
Multi-core Emptiness Checking of Timed Büchi

Automata Using Inclusion Abstraction�

Alfons Laarman1, Mads Chr. Olesen2, Andreas Engelbredt Dalsgaard2,
Kim Guldstrand Larsen2, and Jaco van de Pol1

1 Formal Methods and Tools, University of Twente
{A.W.Laarman,J.C.vandePol}@utwente.nl

2 Department of Computer Science, Aalborg University
{andrease,kgl,mchro}@cs.aau.dk

Abstract. This paper contributes to the multi-core model checking of
timed automata (TA) with respect to liveness properties, by investi-
gating checking of TA Büchi emptiness under the very coarse inclusion
abstraction or zone subsumption, an open problem in this field.

We show that in general Büchi emptiness is not preserved under this
abstraction, but some other structural properties are preserved. Based
on those, we propose a variation of the classical nested depth-first search
(ndfs) algorithm that exploits subsumption. In addition, we extend the
multi-core cndfs algorithm with subsumption, providing the first paral-
lel LTL model checking algorithm for timed automata.

The algorithms are implemented in LTSmin, and experimental evalu-
ations show the effectiveness and scalability of both contributions: sub-
sumption halves the number of states in the real-world FDDI case study,
and the multi-core algorithm yields speedups of up to 40 using 48 cores.

1 Introduction

Model checking safety properties can be done with reachability, but only guar-
antees that the system does not enter a dangerous state, not that the system
actually serves some useful purpose. To model check such liveness properties is
more involved since they state conditions over infinite executions, e.g. that a re-
quest must infinitely often produce a result. One of the most well-known logics
for describing liveness properties is Linear Temporal Logic (LTL) [2].

The automata-theoretic approach for LTL model checking [27] solves the prob-
lem efficiently by translating it to the Büchi emptiness problem, which has been
shown decidable for real-time systems as well [1]. However, its complexity is ex-
ponential, both in the size of the system specification and of the property. In
the current paper, therefore, we consider two possible ways of alleviating this so-
called state space explosion problem: (1) by utilising the many cores in modern
processors, and (2) by employing coarser abstractions to the state space.

� Danish authors partially supported by the MBAT ARTEMIS project, the MT-LAB
VKR Centre of Excellence and the IDEA4CPS Sino-Danish Basic Research Centre.

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 968–983, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Multi-core Emptiness Checking of Timed Büchi Automata 969

Related work. The verification of timed automata was made possible by Alur and
Dill’s region construction [1], which represents clock valuations using constraints,
called regions . A max-clock constant abstraction, or k-extrapolation, bounded
the number of regions. Since the region construction is exponential in the number
of clocks and constraints in the TA, coarser abstractions such as the symbolic
zone abstraction have been studied [13], and also implemented in, among others,
the state-of-the-art model checker uppaal [22]. Later, the k-extrapolation for
zones was refined to include lower clock constraints in the so-called lower/upper-
bound (LU) abstraction proposed in [4]. Finally, the inclusion abstraction, or
simply subsumption, prunes reachability according to the partial order of the
symbolic states [12]. All these abstractions preserve reachability properties [12,4].

Model checking LTL properties on timed automata, or equivalently checking
timed Büchi automata (TBA) emptiness, was proven decidable in [1], by using
the region construction. Bouajjani et al. [8] showed that the region-closed simula-
tion graph preserve TBA emptiness. Tripakis [25] proved that the k-extrapolated
zone simulation graph also preserves TBA emptiness, while posing the question
whether other abstractions such as the LU abstraction and subsumption also pre-
serve this property. Li [23] showed that the LU abstraction does in fact preserve
TBA emptiness. The status of subsumption in LTL model checking is still open.

One way of establishing TBA emptiness on a finite simulation graph is the
nested depth-first (ndfs) algorithm [9,16]. Recently, some multi-core version of
these algorithms were introduced by Evangelista and Laarman et al [17,15,14].
These algorithms have the following properties: their runtime is linear in the
number of states in the worst case while typically yielding good scalability; they
are on-the-fly [18] and yield short counter examples [14, Sec. 4.3]. The latest ver-
sion, called cndfs, combines all these qualities and decreases memory usage [14].

In previous work, we parallelised reachability for timed automata using the
mentioned abstractions [11]. It resulted in almost linear scalability, and speedups
of up to 60 on a 48 core machine, compared to uppaal. The current work extends
this previous work to the setting of liveness properties for timed automata. It
also shares the uppaal input format, and re-uses the uppaal dbm library.

Problem statement. Parallel model checking of liveness properties for timed sys-
tems has been a challenge for several years. While advances were made with
distributed versions of e.g. uppaal [3], these were limited to safety properties.
Furthermore, it is unknown how subsumption, the coarsest abstraction, can be
used for checking TBA emptiness.

Contributions. (1) For the first time, we realize parallel LTL model checking
of timed systems using the cndfs algorithm. (2) We prove that subsumption
preserves several structural state space properties (Sec. 3), and show how these
properties can be exploited by ndfs and cndfs (Sec. 4 and Sec. 5). (3) We
implement ndfs and cndfs with subsumption in the LTSmin toolset [20] and
opaal [10]. Finally, (4) our experiments show considerable state space reductions
by subsumption and good parallel scalability of cndfs with speedups of up to
40 using 48 cores.



970 A. Laarman et al.

2 Preliminaries: Timed Büchi Automata and
Abstractions

In the current section, we first recall the formalism of timed Büchi automata
(TBA), that allows modelling of both a real-time system and its liveness re-
quirements. Subsequently, we introduce finite symbolic semantics using zone ab-
straction with extrapolation and subsumption. Finally, we show which properties
are known to be preserved under said abstractions.

Timed Automata and Transition Systems. Def. 2 provides a basic definition of a
TBA. It can be extended with features such as finitely valued variables, and par-
allel composition to model networks of timed automata, as done in uppaal [5].

