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Abstract. We present a new and flexible approach to repair reactive programs
with respect to a specification. The specification is given in linear-temporal logic.
Like in previous approaches, we aim for a repaired program that satisfies the spec-
ification and is syntactically close to the faulty program. The novelty of our ap-
proach is that it produces a program that is also semantically close to the original
program by enforcing that a subset of the original traces is preserved. Intuitively,
the faulty program is considered to be a part of the specification, which enables
us to synthesize meaningful repairs, even for incomplete specifications.

Our approach is based on synthesizing a program with a set of behaviors that
stay within a lower and an upper bound. We provide an algorithm to decide if
a program is repairable with respect to our new notion, and synthesize a repair
if one exists. We analyze several ways to choose the set of traces to leave intact
and show the boundaries they impose on repairability. We have evaluated the
approach on several examples.

1 Introduction

Writing a program that satisfies a given specification usually involves several rounds of
debugging. Debugging a program is often a difficult and tedious task: the programmer
has to find the bug, localize the cause, and repair it. Model checking [9, 26] has been
successfully used to expose bugs in a program. There are several approaches [1, 8, 12,
15, 17, 28, 29, 37] to automatically find the possible location of an error. We are inter-
ested in automatically repairing a program. Automatic program repair takes a program
and a specification and searches for a correct program that satisfies the specification
and is syntactically close to the original program (cf. [2, 4, 5, 11, 14, 16, 18, 31, 35]).
Existing approaches follow the same idea: first, introduce freedom into the program
(e.g., by describing valid edits to the program), and then search for a way of resolving
this freedom such that the modified program satisfies the specification or the given test
cases. While these approaches have been shown very effective, they suffer from a com-
mon weakness: they give little or no guarantees on preserving correct behaviors (i.e.,
program behaviors that do not violate the specification). Therefore, a user of a repair
procedure may later regret having applied a fix to a program because it introduced new
bugs by modifying behaviors that are not explicitly specified or for which no test case
is available. The approach presented by Chandra et al. [4] provides some guarantees by
requiring that a valid repair needs to pass a set of positive test cases. Correct behav-
iors outside these test cases are left unconstrained and the repair can thus change them
unpredictably.
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We present the first repair approach that constructs repairs that are guaranteed to
satisfy the specification and that are not only syntactically, but also semantically close
to the original program. The key benefits of our approach are: (i) it maintains correct
program behavior, (ii) it is robust w.r.t. generous program modifications, i.e., it does not
produce degenerated programs if given too much freedom in modifying the program,
(iii) it works well with incomplete specifications, because it considers the faulty pro-
gram as part of the specification and preserves its core behavior, and finally (iv) it is
easy to implement on top of existing technology. We believe that our framework will
prove useful because it does not require a complete specification by taking the pro-
gram as part of the specification. It therefore makes writing specifications for programs
easier. Furthermore, specifications are often given as conjunctions of smaller specifica-
tions that are verified individually. In order to keep desired behaviors, classical repair
approaches repair a program with respect to the entire specification. Our approach can
provide meaningful repair suggestions while focusing only on parts of the specification.

Contributions. We present an example motivating the need for a new definition of
program repair (Section 3). We define a new notion of repair for reactive programs and
present an algorithm to compute such repairs (Section 4). The algorithm is based on
synthesizing repairs with respect to a lower and an upper bound on the set of generated
traces. We show the limitations of any repair approach that is based on preserving part
of the program’s behavior (Section 5). Finally, we present experimental results based
on a prototype employing the NuSMV [7] model checker.

2 Preliminaries
Words, Languages, Alphabet Restriction and Extension. Let AP be the finite set
of atomic propositions. We define the alphabet over AP (denotedΣAP) as the set of all
evaluations of AP, i.e.,ΣAP = 2AP. IfAP is clear from the context or not relevant, then
we omit the subscript inΣAP. A word w is an infinite sequence of letters fromΣ. We use
Σω to denote the set of all words. A language L is a set of words, i.e., L ⊆ Σω. Given a
wordw ∈ Σω, we denote the letter at position i bywi, wherew0 is the first letter. We use
w..i to denote the prefix of w up to position i, and wi.. to denote the suffix of w starting
at position i. Given a set of propositions I ⊆ AP, we define the I-restriction of a word
w ∈ Σω

AP, denoted by w ↓I, as w ↓I = l0l1 · · · ∈ Σω
I with li = (wi ∩ I) for all i ≥ 0.

Given a languageL ⊆ Σω
AP and a set I ⊆ AP, we define the I-restriction ofL, denoted by

L ↓I, as the set of I-restrictions of all the words inL, i.e., L ↓I = {w ↓I | w ∈ L}. Given a
word w ∈ Σω

I over a set of propositions I ⊆ AP, we use w↑AP to denote the extension
of w to the alphabet ΣAP, i.e., w↑AP = {w′ ∈ Σω

AP | w′↓I = w}. Extension of a
language L ⊆ Σω

I is defined analogously, i.e., L ↑AP = {w↑AP | w ∈ L}. A language
L ⊆ Σω

AP is called I-deterministic for some set I ⊆ AP if for each word v ∈ Σω
I there

is at most one word w ∈ L such that w↓I = v. A language L is called I-complete if for
each input word v ∈ Σω

I there exists at least one word w ∈ L such that w↓I = v.

