-data-set-v2

10. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press (May/June 2009)

11. Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003),
http://eprint.iacr.org/

12. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zeroknowl-
edge proofs are equivalent (extended abstract). In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 228–245. Springer, Heidelberg (1993)

13. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over en-
crypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004)

14. IARPA. Security and Privacy Assurance Research (SPAR) Program - BAA (2011),
http://www.iarpa.gov/solicitations_spar.html/

15. Islam, M., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In: Proceedings of the Sympo-
sium on Network and Distributed Systems Security (NDSS 2012), San Diego, CA.
Internet Society (February 2012)

16. Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner, M.: Outsourced symmet-
ric private information retrieval (manuscript 2013)

17. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR,
and WLC 2010. LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

18. Kamara, S., Papamanthou, C., Röder, T.: CS2: A searchable cryptographic cloud
storage system (2011), http://research.microsoft.com/pubs/148632/CS2.pdf

19. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proc. of CCS 2012 (2012)

20. Lemur Project. ClueWeb09 dataset, http://lemurproject.org/clueweb09.php/
21. Pappas, V., Vo, B., Krell, F., Choi, S.G., Kolesnikov, V., Keromytis, A., Malkin,

T.: Blind Seer: A Scalable Private DBMS (manuscript, 2013)
22. Patrascu, M.: Towards polynomial lower bounds for dynamic problems. In: 42nd

ACM STOC, pp. 603–610. ACM Press (2010)
23. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted

data. In: 2000 IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Com-
puter Society Press (May 2000)

http://eprint.iacr.org/2013/169
http://www.edrm.net/resources/data-sets/edrm-enron-email-data-set-v2
http://eprint.iacr.org/
http://www.iarpa.gov/solicitations_spar.html/
http://research.microsoft.com/pubs/148632/CS2.pdf
http://lemurproject.org/clueweb09.php/

	Highly-Scalable Searchable Symmetric
Encryption with Support for Boolean Queries
	1 Introduction
	2 Definitions and Tools
	2.1 SSE Syntax and Security Model
	2.2 T-Sets
	2.3 T-Sets and Single Keyword Search

	3 SSE Schemes for Conjunctive Keyword Search
	3.1 Basic Cross-Tags (BXT) Protocol

	3.2 Oblivious Cross-Tags (OXT) Protocol
	3.3 Processing Boolean Queries with OXT

	4 Securityof OXT
	5 OXT Implementation and Experimental Results
	6 Conclusions and Research Questions
	References