Definition 1 (Guards). Let G(C) be a conjunction of clock constraints over
the set of clocks c ∈ C, generalized by:

g ::= c �� n | g ∧ g | true

where n ∈ N0 is a constant, and �� ∈ {<,≤,=, >,≥} is a comparison operator.
We call a guard downwards closed if all �� ∈ {<,≤,=}.
Definition 2 (Timed Büchi Automaton). A timed Büchi automaton (TBA)
is a 6-tuple B = (L, C,F , l0,→, IC), where

– L is a finite set of locations, typically denoted by �, where �0 ∈ L is the initial
location, and F ⊆ L, is the set of accepting locations,

– C is a finite set of clocks, typically denoted by c,
– → ⊆ L×G(C)×2C×L is the (non-deterministic) transition relation. We write

� g,R−→ �′ for a transition, where � is the source and �′ the target location,
g ∈ G(C) is a transition guard, R ⊆ C is the set of clocks to reset, and

– IC : L → G(C) is an invariant function, mapping locations to a set of guards.
To simplify the semantics, we require invariants to be downwards-closed.

The states of a TBA involve the notion of clock valuations. A clock valuation is
a function v : C → R≥0. We denote all clock valuations over C with VC . We need
two operations on clock valuations: v ′ = v + δ for a delay of δ ∈ R≥0 time units
s.t. ∀c ∈ C : v ′(c) = v(c) + δ, and reset v ′ = v [R] of a set of clocks R ⊆ C s.t.
v ′(c) = 0 if c ∈ R, and v ′(c) = v(c) otherwise. We write v |= g to mean that the
clock valuation v satisfies the clock constraint g.

Definition 3 (Transition system semantics of a TBA). The semantics of
a TBA B is defined over the transition system T SB

v = (Sv , s0, Tv ) s.t.:

1. A state s ∈ Sv is a pair: (�, v) with a location � ∈ L, and a clock valuation v .
2. An initial state s0 ∈ Sv , s.t. s0 = (�0, v0), where ∀c ∈ C : v0(c) = 0.
3. Tv : Sv × ({ε}∪R≥0)×Sv is a transition relation with (s, a, s′) ∈ Tv , denoted

s a→ s′ s.t. there are two types of transitions:
(a) A discrete (instantaneous) transition: (�, v) ε→ (�′, v ′) if an edge � g,R−→ �′

exists, v |= g and v ′ = v [R], and v ′ |= IC(�′).
(b) A delay by δ time units: (�, v) δ→ (�, v + δ) for δ ∈ R≥0 if v + δ |= IC(�).



Multi-core Emptiness Checking of Timed Büchi Automata 971

�0start �1 �2

y ≤ 2 y ≤ 2

y := 0

x > 2, x := 0, y := 0x := 0, y := 0

Fig. 1. A timed Büchi automaton

We say a state s ∈ S is accepting,
or s ∈ F , when s = (�, . . .) and

� ∈ F . We write s δ→ ε→ s′ if there
exists a state s′′ such that s δ→ s′′

and s′′ ε→ s′. We denote an infinite
run in T SB

v = (Sv , s0, Tv) as an in-

finite path π = s1
δ1→ ε→ s2

δ2→ ε→ s3 . . . The run is accepting if there exist an
infinite number of indices i s.t. si ∈ F . A(n infinite) run’s time lapse is
Time(π) =

∑
i≥1 δi. An infinite path π in T SB

v is time convergent , or zeno,
if Time(π) < ∞, otherwise it is divergent. For example, the TBA in Fig. 1 has
an infinite run: (�0, v0) 1→ (�0, v0) 1→ · · · , that is not accepting, but is non-zeno.
We claim that there is no accepting non-zeno run, exemplified by the finite run:
(�0, v0) 2→ ε→ (�1, v1) 0→ ε→ (�2, v0) 0→ ε→ (�1, v0) 1.9→ �ε→ .

Definition 4 (A TBA’s language and the emptiness problem). The lan-
guage accepted by B, denoted L(B), is defined as the set of non-zeno accepting
runs. The language emptiness problem for B is to check whether L(B) = ∅.

Remark 1 (Zenoness). Zenoness is considered a modelling artifact as the be-
haviour it models cannot occur in any real system, which after all has finite
processing speeds. Therefore, zeno runs should be excluded from analysis. How-
ever, any TBA B can be syntactically transformed to a strongly non-zeno B’ [26],
s.t. L(B) = ∅ iff L(B′) = ∅. Therefore, in the following, w.l.o.g., we assume that
all TBAs are strongly non-zeno.

Definition 5 (Time-abstracting simulation relation). A time-abstracting
simulation relation R is a binary relation on Sv s.t. if s1Rs2 then:
– If s1

ε→ s′1, then there exists s′2 s.t. s2
ε→ s′2 and s′1Rs′2.

– If s1
δ→ s′1, then there exists s′2 and δ′ s.t. s2 δ′→ s′2 and s′1Rs′2.

If both R and R−1 are time-abstracting simulation relations, we call R a time-
abstracting bisimulation relation.

y

x0

1

2

3

0 1 2 3 4 5

Fig. 2. A graphical repre-
sentation of a zone over 2
clocks: 0 ≤ x− y ≤ 2.

Symbolic Abstractions using Zones. A zone is a sym-
bolic representation of an infinite set of clock valua-
tions by means of a clock constraint. These constraints
are conjuncts (Def. 6) of simple linear inequalities
on clock values, and thus describe (unbounded) con-
vex polytopes in a |C|-dimensional plane (e.g. Fig. 2).
Therefore, zones can be efficiently represented by Dif-
ference Bounded Matrices (DBMs) [6].

Definition 6 (Zones). Similar to the guard definition, let Z(C) be the set of
clock constraints over the set of clocks c, c1, c2 ∈ C generalized by:

Z ::= c �� n | c1 − c2 �� n | Z ∧ Z | true | false

where n ∈ N0 is a constant, and �� ∈ {<,≤, >,≥} is a comparison operator. We
also use = for equalities, short for the conjunction of ≤ and ≥.