Machines, Automata, and Formulas. A (finite state) machine is a tuple M =
(Q,ΣI,ΣO, q0, δ, γ), where Q is a finite set of states, ΣI(= 2I) and ΣO(= 2O) are the
input and the output alphabet, respectively, q0 ∈ Q is the initial state, δ : Q×ΣI → Q is
the transition function, and γ : Q×ΣI → ΣO is the output function. The input signals I
and the output signals O of M are required to be distinct, i.e., I ∩O = ∅. A run ρ of M
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on an input word w ∈ ΣI
ω is the sequence of states that the machine visits while reading

the input word, i.e., ρ = q0q1 · · · ∈ Qω such that δ(qi, wi) = qi+1 for all i ≥ 0. The out-
put word M produces on w (denoted byMO(w)) is the sequence of output letters that the
machine produces while reading the input word, i.e., for the run q0q1 . . . of M on w, the
output word is MO(w) = l0l1 · · · ∈ Σω

O with li = γ(qi,wi) for all i ≥ 0. The combined
input output word M produces on w is defined as M(w) := (i0∪o0)(i1∪o1) . . . ∈ Σω

AP,
where w = i0i1 . . . and MO(w) = o0o1 . . . . We denote by L(M) the language of M,
i.e., the set of combined input/output words L(M) = {M(w) | w ∈ Σω

I }.
A Büchi automaton is a tuple A = (S,Σ, s0,Δ,F) where S is a finite set of states,

Σ is the alphabet, s0 ∈ S is the initial state, Δ ⊆ S×Σ× S is the transition relation,
and F ⊆ S is the set of accepting states. A run of A on a word w ∈ Σω is a sequence
of states s0 s1 s2 . . . ∈ Sω such that (si,wi, si+1) ∈ Δ for all i ≥ 0. A word is accepted
by A if there exists a run s0 s1 . . . such that si ∈ F for infinitely many i. We denote
by L(A) the language of the Büchi automaton, i.e., the set of words accepted by A. A
language that is accepted by a Büchi automaton is called ω-regular.

We use Linear Temporal Logic (LTL) [24] over a set of atomic propositions AP to
specify the desired behavior of a machine. An LTL formula may refer to atomic propo-
sitions, Boolean operators, and the temporal operators next X and until U. Formally, an
LTL formula ϕ is defined inductively as ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ with
p ∈ AP. The semantics of an LTL formula ϕ is given with respect to words w ∈ Σω

AP

using the satisfaction relation |=. As usual, we define it inductively over the structure
of the formula as follows: (i)w |= p iff p ∈ w0, (ii)w |= ¬ϕ iff w �|= ϕ, (iii)w |=
ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2, (iv) w |= Xϕ iff w1.. |= ϕ, and (v) w |=
ϕ1 U ϕ2 iff ∃i ≥ 0 : wi.. |= ϕ2 and ∀j, 0 ≤ j < i : wj.. |= ϕ1. The Boolean operators
∨, →, and ↔ are derived as usual. We use the common abbreviations for false, true,
F, and G, i.e., false := p∧¬p, true := ¬false, Fϕ := true U ϕ, and Gϕ := ¬F¬ϕ.
For instance, every word w with p ∈ wi for some i ≥ 0 satisfies F p. Dually, every
word with p �∈ wi for all i ≥ 0 satisfies G¬p. The language of ϕ, denoted L(ϕ), is the
set of words satisfying formula ϕ. For every LTL formula ϕ one can construct a Büchi
automaton A such that L(A) = L(ϕ) [22, 36].

We will use the following lemma in Section 4. It follows directly from the definition
(i.e., from the fact that δ is a complete function).

Lemma 1 (Machine languages). The language L(M) of any machine M = (Q,ΣI,
ΣO, q0, δ, γ) is I-deterministic (input deterministic) and I-complete (input complete).

Realizability and Synthesis Problem. The synthesis problem [6] asks to construct a
system that satisfies a given formal specification. Given a language language L over the
atomic propositionsAP partitioned into input and output propositions, i.e., AP = I∪O,
and a finite state machine M with input alphabet ΣI and output alphabet ΣO, we say
that M implements (realizes, or satisfies) L, denoted by M |= L, if L(M) ⊆ L. We
say language L is realizable if there exists a machine M that implements L. An LTL-
formula ϕ is realizable if L(ϕ) is realizable.

Theorem 1 (Synthesis Algorithms [3, 25, 27]). There exists a deterministic algorithm
that checks whether a given LTL-formula (or an ω-regular language) ϕ is realizable. If
ϕ is realizable, then the algorithm constructs M.
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1 typedef enum {RED, YELLOW, GREEN} traffic light;
2 module Traffic (clock, sensor1, sensor2, light1, light2);
3 input clock, sensor1, sensor2;
4 output light1, light2;
5 traffic light reg light1, light2;
6 initial begin
7 light1 = RED;
8 light2 = RED;
9 end

10 always @(posedge clock) begin
11 case (light1)
12 RED: if (sensor1) // Repair : if(sensor1 & !(light2 == RED & sensor2))
13 light1 = YELLOW;
14 YELLOW: light1 = GREEN;
15 GREEN: light1 = RED;
16 endcase // case (light1)
17 case (light2)
18 RED: if (sensor2)
19 light2 = YELLOW;
20 YELLOW: light2 = GREEN;
21 GREEN: light2 = RED;
22 endcase // case (light1)
23 end // always (@posedge clock)
24 endmodule // traffic

Fig. 1. Implementation of a traffic light system and a repair

3 Example
In this section we give a simple example to motivate our definitions and highlight the
differences to previous approaches such as [18].