972 A. Laarman et al.

We write v |= Z if the clock valuation v is included in Z, for the set of clock
valuations in a zone �Z� = {v | v |= Z}, and for zone inclusion Z ⊆ Z ′ iff
�Z� ⊆ �Z ′�. Notice that �false� = ∅. Using the fundamental operations below,
which are detailed in [6], we define the zone semantics over simulation graphs
in Def. 7. Most importantly, these operations are implementable in O(n3) or
O(n2) and closed w.r.t. Z.
delay: �Z ↑� = {v + δ|δ ∈ R≥0, v ∈ �Z�},
clock reset : �Z[R]� = {v [R]|v ∈ �Z�}, and
constraining: �Z ∧ Z ′� = �Z� ∩ �Z ′�.

Definition 7 (Zone semantics). The semantics of a TBA B = (L, C,F , �0,→,
IC) under the zone abstraction is a simulation graph: SG(B) = (SZ , s0, TZ) s.t.:

1. SZ consists of pairs (�, Z) where � ∈ L, and Z ∈ Z is a zone.
2. s0 ∈ SZ is an initial state (�0, Z0 ↑ ∧ IC(�0)) with Z0 =

∧
c∈C c = 0.

3. TZ is the symbolic transition function using zones, s.t. (s, s′) ∈ TZ , denoted
s ⇒ s′ with s = (�, Z) and s′ = (�′, Z ′), if an edge � g,R−→ �′ exists, and
Z ∧ g �= false, Z ′ = (((Z ∧ g)[R]) ↑) ∧ IC(�′) and Z ′ �= false.

Any simulation graph is a discrete graph, hence cycles and lassos are defined
in the standard way. We write s ⇒+ s′ iff there is a non-empty path in SG(B)
from s to s′, or s ⇒∗ s′ if the path can be empty. An infinite run in SG(B)
is an infinite sequence of states π = s1s2 . . . , s.t. si ⇒ si+1 for all i ≥ 1. It is
accepting if it contains infinitely many accepting states. If SG(B) is finite, any
infinite path from s0 defines a lasso: s0 ⇒∗ s ⇒+ s.

Definition 8 (A TBA’s language under Zone Semantics). The language
accepted by a TBA B under the zone semantics, denoted L(SG(B)), is the set of
infinite runs π = s0s1s2 . . . s.t. there exists an infinite set of indices s.t. si ∈ F .

Because there are infinitely many zones, the state space of SG(B) may also be
infinite. To bound the number of zones, extrapolation methods combine all zones
which a given TBA B cannot distinguish. For example, k-extrapolation finds the
largest upper bound k in the guards and invariants of B, and extrapolates all
bounds in the zones Z that exceed this value, while LU-extrapolation uses both
the maximal lower bound l and the maximal upper bound u [4]. Extrapolation
can be refined on a per-clock basis [4], and on a per-location basis.

Definition 9. An abstraction over a simulation graph SG(B) = (SZ , s0, TZ) is
a mapping α : SZ → SZ s.t. if α((�, Z)) = (�′, Z ′) then � = �′ and Z ⊆ Z ′.
If the image of an abstraction α is finite, we call it a finite abstraction.

Definition 10. Abstraction α over zone transition system SG(B)=(SZ , s0, TZ)
induces a zone transition system SGα(B) = (Sα, α(s0), Tα) where:

– Sα = {α(s) | s ∈ SZ} is the set of states, s.t. Sα ⊆ SZ ,
– α(s0) is the initial state, and
– (s, s′) ∈ Tα iff (s, s′′) ∈ TZ and s′ = α(s′′), is the transition relation.



Multi-core Emptiness Checking of Timed Büchi Automata 973

We call an abstraction α an extrapolation if there exists a simulation relation R
s.t. if α((�, Z)) = (�, Z ′) then for all v ′ ∈ Z ′ there exist a v ∈ Z s.t. v ′Rv [23].
This means extrapolations do not introduce behaviour that the un-extrapolated
system cannot simulate. The abstraction defined by k-extrapolation is denoted
by αk, while the abstraction defined by LU-extrapolation is called αlu. Hence,
αk and αlu induce finite simulation graphs, written SGk(B) and SGlu(B).

Subsumption abstraction. While SGk(B) and SGlu(B) are finite, their size is still
exponential in the number of clocks. Therefore, we turn to the coarser inclusion/
subsumption abstraction of [12], hereafter denoted subsumption abstraction. We
extend the notion of subsumption to states: a state s = (�, Z) ∈ SZ is sub-
sumed by another s′ = (�′, Z ′), denoted s � s′, when � = �′ and Z ⊆ Z ′. Let
R(SG(B)) = {s|s0 ⇒∗ s} denote the set of reachable states in SG(B).

Proposition 1 (� is a simulation relation). If (�, Z1) � (�, Z2) and (�, Z1) ⇒
(�′, Z ′

1) then there exists Z ′
2 s.t. (�, Z2) ⇒ (�′, Z ′

2) and (�′, Z ′
1) � (�′, Z ′

2).

Proof. By the definition of �, and the fact that ⇒ is monotone w.r.t ⊆ of zones.

Definition 11 (Subsumption abstraction [12]). A subsumption abstraction
α� over a zone transition system SG(B) = (SZ , s0, TZ) is a total function α� :
R(SG(B)) → R(SG(B)) s.t. s � α�(s)

Note the subsumption abstraction is defined only over the reachable state space,
and is not an extrapolation, because it might introduce extra transitions that
the unabstracted system cannot simulate. Typically α is constructed on-the-fly
during analysis, only abstracting to states that are already found to be reachable.
This makes its performance depend heavily on the search order, as finding “large”
states quickly can make the abstraction coarser [11].

SG�

SGlu

SGk

SG
T Sv

α�

αlu

α�

αk

preserves loc. reach.

finite

preserves Büchi

Fig. 3. Abstractions

Property preservation under abstractions. We now con-
sider the preservation by the abstractions above of the
property of location reachability (a location � is reach-
able iff s0 ⇒∗ (�, . . .)) and that of Büchi emptiness.