Example 1 (Traffic Light). Assume we want to develop a sensor-driven traffic light
system for a crossing of two streets. For each street entering the crossing, the sys-
tem has two sets of lights (called light1 and light2) and two sensors (called
sensor1 and sensor2). By default both lights are red. If a sensor detects a car,
then the corresponding lights should change from red to yellow to green and back to
red. We are given the implementation shown in Figure 1 as starting point. It behaves
as follows: for each red light, the system checks if the sensor is activated (Line 12
and 18). If yes, this light becomes yellow in the next step, followed by a green phase
and a subsequent red phase. Assume we require that our implementation is safe, i.e.,
the two lights are never green at the same time. In LTL, this specification is written
as ϕ = G(light1 �= GREEN∨light2 �= GREEN). The current implementation
clearly does not satisfy this requirement: if both sensors detect a car initially, then the
lights will simultaneously move from red to yellow and then to green, thus violating the
specification.

Following the approach in [18] we introduce a non-deterministic choice into the
program and then use a synthesis procedure to select among these options in order
to satisfy the specification. For instance, we replace Line 12 (in Figure 1) by if(?)
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ϕ M ϕ M

M ′

Fig. 2. Graphical representation of Def. 1

ϕ ψ M ϕ ψ M

M ′

Fig. 3. Graphical representation of Def. 2

and ask the synthesizer to construct a new expression for ? using the input and state
variables. The synthesizer aims to find a simple expression s.t. ϕ is satisfied. In this
case one simple admissible expression is false. It ensures that the modified program
satisfies specification ϕ. While this repair is correct, it is very unlikely to please the
programmer because it repairs “too much”: it modifies the behavior of the system on
input traces on which the initial implementation was correct. We believe it is more
desirable to follow the idea of Chandra et al. [4] saying that a repair is only allowed
to change the behavior of incorrect executions. In our case, the repair suggested above
would not be allowed because it changes the behavior on correct traces, as we will show
in the next section.

4 Repair
In this section we first give a repair definition for reactive systems which follows the
intuition that a repair can only change the behavior of incorrect executions. Then, we
provide an algorithm to compute such repairs.

4.1 Definitions
Given a machine M and a specification ϕ, we say a machine M′ is an exact repair of M
if (i) M′ behaves like M on traces satisfying ϕ and (ii) if M′ implements ϕ. Intuitively,
the correct traces of M act as a lower bound for M′ because they must be included in
L(M′). L(ϕ) acts as an upper bound for M′, i.e., it specifies the allowed traces.

Definition 1 (Exact Repair). A machine M′ is an exact repair of a machine M for a
specification ϕ, if (i) all the correct traces of M are included in the language of M′, and
(ii) if the language of M′ is included in the language of the specification ϕ, i.e.,

L(M) ∩ L(ϕ) ⊆ L(M′) ⊆ L(ϕ) (1)

Note that the first inclusion defines the behavior of M′ on all input words to which M
responds correctly according to ϕ. In other terms, M′ has only one choice forn inputs
which M treat correctly. Figure 2 illustrates Definition 1: the two circles depict L(M)
and L(ϕ). A repair has to (i) cover their intersection (first inclusion in Definition 1),
which we depict with the striped area in the picture, and (ii) lie within L(ϕ) (second
inclusion in Definition 1). One such repair is depicted by the dotted area on the right.

Example 2 (Traffic Light, cont.). The repair suggested in Example 1 (i.e., to replace
if (sensor1) by if (false)) is not a valid repair according to Definition 1. The
original implementation responds correctly, e.g., to the input trace in which sensor1
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is always high and sensor2 is always low, but the repair produces different outputs.
The initial implementation behaves correctly on any input trace on whichsensor1 and
sensor2 are never high simultaneously. Any correct repair should include these in-
put/output traces. An exact repair according to Definition 1 replaces if (sensor1)
by if (sensor1 & !(light2 == RED & sensor2)). This repair retains all
correct traces while avoiding the mutual exclusion problem.

While Definition 1 excludes the undesired repair in our example, it is sometimes too
restrictive and can make repair impossible as the following example shows.

Example 3 (Definition 1 is too restrictive). Assume a machine M with input r and out-
put g that always copies r to g, i.e., M satisfies G(r↔ g). The specification requires
that g is eventually high, i.e., ϕ = F g. Definition 1 requires the repaired machine M′

to behave like M on all traces on which M behaves correctly. M responds correctly to
all input traces containing at least one r, i.e., L(M) ∩ L(ϕ) = F(r ∧ g). Intuitively,
M′ has to mimic M as long as M still has a chance to satisfy ϕ (i.e., to produce a trace
satisfying F(r ∧ g)). Since M always has a chance to satisfy ϕ, M′ has to behave like
M in every step, therefore M′ also violates ϕ, and cannot be repaired in this case.

In order to allow more repairs, we relax the restriction requiring that all correct traces
are included in the following definition.

Definition 2 (Relaxed Repair). Let ψ be a language (given by an LTL-formula or a
Büchi automaton). We say M′ is a repair of M with respect to ψ and ϕ if M′ behaves like
M on all traces satisfying ψ and M′ implements ϕ. That is, M′ is a repair constructed
from M iff

L(M) ∩ L(ψ) ⊆ L(M′) ⊆ L(ϕ) (2)

In Figure 3 we give a graphical representation of this definition. The two concentric
circles depict ϕ and ψ. (The definition does not require that L(ψ) ⊆ L(ϕ), but for
simplicity we depict it like that.) The overlapping circle on the right represents M. The
intersection between ψ and M (the striped area in Figure 3) is the set of traces M′ has to
mimic. On the right of Figure 3, we show one possible repair (represented by the dotted
area). The repair covers the intersection of L(M) and L(ψ), but not the intersection of
L(ϕ) and L(M). The repair lies completely in L(ϕ). The choice of ψ influences the
existence of a repair. In Section 5 we discuss several choices for ψ.

Example 4 (Example 3 continued). Example 3 shows that setting ψ to ϕ, i.e., F g in our
example, can be too restrictive. If we relax ψ and require it only to include all traces in
which g is true within the first n steps for some given n (i.e., ψ =

∨
i=0..n X

n g), then
we can find a repair. A possible repair is a machine M′ that copies r to g in the first n
steps and keeps track if g has been high within these steps. In this case, M′ continues
mimicing M, otherwise it set g to high in step n+ 1 independent of the behavior of M.
This way M′ satisfies the specification (F g) and mimics M for all traces satisfying ψ.

4.2 Reduction to Classical Synthesis
The following theorem shows that our repair problem can be reduced to the classical
synthesis problem.
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Theorem 2. Let ϕ, ψ be two specifications and M, M′ be two machines with input

signals I and output signal O. Machine M′ satisfies Formula 2 (L(M) ∩ L(ψ)
(a)

⊆
L(M′)

(b)

⊆ L(ϕ)) if and only if M′ satisfies the following formula:

L(M′) ⊆ (
(L(M) ∩ L(ψ))↓I↑AP → L(M)

)

︸ ︷︷ ︸
(i)

∩L(ϕ)
︸︷︷︸
(ii)

(3)

For two languages A and B, A → B is an abbreviation for (Σω \A) ∪ B. Intuitively,
Formula 3 requires that (i) M′ behaves like M on all input words that M answers
conforming to ψ and (ii) M satisfies specification ϕ.

Proof. From left to right: We have to show that L(M′) is included in (i) and (ii).
Inclusion in (ii) follows trivially from (b). It remains to show L(M′) ⊆ (

L(M) ∩
L(ψ)

)↓I↑AP → L(M). Let w ∈ L(M′). If w �∈ (
L(M) ∩ L(ψ)

)↓I↑AP , then
the implication follows trivially. Otherwise we have to show that w ∈ L(M). Since
w ∈ (

L(M) ∩ L(ψ)
)↓I↑AP , it follows that w ↓I ∈ (

L(M) ∩ L(ψ)
)↓I . From

w ↓I ∈ (
L(M) ∩ L(ψ)

)↓I and the fact that L(M) is input deterministic, we know
that M(w ↓I) ∈ L(M) ∩ L(ψ) ⊆ L(M′) (due to (a)). Together with L(M′) being input
deterministic, it follows that M(w ↓I) =M ′(w ↓I) = w, and so w ∈ L(M) holds.

From right to left: We have to show (a) and (b). (b) follows trivially from L(M′) ⊆
(ii). It remains to show (a), i.e., that L(M) ∩ L(ψ) ⊆ L(M′). Assume a word w ∈
L(M) ∩ L(ψ), we have to show that w ∈ L(M′). Let w′ ∈ L(M′) be a word such that
w ↓I = w′ ↓I . Note that w′ exists because L(M′) is input complete. We now show that
w = w′, which implies that w ∈ L(M′). Sincew ∈ L(M)∩L(ψ), it follows that w ↓I (=
w′ ↓I) ∈ (L(M)∩L(ψ))↓I . Therefore, we know that w′ ∈ (

L(M)∩L(ψ))↓I↑AP . From
L(M′) ⊆ (i) and from w′ ∈ L(M′), it follows that w′ ∈ L(M). Since L(M) is input
deterministic, w ∈ L(M), w′ ∈ L(M), and w ↓I = w′ ↓I , it follows that w = w′.

This theorem leads together with [25] to the following corollary, which allows us to use
classical synthesis algorithms to compute repairs.

Corollary 1 (Existence of repair). A repair can be constructed from a machine M
with respect to specifications ψ and ϕ if and only if the language

(
(L(M) ∩ L(ψ))↓I↑AP → L(M)

) ∩ L(ϕ) (4)

is realizable.

4.3 Algorithm

Corollary 1 gives an algorithm to construct repairs based on synthesis techniques
(cf. [18]). In order to compute the language defined by Formula 4, we can use standard
automata-theoretic operations. More precisely, we construct a Büchi automaton Aϕ
recognizing ϕ and a Büchi automaton Aψ recognizing ψ. Note that M is a Büchi
automaton in which all states are accepting. Since Büchi automata are closed under con-
junction, disjunction, projection, and complementation, we can construct an automaton
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for
(
(M×Aψ)|I +M

)×Aϕ, where byA×B denotes the conjunction,A+B denotes
the disjunction of automataA andB, Ā denotes the complementation ofA, andA|I the
projection of automatonA with respect to a set of proposition I . Once we have a Büchi
automaton for the language in Formula 4, we can use Theorem 1 to synthesize a repair.