Proposition 2. For any of the abstractions α: αk [12],
αlu [4], αk ◦ α� [12], and αlu ◦ α� [4], it holds that
� is reachable in T SB

v ⇐⇒ � is reachable in SGα(B)

Proposition 3. For any finite extrapolation [23] α, e.g.
the abstractions αk [25] and αlu [23] it holds that
L(B) = ∅ ⇐⇒ L(SGα(B)) = ∅
From hereon we will denote any finite extrapolation as αfin , and the associated
simulation graph SGfin(B). To denote that this graph can be generated on-the-
fly [27,2,12], we use a next-state(s) function which returns the set of successor
states for s: {s′ ∈ Sfin | s ⇒ s′}.

As a result of Prop. 3 we can focus on finding accepting runs in SGfin(B).
Because it is finite, any such run is represented by a lasso: s0 ⇒ s ⇒+ s.
Tripakis [25] poses the question of whether α� can be used to check Büchi
emptiness. We will investigate this further in the next section.



974 A. Laarman et al.

3 Preservation of Büchi Emptiness under Subsumption

The current section, investigates what properties are preserved by a subsump-
tion abstraction α�, when applied on a finite simulation graph obtained by an
extrapolation, αfin , in the following, denoted as SG�(B) = (SGfin◦�(B)).

Proposition 4. For all abstractions α, s ∈ F ⇔ α(s) ∈ F (by Def. 9).

Proposition 5. An α� abstraction is safe w.r.t. Büchi emptiness:

L(B) �= ∅ =⇒ L(SG�(B)) �= ∅

Proof. If L(B) �= ∅, there must be an infinite accepting path π. This path is
inscribed [25] in SGfin(B), and because � is a simulation relation a similar path
exists in SG�(B). ��

Prop. 5 shows that subsumption abstraction preserves Büchi emptiness in one
direction. Unfortunately, an accepting cycle in SG�(B) is not always reflected
in SGfin(B), as Fig. 4 illustrates. The figure visualises SG�(B) by drawing sub-
sumed states inside subsuming states (e.g. s3 � s1).

s0 s1

s2 s3

s0

s2

s3

s1

Z1 :=

y − x ≤ 0 ∧ y ≤ 2

y

x

2

2
Z2 := Z3 :=

y − x = 0 ∧ y ≤ 2

y

x

2

2

Fig. 4. The state space SG�(B) of the model in Fig. 1 with �1 ∈ F contains 4 states
(shown on the left): s0, s1 = (�1, Z1), s2 = (�2, Z2) and s3 = (�1, Z3). The graphical
representation of the zones Z1–Z3 (right) reveals that Z3 ⊆ Z1 and hence s3 � s1.
As s3 � s1 and both are reachable, a subsumption abstraction is allowed to map
α�(s3) = s1, introducing a cycle s1 ⇒ s2 ⇒ s1 in SG�(B).

However, subsumption introduces strong properties on paths and cycles to
which we devote the rest of the current section. In subsequent sections, we ex-
ploit these properties to improve algorithms that implement the TBA empti-
ness check.

Lemma 1 (Accepting cycles under �). If SGfin(B) contains states s, s
′ s.t.

s leads to an accepting cycle and s � s′, then s′ leads to an accepting cycle.

Proof. We have that s ⇒∗ t ⇒+ t, and because � is a simulation relation we
have the existence of a state x s.t. t � x:



Multi-core Emptiness Checking of Timed Büchi Automata 975

s′ t′ · · · x⇒∗ ⇒ ⇒

s t · · · t⇒∗ ⇒ ⇒

� � � �

From x, we again have a similar path, to some x′. This sequence will eventually
repeat some x′′, because SGfin(B) is finite. It follows that all states in x′′ ⇒+ x′′

subsume states in t ⇒+ t, hence the former cycle is also accepting (Prop. 4). ��

Lemma 2 (Paths under �). If SGfin(B) contains a path s ⇒+ s′ containing
an accepting state and s � s′, then s leads to an accepting cycle.

Proof. Because � is a simulation relation we have that s ⇒+ s′ and s � s′

implies the existence of some t such that s′ ⇒+ t and s′ � t. From t, we again
obtain a similar path to some t′, s.t. t � t′. Because SGfin(B) is finite, the
sequence of t′s will eventually repeat some element x, s.t. x ⇒+ · · · ⇒+ x.

s s′ t · · · x x⇒+ ⇒+ ⇒+ ⇒+ ⇒+

s′ t t′ · · · t′′ x⇒+ ⇒+ ⇒+ ⇒+ ⇒+

� � � � � =

This gives us the lasso s ⇒∗ x ⇒+ x. It also follows that all states in x ⇒+ x
subsume states in s ⇒+ s′, hence the former cycle is accepting (Prop. 4). ��

4 Timed Nested Depth-First Search with Subsumption

In the current section, we extend the classic linear-time ndfs [9,24] algorithm
to exploit subsumption. The algorithm detects accepting cycles, the absence of
which implies Büchi emptiness. It is correct for the graph SGfin(B) according to
Prop. 3. In the following, with soundness , we mean that when ndfs reports a
cycle, indeed an accepting cycle exists in the graph, while completeness indicates
that ndfs always reports an accepting cycle if the graph contains one.

The ndfs algorithm in Alg. 1 consists of an outer DFS (dfsBlue ) that sorts
accepting states s in DFS postorder . And an inner DFS (dfsRed ) that searches
for cycles over each s, called the seed . States are maintained in 3 colour sets:

Alg. 1. ndfs

1: procedure ndfs( )
2: Cyan := Blue := Red := ∅
3: dfsBlue (s0)
4: report no cycle

5: procedure dfsRed (s)
6: Red := Red ∪ {s}
7: for all t in next-state(s) do
8: if (t ∈ Cyan) then report cycle
9: if (t 	∈ Red) then dfsRed (t)

10: procedure dfsBlue(s)
11: Cyan := Cyan ∪ {s}
12: for all t in next-state(s) do
13: if t 	∈ Blue ∧ t 	∈ Cyan then
14: dfsBlue (t)

15: if s ∈ F then
16: dfsRed (s)

17: Blue := Blue ∪ {s}
18: Cyan := Cyan \ {s}



976 A. Laarman et al.

1. Blue, states explored by dfsBlue ,
2. Cyan , states on the stack of dfsBlue (visited but not yet explored), which

are used by dfsRed to close cycles over s early at l.8 [24], and
3. Red , visited by dfsRed .