This algorithm in unlikely to scale because the complementation of a Büchi automa-
ton induces an exponential blow-up in the worst case [10]. Furthermore, the projection
operator can introduce non-determinism that can complicate the application of a synthe-
sis procedure due to the need of an additional determinization step, leading to another
exponential blow-up [23,32]. In the following we show how to obtain an efficient algo-
rithm by avoiding complementation (Lemma 2) and projection (Lemma 3).

Lemma 2. Given a machine M with input signals I and output signals O and an LTL-
formula ϕ over the atomic propositionsAP = I ∪O, the following equalities hold:

Σω
I \ (L(M) ∩ L(ϕ)

)↓I =
(
L(M) ∩ L(¬ϕ))↓I (5)

Σω
AP \ (L(M) ∩ L(ϕ)

)↓I↑AP =
(
L(M) ∩ L(¬ϕ))↓I↑AP (6)

Proof. Intuitively, Equation 5 means that the set of input words on which M behaves
correctly, i.e., satisfies ϕ, is the complement of the set of inputs on which M behaves
incorrectly, i.e., violates ϕ and therefore satisfies ¬ϕ. Formally, we know from the
semantics of LTL that L(¬ϕ) = Σω \L(ϕ), which implies that

L(M) ∩ L(¬ϕ) (a)
= L(M) ∩ (

Σω \L(ϕ)) (b)
= L(M) \ L(ϕ). (7)

Equality 7.b follows from simple set theory. Furthermore, since L(M) is input deter-
ministic and input complete, we know that

∀ w,w′ ∈ L(M) : (w↓I = w′↓I) → w = w′ (8)

∀ w ∈ Σω
AP : ∃ w′ ∈ L(M) : w↓I = w′↓I (9)

We use these facts to show that for all A ⊆ Σω, Σω
I \ (L(M)∩A)↓I =

(
L(M) \A)↓I

holds, which proves together with Equation 7 that Equation 5 is true.

v ∈ (
L(M) \A)↓I ⇐⇒ ∃w ∈ L(M) \A : (w ↓I = v) ⇐⇒ ∃w ∈ L(M) : (w ↓I =

v) ∧ w �∈ A
Eq.8⇐⇒
Eq.9

∀w ∈ L(M) : (w ↓I = v) → w �∈ A ⇐⇒ ∀w ∈ L(M) : w ∈
A → (w ↓I �= v) ⇐⇒ ∀w ∈ L(M) ∩ A : (w ↓I �= v) ⇐⇒ � ∃w ∈ L(M) ∩ A :
(w ↓I = v) ⇐⇒ v �∈ (

L(M) ∩ A)↓I
Equation 6 is a simple extension of Equation 5 to the alphabetΣAP . It follows from the
fact that for any language L ⊆ Σω

I : (Σω
I \ L)↑AP = Σω

I ↑AP \ L ↑AP holds.

With the help of Lemma 2 we can simplify Formula 4 to

(
(L(M) ∩ L(¬ψ))↓I↑AP ∪ L(M)

) ∩ L(ϕ) (10)

This allows us to compute a repair using a synthesis procedure for the automaton(
(M×A¬ψ)|I +M

)×Aϕ, which is much simpler to construct.
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Lemma 3 (Avoiding input projection). Given a machine M and an LTL-formula ϕ,
for every word w ∈ Σω, w ∈ (L(M) ∩ L(ϕ))↓I↑AP ⇐⇒ M(w ↓I) ∈ L(ϕ) holds.

Proof. w ∈ (L(M) ∩ L(ϕ))↓I↑AP ⇐⇒ w ↓I ∈ (L(M) ∩ L(ϕ))↓I ⇐⇒ ∃w′ ∈
L(M) ∩ L(ϕ) : w′ ↓I = w ↓I ⇐⇒ ∃w′ ∈ L(M) : w′ ↓I = w ↓I ∧ w′ ∈ L(ϕ) ⇐⇒
M(w ↓I) ∈ L(ϕ)

Inputs

M M ′A¬ψ

Check

Aϕ

Check
Aeq

True/false

Fig. 4. Efficient implementation

Due to Lemma 3 we can check if a word pro-
duced by M′ lies in (L(M) ∩ L(ϕ))↓I↑AP
by checking whether M treats the input pro-
jection of that word correctly. A synthesizer
looking for a solution to Equation 10 can sim-
ulate M and check its output against ¬ψ to
decide whether M′ is allowed to deviate from
M. This allows us to solve our repair problem
using the simple setup depict in Figure 4. It
shows five automata running in parallel:

1. The original machine M.
2. The repair candidate M′, a copy of M that includes multiple options to modify M.
3. A specification automatonAϕ to check if the new machine M′ satisfies its objective.
4. A specification automatonA¬ψ to check if the original machine M violates ψ.
5. A specification automaton Aeq that checks if the outputs of M and M′ coincide,

i.e., eq = G(
∧
o∈O o ↔ o′), where O is the set of outputs of M and o′ is the copy

of output o ∈ O in machine M′.

Theorem 3. Given the setup depicted in Figure 4, a repair option in M′ is a valid repair
according to Definition 2, if it satisfies the formula

ϕ ∧ (¬ψ ∨ eq). (11)

Proof. Follows from Lemma 2 and Lemma 3.

Formula 11 forces M′ to (1) behave according to ϕ and (2) mimic the behavior of M,
if M satisfies ψ. Note that all automata can be constructed separately because they can
be connected through the winning (or acceptance) condition. We avoid the monolithic
construction of a specification automaton and obtain the same complexity as for classi-
cal repair. E.g., if ϕ, ¬ψ, and eq are represented by Büchi automata, then we can check
for ϕ ∧ (¬ψ ∨ eq) by first merging the acceptance states of ¬ψ and eq, and then solv-
ing for a generalized Büchi condition, which is quadratic in the size of the state space
(|A¬ψ| × |M | × |M ′| × |Aϕ| × 2).

4.4 Implementation

Our prototype implementation is based on the following two ideas:

1. If a synthesis problem can be decided by looking at a finite set of possible repairs1

(combinations of choices), then the choice of repair can be encoded using multiple
initial states.

1 Note that any synthesis problem with memoryless winning strategies satisfies this condition.
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2. An initial state that does not lead to a counter example represents a correct repair.
Any model checker can be adapted to return such an initial state, if one exists.
By default a model checker returns the opposite, i.e., an initial state that leads to
a counter-example but it is not difficult to change it. E.g., in BDD-based model-
checkers some simple set operations suffice and in SAT-based checkers one can
make use of unsat-core to eliminate failing initial states.

The main drawback of this approach is that the state space is multiplied by the number
of considered repairs. However, the approach has several benefits which make it par-
ticularly interesting for program repair. First, it is easy to restrict the set of repairs to
those that are simple and readable. In our prototype implementation we adapt the idea
of Solar-Lezama et al. [33] and search for a repair within a given set of user-defined
expressions. In the examples, we derive these expressions manually from the operators
used in the program (see Section 6 for more details). Furthermore, we assume a given
fault location that will be replaced by one of the user-defined expressions (cf. [18,19]).
Expression generation and fault localization are interesting and active research direc-
tions (cf. Section 1) but are not addressed in this paper. We focus on the problem of
deciding what constitutes a good repair. The second main benefit is that we can adapt
an arbitrary model checker to solve our repair problem. We believe (based on initial ex-
periments) that at the current state, model checkers are significantly more mature than
synthesis frameworks. In our implementation we used a version of NuSMV [7] that we
slightly modified to return an initial state that does not lead to a counter example.

5 Discussion and Limitations

In this section we discuss choices for ψ and analyze why a repair can fail.

5.1 Choices for ψ

We present three different choices for ψ and analyze their strengths and weaknesse:
(1) ψ = ϕ, (2) if ϕ = f→ g, then ψ = f ∧ g, and (3) ψ = ∅.

Exact. Choosing ψ = ϕ is the most restrictive choice. It requires that M′ behaves like
M on all words that are correct in M. While this is in general desirable, this choice can
be too restrictive as Example 3 in Section 4 shows. One might think that the problem
in Example 3 is that ϕ is a liveness specification. The following example shows that
choosing ψ = ϕ can also be too restrictive for safety specifications.

Example 5. Let M be a machine with input r and output g; M always outputs ¬g,
i.e., M implements G(¬g). Assume ϕ = F(¬r) → G(g) = G(r)∨G(g). Ap-
plying Formula 10, we obtain (G(¬g)∧¬(G(r)∨G(g)))↓I↑AP 2 ∧ (G(r)∨G(g)) =
(F(¬r)∧G(g))∨(G(r)∧G(¬g)). This formula is not realizable because a machine
does not know if the environment will always send a request (G(r)) or if the environ-
ment will eventually stop sending a request (F(¬r)). A correct machine has to respond
differently in these two cases. So, M cannot be repaired if ψ = ϕ.

2 LTL is not closed under projection. We use LTL only to describe the corresponding automata
computations.
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Assume-Guarantee. It is very common that the specification is of the form f → g (as
in the previous example). Usually, f is an assumption on the environment and g is the
guarantee the machine has to satisfy if the environment meets the assumption. Since we
are only interested in the behavior of M if the assumption is satisfied, it is reasonable
to ask the repair to mimic only traces on which the assumption and the guarantee is
satisfied, i.e., choosing ψ = f ∧ g.

Example 6 (Example 5 continued). Recall Example 5, we decompose ϕ into assump-
tion F¬r and guarantee G g. Now, we can see that M is only correct on words on which
the assumption is violated, so the repair should not be required to mimic the behavior
of M. If we set ψ = F¬r∧G g, then L(M) ∩ L(ψ) = ∅ and M′ is unrestricted on all
input traces.

Unrestricted. If we choose ψ = ∅ the repair is unrestricted and the approach coincides
with the work presented in [18].

5.2 Reasons for Repair Failure

In the following we discuss why a repair attempt can fail. The first and simplest reason
is that the specification is not realizable. In this case, there is no correct system im-
plementing the specification and therefore also no repair. However, a machine can be
unrepairable even with respect to a realizable specification. The existence of a repair is
closely related to the question of realizability (Corollary 1). Rosner [30] identified two
reasons for a specification ϕ to be unrealizable.

1. Input-Completeness: if ϕ is not input-complete, then ϕ is not realizable. For in-
stance, consider specification G(r) requiring that r is always true. If r is an input to
the system, the system cannot choose the value of r and therefore also not guarantee
satisfaction of ϕ.