Alg. 1 maintains a few strong invariants, which are already mentioned in [9,24]:

I0: At l.13 all red states are blue.
I1: The only accepting state visited by dfsRed is the seed.
I2: Outside of dfsRed , accepting cycles are not reachable from red states.
I3: A sufficient postcondition for dfsRed (s) is that all reachable states from s

are included in Red and no cyan state is reachable from it.

We now try to employ subsumption on the different colours to prune the searches,
even though we cannot use it on all colours as SG�(B) introduces additional
cycles as Fig. 4 showed. To express subsumption checks on sets we write s � S,
meaning ∃s′ ∈ S : s � s′. And S � s, meaning ∃s′ ∈ S : s′ � s. At several places
in Alg. 1 we might apply subsumption, leading to the following options:

1. On cyan for cycle detection:

(a) t � Cyan at l.8, or
(b) Cyan � t at l.8.

2. On dfsBlue , by replacing t �∈ Blue ∧ t �∈ Cyan at l.13 with t �� Blue ∪Cyan .
3. On the blue set (explored states), by replacing t �∈ Blue at l.13 with t �� Blue.
4. On dfsRed , by replacing t �∈ Red at l.9 with t �� Red .

Subsumption on cyan for cycle detection as in option 1a makes the algorithm
unsound: cycles in SG�(B) are not always reflected in SGfin(B) (Fig. 4). There
is also no hope of “unwinding” the algorithm upon detecting an accepting cycle
that does not exist in the underlying SGfin(B) without losing its linear-time
complexity, as the number of cycles can be exponential in the size of SG�(B).

s0

s2

s3

Cyan
Cyan

Blue

s1

Fig. 5. Counter example
to subsumption on Blue
and Cyan (option 2).

If, on the other hand, we prune the blue search as
in option 2, the algorithm becomes incomplete. Fig. 5
shows a run of the modified ndfs on an SGfin(B) with
cycle s3 ⇒ s2 ⇒ s3. The dfsBlue backtracked over s2
as s3 � s1 and s1 ∈ Cyan . The dfsRed now launched
from s1, will however continue to visit s3, while miss-
ing the cycle as s2 is not cyan. We also observe that I1
is violated, indicating that the postorder on accepting
states (s3 before s1) is lost.

It is tempting therefore to use subsumption on blue only, as in option 3.
However, Fig. 6 shows an “animation” of a run with the modified ndfs which is
incomplete. Here state s1 is first backtracked in the blue search as all successors
are cyan (left). Then state s1 is marked blue; The blue search backtracks to s2,
proceeds to s3 and backtracks because it finds s′1 � s1 ∈ Blue (middle). Then
a red search is started from s3, which subsumes the cyan stack (s2) and visits
accepting state s4, violating I1 and missing the accepting cycle s4 ⇒ s5 ⇒ s4.



Multi-core Emptiness Checking of Timed Büchi Automata 977

s0

s2
s′2

s1

s′1 s3

s4

s5

Cyan

Cyan

Cyan

(a) dfsBlue (s1)

s0

s2
s′2

s1

s′1 s3

s4

s5

Blue

Cyan

Cyan

Cyan

(b) dfsBlue (s3)

s0

s2
s′2

s1

s′1 s3

s4

s5

Blue

Cyan

Cyan

Cyan∩
Red

Red

Red

Red

Red

(c) dfsRed from s3

Fig. 6. Counter example to subsumption on Blue

A viable option however is to use inverse subsumption on cyan as in option 1b.
According to Lemma 1, a state that subsumes a state on the cyan stack leads to
a cycle. And as the only goal of the red search is to find a cyan state (to close
an accepting cycle over the seed), it does not rely on DFS (I3). Thus we may as
well use subsumption in the red search as in option 4. By definition (Def. 11),
SG�(B) contains a “larger” state for all reachable states in SGfin(B). So in
combination with option 1b this is sufficient to find all accepting cycles.

The strong invariant (I2) states accepting cycles are not reachable from red
states, so red states can prune the blue search. We can strengthen the condition
on l.13 to t �∈ Blue ∪ Cyan ∪ Red . However, this is of no use since by (I0),
Red ⊆ Blue. Luckily, even states subsumed by red do not lead to accepting
cycles (contraposition of Lemma 1), so we can use subsumption again: t �∈ Blue∪
Cyan∧t �� Red . The benefit of this can be illustrated using Fig. 4. Once dfsBlue
backtracks over s1, we have s1, s2, s3 ∈ Red by dfsRed at l.16. Any hypothetical
other path from s0 to a state subsumed by these red states can be ignored.

Alg. 2 shows a version of ndfs with all correct improvements. Notice that I2
and I3 are sufficient to conclude correctness of these modifications.

Alg. 2. ndfs with subsumption on red, cycle detection, and red prune of dfsBlue .

1: procedure ndfs( )
2: Cyan := Blue := Red := ∅
3: dfsBlue (s0)
4: report no cycle

5: procedure dfsRed (s)
6: Red := Red ∪ {s}
7: for all t in next-state(s) do
8: if (Cyan � t) then report cycle
9: if (t 	� Red) then dfsRed (t)

10: procedure dfsBlue(s)
11: Cyan := Cyan ∪ {s}
12: for all t in next-state(s) do
13: if (t 	∈ Blue ∪ Cyan ∧ t 	� Red)
14: then dfsBlue (t)

15: if s ∈ F then
16: dfsRed (s)

17: Blue := Blue ∪ {s}
18: Cyan := Cyan \ {s}



978 A. Laarman et al.

5 Multi-core CNDFS with Subsumption

CNDFS [14] is a parallel algorithm for checking Büchi emptiness [14]. By Prop. 3,
it is correct for SGfin . In the current section, we extend cndfs with subsumption,
in a similar way as we have done for the sequential ndfs in the previous section.