2. Causality/Clairvoyance: certain input-complete specifications can only be imple-
mented by a clairvoyant system, i.e., a system that has knowledge about future
inputs (a system that is non-causal). For instance, if the specification requires that
the current output is equal to the next input, written as G(o ↔ X i), then a correct
system needs a look-ahead of size one to produce a correct output.

The following lemma shows that given an input-complete specification ϕ, input-
completeness will not cause our repair algorithm to fail.

Lemma 4 (Input-Completeness). If ϕ is input-complete, then
(
(L(M) ∩ L(ψ))↓I →

L(M)
) ∩ L(ϕ) is input-complete.

Proof. Let wI ∈ ΣI
ω. If wI ∈ (L(M)∩L(ψ))↓I , then there is a word w ∈ L(M)∩L(ψ)

such that w ↓I = wI . Therefore we have found a word for wI . If not, then a word for
wI exists because ϕ is input complete.

A failure due to missing causality can be split into two cases: the case in which the
repair needs finite look-ahead (see Example 7 below) and the case in which it needs
infinite look-ahead (see Example 8 below). The examples show that even if the specifi-
cation is realizable (meaning implementable by a causal system), the repair might not
be implementable by a causal system.
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ϕ M
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(a) M includes bad traces

ϕ M

(b) M cuts two valid machines

Fig. 5. Two reasons for unrepairability

Example 7. Consider the realizable specification ϕ = g ∨ X r and a machine M that
keeps g low all the time, i.e., M satisfies G(¬g). If input r is high in the second step,
M satisfies ϕ. An exact repair (according to Definition 1) needs to set g to low in the
first step if the input in the second step is high, because it has to mimic M in this case.
On the other hand, it the input in the second step is low, g needs to be set to high in the
first step. So, any exact repair has to have a look-ahead of at least one, in order to react
correctly.

The following example shows a faulty machine and a (realizable) specification for
which a correct repair needs infinite look-ahead.

Example 8. Consider a machine M with input r and output g that copies the input to
the output. Assume we search for a repair such that the modified machine satisfies the
specification ϕ = GF g requiring that g is high infinitely often. Machine M violates the
specification on all input sequences that keep r low from some point onwards, i.e., on
all words fulfilling F(G r). Recall that a repair M′ has to behave like M on all correct
inputs. In this example, M′ has to behave like M on all finite inputs, because it does not
know whether or not the input word lies in F(G r) without seeing the word completely,
i.e., without infinite look-ahead.

Theorem 4 (Possibility of repair). Assume that we cannot repair machine M with
respect to a realizable specification ϕ. Then, a repairing machine needs either finite or
infinite look-ahead.

Proof. Follows from [30], Corollary 1, and Lemma 4.

Characterization Based on Possible Machines. Another way to look at a failed repair
attempt is from the perspective of possible machines. Recall, in Figure 3 we depict a
correct repair M′ as a circle covering the set of words in the intersection of M and ψ. In
Figure 5 we use the same graphical representations to explain two reasons for failure.
Figure 5(a) depicts several machines M′ realizing ϕ. A repair of M has to be one of the
machines realizing ϕ. As observed in [13], there are words satisfying ϕ that cannot be
produced by any correct machine (depicted as red crosses in Figure 5(a)). E.g, recall
the specification ϕ = g ∨ X(r) in Example 7. The word in which g is low initially and
r high in the second step satisfies ϕ but will not be produced by any correct (causal)
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machine because the machine cannot rely on the environment to raise r in the second
step. If the machine we are aiming to repair includes such a trace, a repair attempt with
ψ = ϕ will fail. In this case, we can replace ϕ (or ψ) by the strongest formula that
is open-equivalent3 to ϕ in order to obtain a solvable repair problem. However, even
if ϕ is replaced by its strongest open-equivalent formula, the repair attempt might fail
for the reason depicted in Figure 5(b). We again depict several machines M′ realizing
ϕ. M shares traces with several of these machines, but no machine covers the whole
intersection of ϕ and M. In other words, an implementing machine would have to share
the characteristics of two machines.

6 Empirical Results

In this section we first describe the repair we synthesized for the traffic light example
from Section 3. Then, we summarize the results on a set of example we analyzed. All
experiments were run on a 2.4GHz Intel(R) Core(TM)2 Duo laptop with 4 GB of RAM.

Traffic Light Example. In the traffic light example, we gave the synthesizer the option
to choose from 250 expressions (all possible logical expression over combinations of
light colors and signal states). NuSMV returns the expression (s2∧s1∧ (l2 �= RED))∨
(¬s2 ∧ s1 ∧ l2 �= GREEN), which is equivalent to s1∧ ((s2 ∧ l2 �= RED)∨ (¬s2 ∧ l2 �=
GREEN)) in 0.2 seconds. The repair forbids the first light from turning yellow if the
second light is already green. This is not the repair we suggested in Section 3 because
the synthesizer has freedom to choose between the expressions that satisfy the new
notion. Our new approach avoids the obvious but undesired repair of leaving the first
light red, irrespective of an arriving car. This is the solution NuSMV provides (within
0.16s) if we use the previous repair notion [18].