In cndfs (Alg. 3 without underlined parts), each worker thread i runs a
seemingly independent dfsBlue i and dfsRed i, with a local stack colour Cyan i,
and its own random successor ordering (indicated by the subscript i of the next-
state function). However, the workers assist each other by sharing the colours
Blue and Red globally, thus pruning each other’s search space.

The main problem that cndfs has to solve is the loss of postorder on the
accepting states due to the shared blue color (similar to the effects of option 3
as illustrated in Fig. 6). In the previous section, we have seen that a loss of
postorder may cause dfsRed to visit non-seed accepting states, i.e. I1 is violated.
cndfs demonstrates that repairing the latter dangerous situation is sufficient to
preserve correctness [14, Sec. 3].

To detect a dangerous situation, cndfs collects the states visited by dfsRed i in
a setRi at l.7. After completion of dfsRed i, the algorithm then checksRi for non-
seed accepting states at l.21. By simply waiting for these states to become red,
the dangerous situation is resolved as the blue state that caused the situation
was always placed by some other worker, which will eventually continue [14,
Prop. 3]. Once the situation is detected to be resolved, all states from the local
Ri are added to Red at l.22.

cndfs maintains similar invariants as ndfs:

I2’ Red states do not lead to accepting cycles (Lemma 1 and Prop. 2 in [14]).

I3’ After dfsRed i(s) states reachable from s are red or in Ri (from [14, Lem. 2]).

Because these invariants are as strong or stronger than I2 and I3, we can use
subsumption in a similar way as for ndfs. Alg. 3 underlines the changes to algo-
rithm w.r.t. Alg. 2 in [14]. We additionally have to extend the waiting procedure

Alg. 3. CNDFS with subsumption

1: procedure cndfs(P )
2: Blue := Red := ∅
3: forall i in 1..P do Cyani := ∅
4: dfsBlue1(s0) ‖ .. ‖ dfsBlueP (s0)
5: report no cycle

6: procedure dfsRed i(s)
7: Ri := Ri ∪ {s}
8: for all t in next-statei(s) do
9: if Cyan � t then cycle

10: if t 	∈ Ri ∧ t 	� Red then
11: dfsRed i(t)

12: procedure dfsBluei(s)
13: Cyani := Cyani ∪ {s}
14: for all t in next-statei(s) do
15: if t 	∈ Cyani ∪ Blue ∧ t 	� Red then
16: dfsBlue (t)

17: Blue := Blue ∪ {s}
18: if s ∈ F then
19: Ri := ∅
20: dfsRed (s)
21: await ∀s′ ∈ Ri ∩ F \ {s} : s′ � Red
22: forall s′ in Ri do Red := Red ∪ s′

23: Cyani := Cyani \ {s}



Multi-core Emptiness Checking of Timed Büchi Automata 979

to include subsumption at l.21, because the use of subsumption in dfsRed i can
cause other workers to find “larger” states.

In the next section, we will benchmark Alg. 3 on timed models. An important
property that the algorithm inherits from cndfs, is that its runtime is linear
in the size of the input graph N . However, in the worst case, all workers may
visit the same states. Therefore, the complexity of the amount of work that the
algorithm performs (or the amount of power it consumes) equals N × P , where
P is the number of processors used. The randomised successor function next-
statei however ensures that this does not happen for most practical inputs.
Experiments on over 300 examples confirmed this [14, Sec. 4], making cndfs
the current state-of-the-art parallel LTL model checking algorithm.

6 Experimental Evaluation

To evaluate the performance of the proposed algorithms experimentally, we im-
plemented cndfs without [14] and with subsumption (Alg. 3) in LTSmin 2.01.
The opaal [10] tool2 functions as a front-end for uppaal models. Previously, we
demonstrated scalable multi-core reachability for timed automata [11].

Experimental setup. We benchmarked3 on a 48-core machine (a four-way AMD
OpteronTM 6168) with a varying number of threads, averaging results over 5
repetitions. We consider the following models and LTL properties:
csma4 is a protocol for Carrier Sense, Multiple-Access with Collision Detection

with 10 nodes. We verify the property that on collisions, eventually the bus
will be active again: �((P0=bus collision1)=⇒ ♦(P0=bus active)).

fischer-1/25 implements a mutual exclusion protocol; a canonical benchmark
for timed automata, with 10 nodes. As in [23], we use the property (1):
¬((�♦k=1)∨(�♦k=0)), where k is the number of processes in their criti-
cal section. We also add a weak fairness property (2): �((�P 1=req) =⇒
(♦P 1=cs)): processes requesting infinitely often will eventually be served.

fddi4 models a token ring system as described in [8], where a network of 10
stations are organised in a ring and can hand back the token in a synchronous
or asynchronous fashion. We verify the property from [8] that every station
will eventually send asynchronous messages: �(♦(ST1=station z sync)).

train-gate4 models a railway interlocking, with 10 trains. Trains drive onto
the interconnect until detected by sensors. There they wait until receiving a
signal for safe crossing. The property prescribes that each approaching train
eventually should be serviced: �(Train 1=Appr =⇒ (♦Train 1=Cross)).

The following command-line was used to start the LTSmin tool: opaal2lts-mc
--strategy=[A] --ltl-semantics=textbook --ltl=[f] -s28 --threads=[P] -u[0,1] [m].

1 Available as open source at: http://fmt.cs.utwente.nl/tools/ltsmin
2 Available as open source at: http://opaal-modelchecker.com
3 All results are available at: http://fmt.cs.utwente.nl/tools/ltsmin/cav-2013
4 From http://www.it.uu.se/research/group/darts/uppaal/benchmarks/
5 As distributed with uppaal.

http://fmt.cs.utwente.nl/tools/ltsmin
http://opaal-modelchecker.com
http://fmt.cs.utwente.nl/tools/ltsmin/cav-2013
http://www.it.uu.se/research/group/darts/uppaal/benchmarks/


980 A. Laarman et al.

This runs algorithm A on the cross-product of the model m with the Büchi
automaton of formula f. It uses a fixed hash table of size 228 and P threads, and
either subsumption (-u1) or not (-u0). The option ltl-semantics selects textbook
LTL semantics as defined in [2, Ch. 4]. To investigate the overhead of cndfs, we
also run the multi-core algorithms for plain reachability on this crossproduct,
even though this does not make sense from a model checking perspective. To
compare effects of the search order on subsumption, we use both dfs and bfs.

Note finally, that we are only interested here in full verification, i.e. in LTL
properties that are correct w.r.t the system under verification. This is the hardest
case as the algorithm has to explore the full simulation graph. To test their on-
the-fly nature, we also tried a few incorrect LTL formula for the above models, to
which the algorithms all delivered counter examples within a second. But with
parallelism this happens almost instantly [14, Sec. 4.2].

Implementation. LTSmin defines a next-state function as part of its pins
interface for language-independent symbolic/parallel model checking [7]. Previ-
ously, we extended pins with subsumption [11]. opaal is used to parse the uppaal
models and generate C code that implements pins. The generated code uses the
uppaal DBM library to implement the simulation graph semantics under LU-
extrapolated zones. The LTL crossproduct [2] is calculated by LTSmin.

LTSmin’s multi-core tool [20] stores states in one lockless hash/tree table in
shared memory [19,21]. For timed systems, this table is used to store explicit state
parts , i.e. the locations and state variables [5]. The DBMs representing zones,
here referred to as the symbolic state parts , are stored in a separate lockless hash
table, while a lockless multimap structure efficiently stores full states, by linking
multiple symbolic to a single explicit state part [11]. Global colour sets of cndfs
(Blue and Red) are encoded with extra bits in the multimap, while local colours
are maintained in local tables to reduce contention to a minimum.

Hypothesis. cndfs for untimed model checking scaled mostly linearly. In the
timed automata setting, several parameters could change this picture. In the
first place, the computational intensity increases, because the DBM operations
use many calculations. In modern multi-core computers, this feature improves
scalability, because it more closely matches the machine’s high frequency/band-
width ratio [19]. On the other hand, the lock granularity increases since a single
lock now governs multiple DBMs stored in the multimap [11, Sec. 6.1]. Nonethe-
less, for multi-core timed reachability, previous experiments showed almost lin-
ear scalability [11, Sec. 7], even when using other model checkers (uppaal) as a
base line. On the other hand, the cndfs algorithm requires more queries on the
multimap structure to distinguish the different colour sets.

Subsumption probably improves the absolute performance of cndfs. We ex-
pect that models with many clocks and constraints exhibit a better reduction
than others. Moreover, it is known [3] that the reduction due to subsumption
depends strongly on the exploration order: bfs typically results in better re-
ductions than dfs, since “large” states are encountered later. cndfs might
share this disadvantage with dfs. However, as shown in [11], subsumption with



Multi-core Emptiness Checking of Timed Büchi Automata 981

Table 1. Runtimes (sec) and states counts without subsumption

Model P |L| |R| |V |cndfs |⇒|bfs Tbfs Tdfs Tcndfs

csma 1 135449 438005 438005 1016428 26.1 26.2 27.8

csma 48 135449 438005 453658 1016428 1.0 0.9 0.9

fddi 1 119 179515 179515 314684 26.3 26.6 34.2

fddi 48 119 179515 566093 314684 1.6 0.7 2.7

fischer-1 1 521996 4987796 4987796 19481530 195.9 196.7 212.2

fischer-1 48 521996 4987796 5190490 19481530 4.8 4.6 5.1

fischer-2 1 358901 3345866 3345866 10426444 135.8 136.5 145.5

fischer-2 48 358901 3345866 3541373 10426444 3.4 3.3 3.7

train-gate 1 119989268 119989268 119989268 177201017 1608 1621 1724

train-gate 48 119989268 119989268 319766765 177201017 34.9 45.4 145.8

random parallel dfs performs much better than sequential dfs, which could be
beneficial for the scalability of cndfs. So it is really hard to predict the relative
performance and scalability of these algorithms, and the effects of subsumption.

Experimental results without subsumption. We first compare the algorithms bfs,
dfs (parallel reachability) and cndfs (accepting cycles) without subsumption.
Table 1 shows their sequential (P = 1) and parallel (P = 48) runtimes (T ). Note
that sequential cndfs is just ndfs. We show the number of explicit state parts
(|L|), full states (|R|), transitions (|⇒|), and also the number of states visited in
cndfs (|V |). These numbers confirm the findings reported previously for cndfs
applied to untimed systems: The sequential run times (P = 1) are very similar,
indicating little overhead in cndfs. For the parallel runs (P = 48), however, the
number of states visited by cndfs (|V |) increases due to work duplication.

0

10

20

30

40

50

●

●

●

●

●

●
●

●

0 10 20 30 40 50
Threads

S
pe

ed
up

Model

● csma

fddi

fischer−1

fischer−2

train−gate

Fig. 7. Speedups in LTSmin/opaal

To further investigate the scala-
bility of the timed cndfs algorithm,
we plot the speedups in Fig. 7. Ver-
tical bars represent the (mostly neg-
ligible) standard deviation over the
five benchmarks. Three benchmarks
exhibit linear scalability, while train-
gate and fddi show a sub-linear, yet
still positive, trend. For train-gate, we
suspect that this is caused by the
structure of the state space. Because
fddi has only 119 explicit state parts,
we attribute the poor scalability to
lock contention, harming more with
a growing number of workers.

Subsumption. Table 2 shows the experimental data for bfs, dfs and cndfs
with subsumption (Alg. 3). The number of explicit state parts |L| is stable, since
reachability of locations is preserved under subsumption (Prop. 2). However, the
achieved reduction of full states depends on the search order, so we now report
|R| per algorithm, as a percentage of the original numbers.