Experiments. In order to empirically test the viability of our approach and to confirm
our improved repair suggestions, we applied our approach to several examples. We
report the results in Table 1; For each example, we report the number of choices for
the synthesizer (Column #Repairs), the time and number of BDD variables to (1) verify
the correctness of the repair that we obtain (Column Verification), (2) find a repair with
our new approach (Column Repair), and (3) solve the classical repair problem (Column
Classical Repair).

In order to synthesize a repair, we followed the approach described in Section 4.4
(Figure 4), i.e., we manually added freedom to the model and wrote formula for ¬ψ and
equality checking. The examples are described in detail in the extended version4 For all
but one of the examples (Processor (1)), the previous approach synthesizes degenerated
repairs, while our approach leads to a correct program repair.

Assume-Guarantee (→) is Example 5 from Section 5.1. It uses the original specifica-
tion for ψ, i.e., ψ = F(¬r) → G(g). We let the synthesizer choose between all possible
boolean combinations of g, r and a memory bit containing the previous value of g. Our
approach fails to find a repair. Assume-Guarantee (&) is Example 6 from Section 5.1

3 Two formulas ϕ and ϕ′ are open-equivalent if any machine M implementing ϕ also imple-
ments ϕ′ and vice-versa [13].

4 The NuSMV models of the example and our implementation are available at
http://www-verimag.imag.fr/˜vonessen/

http://www-verimag.imag.fr/~vonessen/
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with ψ = F(¬r) ∧ G(g), using the same potential repairs. In this case, a valid repair is
found. The Binary Search examples model a binary search algorithm with a specifica-
tion analogous to sorted → correct, i.e., when the array is sorted, then the algorithm
responds with the correct result. The bug is an incorrect assignment of the pointer into
the array. The repais we allow are arithmetic combinations of the previous position, 1,
−1, the lower bound and the upper bound. As in the Assume-Guarantee examples, we
have two different choices for ψ here. In the case that ψ = ϕ, there is no repair avail-
able, while for ψ = sorted∧correct we find the correct repair. The RW-Lock example
demonstrates that our approach can also be used to synthesize locks. We require that
only those program runs are changed that lead to a dead-lock, thereby synthesizing the
minimum amount of locks. The potential repairs allow 16 different locking combina-
tions, only one of which is optimal. The optimal solution is the only one admitted by
our repair definition.

The Processor examples demonstrate what happens in complex models when in-
creasing the amount of freedom in a model. They also show how repairing partial
specifications may lead to the introduction of new bugs. In Processor (1), the minimal
amount of non-determinism is introduced, i.e., only as much freedom as strictly neces-
sary to repair. Here, the classical approach and our new approach give the same result.
In Processor (2), we introduce more freedom, which leads to incorrect repairs with the
classical approach. In particular, the fault is in the ALU of the processor, and the degen-
erated repairs incorrectly execute the AND instruction, which is handled correctly in the
original model. We allow replacing the faulty and the a correct instruction by either a
XOR, AND, OR, SUB or ADD instruction. Finally, Processor (3) shows that the time
necessary for synthesis grows sub-linearly with the number of repair options.

On average, synthesizing a repair takes 2.3 times more time than checking its correct-
ness. Our new approach seems to be one order of magnitude slower than the classical
approach. This is expected because finding degenerated repairs is usually much simpler.
(This is comparable to finding trivial counter examples.).In order to find correct repairs
with the approach of [18], we would need to increase the size of the specification, which
will significantly slow down the approach.

Table 1. Experimental results

Verification Repair Classical Repair

#Repairs time #Vars time #Vars time #Vars

Assume-Guarantee (→) 212 n/a n/a 0.038 16 0.012 14
Assume-Guarantee (&) 212 0.015 14 0.025 14 0.012 12
Binary Search (→) 5 n/a n/a 0.78 27 0.1 21
Binary Search (&) 5 0.232 27 0.56 27 0.1 21
RW-Lock 16 0.222 34 0.232 34 0.228 22
Traffic 255 0.183 68 0.8 68 0.155 63
PCI 27 0.3 56 0.8 56 0.5 53
Processor (1) 2 2m02s 135 2m41s 135 0.5 69
Processor (2) 4 4m28s 138 5m07s 138 0.5 69
Processor (3) 25 5m23s 140 18m05s 140 0.5 71
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7 Future Work and Conclusions

Future Work. We will follow two orthogonal directions to make it possible to repair
more machines. The first one increases the computational power of a repaired machine.
Every machine M′ repairing M has to behave like M until it concludes that M does
not respond to the remaining input word correctly. As shown in Example 7, M′ might
not know early enough if M will fail or succeed. Therefore, studying repairs with finite
look-ahead is an interesting direction. The second direction studies a relaxed notion of
set-inclusion or equality in order to express how “close” two machines are. To extend
the applicability of our approach to infinite-state programs, we will explore suitable
program abstraction techniques (cf. [34]). Finally, we are planing to experiment with
model checkers specialized in solving the sequential equivalence checking problem [20,
21]. We believe that such solvers perform well on our problem, because M′ and M have
many similar structures.

Conclusion. When fixing programs, we usually fix bugs one by one; at the same time,
we try to leave as many parts of the program unchanged as possible. In this paper, we
introduced a new notion of program repair that supports this method. The approach
allows an automatic program repair tool to focus on the task at hand instead of having
to look at the entire specification. It also facilitates finding repairs for programs with
incomplete specifications, as they often show up in real word programs.
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