982 A. Laarman et al.

Table 2. Runtimes and states counts with subsumption (in % relative to Table 1)

Model P |R|bfs |R|dfs |R|cndfs |V |cndfs | ⇒ |bfs Tbfs Tdfs Tcndfs

csma 1 48.7 88.9 58.3 94.7 41.2 41.3 90.3 95.2

csma 48 48.7 77.5 58.3 93.6 41.2 64.5 85.3 97.8

fddi 1 3.1 3.4 50.8 53.1 3.4 4.3 4.7 132.3

fddi 48 3.1 2.4 50.8 80.1 3.4 51.0 19.5 121.0

fischer-1 1 17.9 72.4 55.2 91.9 27.0 25.6 78.7 97.3

fischer-1 48 17.9 71.1 55.2 95.9 27.0 33.1 79.6 103.0

fischer-2 1 18.6 68.5 77.5 95.8 28.7 27.0 75.3 98.9

fischer-2 48 18.6 62.7 77.5 95.8 28.7 37.4 72.5 98.3

train-gate 1 100.0 100.0 100.0 100.0 100.0 100.6 100.6 104.3

train-gate 48 100.0 100.0 100.0 100.0 100.0 101.7 83.5 83.1

We confirm [3] that subsumption works best for bfs reachability, with even
more than 30-fold reduction for fddi, but none for fischer (cf. column |R|bfs).
For these benchmarks, the reduction is correlated to the ratio X = |R|/|L|; e.g.
X ≈ 1500 for fddi and X ≈ 10 for fischer. Subsumption is much less effective
with sequential dfs, but parallel dfs improves it slightly (cf. column |R|dfs ).

cndfs benefits considerably from subsumption, but less so than bfs: we ob-
serve around 2-fold reduction for fddi, fischer and csma (cf. column |R|cndfs ).
Surprisingly, the reduction for parallel runs of cndfs is not better than for se-
quential runs. One disadvantage of cndfs compared to bfs is that only red
states attribute to subsumption reduction. Probably some “large” states are
never coloured red. We measured that for all benchmark models, 20%–50% of all
reachable states are coloured red (except for fischer-2, which has no red states).

Subsumption decreases the running times for reachability: a lot for bfs, and
still considerably for dfs, both in the sequential case and the parallel case, up
to 48 workers. However, subsumption is less beneficial for the running time of
cndfs (it might even increase), but the speedup remains unaffected.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)
3. Behrmann, G.: Distributed reachability analysis in timed automata. STTT 7(1),

19–30 (2005)
4. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds

in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004)

5. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

6. Bengtsson, J.: Clocks, DBMs and States in Timed Systems. PhD thesis, Uppsala
University (2002)

7. Blom, S., van de Pol, J., Weber, M.: lTSmin:Distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010)

8. Bouajjani, A., Tripakis, S., Yovine, S.: On-the-fly symbolic model checking for
real-time systems. In: 18th IEEE RTSS, pp. 25–34. IEEE (1997)



Multi-core Emptiness Checking of Timed Büchi Automata 983

9. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory efficient al-
gorithms for the verification of temporal properties. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1991)

10. Dalsgaard, A.E., Hansen, R.R., Jørgensen, K.Y., Larsen, K.G., Olesen, M.C.,
Olsen, P., Srba, J.: opaal: A lattice model checker. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 487–493.
Springer, Heidelberg (2011)

11. Dalsgaard, A.E., Laarman, A., Larsen, K.G., Olesen, M.C., van de Pol, J.: Multi-
core reachability for timed automata. In: Jurdziński, M., Ničković, D. (eds.) FOR-
MATS 2012. LNCS, vol. 7595, pp. 91–106. Springer, Heidelberg (2012)

12. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998)

13. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990)

14. Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved multi-core
nested depth-first search. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012.
LNCS, vol. 7561, pp. 269–283. Springer, Heidelberg (2012)

15. Evangelista, S., Petrucci, L., Youcef, S.: Parallel nested depth-first searches for LTL
model checking. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996,
pp. 381–396. Springer, Heidelberg (2011)

16. Holzmann, G.J., Peled, D., Yannakakis, M.: On nested depth-first search. In: The
Spin Verification System, 2nd SPIN Workshop, pp. 23–32. AMS (1996)

17. Laarman, A., Langerak, R., van de Pol, J., Weber, M., Wijs, A.: Multi-core
nested depth-first search. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 321–335. Springer, Heidelberg (2011)

18. Laarman, A.W., van de Pol, J.C.: Variations on multi-core nested depth-first
search. In: PDMC, vol. 72, pp. 13–28 (2011)

19. Laarman, A.W., van de Pol, J.C., Weber, M.: Boosting multi-core reachability
performance with shared hash tables. In: FMCAD. IEEE Computer Society (2010)

20. Laarman, A., van de Pol, J., Weber, M.: Multi-core lTSmin: Marrying modularity
and scalability. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 506–511. Springer, Heidelberg (2011)

21. Laarman, A., van de Pol, J., Weber, M.: Parallel recursive state compression for
free. In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823,
pp. 38–56. Springer, Heidelberg (2011)

22. Larsen, K., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1, 134–152 (1997)
23. Li, G.: Checking timed büchi automata emptiness using LU-abstractions. In: Ouak-

nine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 228–242.
Springer, Heidelberg (2009)

24. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer,
Heidelberg (2005)

25. Tripakis, S.: Checking timed Büchi automata emptiness on simulation graphs.
TOCL 10(3), 15 (2009)

26. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed Büchi automata emptiness
efficiently. Formal Methods in System Design 26(3), 267–292 (2005)

27. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS, pp. 332–344. IEEE (1986)


	Multi-core Emptiness Checking of Timed B\"{u}chi Automata Using Inclusion Abstraction
	1 Introduction
	2 Preliminaries: Timed B¨uchi Automata and Abstractions
	3 Preservation of B¨uchi Emptiness under Subsumption
	4 Timed Nested Depth-First Search with Subsumption
	5 Multi-core CNDFS with Subsumption
	6 Experimental Evaluation
	References




