DiVinE 3.0 — An Explicit-State Model Checker
for Multithreaded C & C++ Programs*

Jirf Barnat, Lubos Brim, Vojtéch Havel, Jan Havlicek, Jan Kriho,
Milan Lenco, Petr Rockai**, Vladimir Still, and Jiti Weiser

Faculty of Informatics, Masaryk University
Brno, Czech Republic
divine@fi.muni.cz

Abstract. We present a new release of the parallel and distributed LTL
model checker DIVINE. The major improvement in this new release is an
extension of the class of systems that may be verified with the model
checker, while preserving the unique DIVINE feature, namely parallel
and distributed-memory processing. Version 3.0 comes with support for
direct model checking of (closed) multithreaded C/C++ programs, full
untimed-LTL model checking of timed automata, and a general-purpose
framework for interfacing with arbitrary system modelling tools.

1 Introduction

Even though explicit-state model checking is a core method of automated formal
verification, there are still major roadblocks, preventing the software develop-
ment industry from fully utilising explicit-state model checkers. One is the well-
known state space explosion problem, which restricts the size of systems that can
be efficiently handled by a model checker. Another, possibly even more serious,
is the requirement to create a separate model of the system, disconnected from
its source code. This adds a substantial amount of work to the process of model
checking, increasing its price and making the method less feasible industrially.
The problem is compounded by relative obscurity of modelling languages.

In version 3.0, DIVINE [2-5] addresses both these problems: based on a
newly developed LLVM bitcode interpreter, it can directly verify closed C/C++
programs, eliminating the extra human effort directed at modelling the sys-
tem. At the same time, DIVINE 3.0 offers efficient state-space reduction tech-
niques (Partial Order Reduction, Path Compression), combined with parallel
and distributed-memory processing. This makes DIVINE suitable for verification
of large systems, especially when compared to more traditional, sequential model
checkers.

* This work has been partially supported by the Czech Science Foundation grant No.
GAP202/11/0312.

** Petr Rockai has been partially supported by Red Hat, Inc. and is a holder of Brno
PhD Talent financial aid provided by Brno City Municipality.

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 863-B68] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

864 J. Barnat et al.
2 Engine Improvements Since DiVinE 2.5

While the primary focus of the 3.0 release was on language support, there have
been important improvements in the model-checking core as well. A major ad-
dition is the optional use of hash compaction and disk-based queues, designed
to work hand-in-hand to reduce memory footprint. While hash compaction in-
troduces a small risk of missing counter-examples, and hence results obtained
with hash compaction cannot guarantee correctness, it has proven to be ex-
tremely useful in tracking down bugs in large, complex systems that cannot be
entirely verified at reasonable expense with available technology. As implemented
in DIVINE, hash compaction can be used with both reachability analysis and LTL
model checking and is compatible with distributed-memory verification. [6]

While algorithms using traditional static partitioning and per-thread hash
tables provide reasonable scalability, a single shared hash-table and dynamic
work partitioning can give substantially better results, as has been demonstrated
by LTSmin [9]. Hence, DIVINE 3.0 provides an experimental mode of operation
using a single shared hash table. While this mode is a proof of concept and is not
recommended for production use in this release, future 3.x versions of DIVINE
will integrate it more tightly.

3 DVE: The Native Modelling Language

The DVE language was conceived and implemented in the early phases of devel-
opment of DIVINE. Since then, it became successful in its own right as a simple
yet still powerful formalism for modelling asynchronous systems and protocols.
Nevertheless, the original implementation has been falling out with rapid devel-
opment in other parts of DIVINE. In version 3.0, we have replaced the legacy
DVE interpreter with a modern, more flexible and extensible design. Gradual,
backward-compatible improvements to the DVE language are expected in the
3.x line of development.

In addition to an improved interpreter, DIVINE 3.0 has added an ability to
restrict LTL model checking to (weakly) fair runs. This feature is so far unique
to the DVE language, although future extensions to other input languages are
planned.

4 LLVM: Model Checking Multithreaded C++

The major highlight of the new version of DIVINE is the ability to directly
model-check LLVM bitcode. This in turn enables programmers to use DIVINE
for model checking of closed C and C++ programs, since major C and C+-+
compilersﬁ can produce LLVM bitcode.

! Clang and GCC (with a plugin) can generate both optimised and unoptimised LLVM
bitcode. Compilers for other languages are available as well.

An Explicit-State Model Checker for Multithreaded C & C++ Programs 865

Table 1. Efficiency of LLVM bitcode reductions

state space reduction

model, flags none T T+ all
peterson.c, -00 294193 2181 596 212
peterson.c, -01 33227 491 286 278
peterson.c, -02 21122 443 268 260

Userspace programs normally needs to be linked to system libraries for exe-
cution; while purely computational fragments of system libraries can be directly
translated into LLVM bitcode and linked into the program for verification pur-
poses, this is not the case with “IO” facilities (including any calls into the OS
kernel). For some of these, DIVINE provides substitutes — most importantly the
POSIX thread API, while other may need to be provided by the user, possibly
implemented in terms of a nondeterministic choice operator (divine choice)
provided by DIVINE. This means that no IO is possible (but it may be sub-
stituted by nondeterminism) and this automatically makes the program closed.
Hence, no other “special” treatment is required to verify programs.

Since DIVINE provides an implementation of majority of the POSIX thread
APIs (pthread.h), it enables verification of unmodified multithreaded programs.
In particular, DIVINE explores all possible thread interleavings systematically
at the level of individual bitcode instructions. This allows DIVINE, for example,
to virtually prove an absence of deadlock or assertion violation in a given mut-
lithreaded piece of code, which is impossible with standard testing techniques.

An invocation of DIVINE that performs assertion violation check for a multi-
threaded program, say my code.cpp, is given below. First, C++ code is compiled
into a LLVM bitcode file and then divine verify is used to execute a search
for assertion violations.

$ divine compile --1lvm [--cflags=" < flags > "] my code.cpp
$ divine verify my code.bc --property=assert [-d]

When no assertion violation is found, the same C++ code can be compiled into
a native executable using the same tools and natively executed as follows.

$ clang [< flags >] -lpthread -o my code.exe my code.cpp
$./my code.exe

This approach provides high assurance that the resulting binary meets the spec-
ification, since the bitcode can be verified post-optimisation. The only sources
of infidelity are the native code generator (which is relatively simple compared
to the optimiser) and the actual execution environment.

Without efficient state space reductions, the state space explosion stemming
from the asynchronous concurrency of the very fine-grained LLVM bitcode would
be prohibitive. Therefore, DIVINE comes with very efficient reduction algorithms
(7+reduction and heap symmetry reduction) [10] to facilitate verification. Effi-
ciency of the reductions is indicated in Table [l

866 J. Barnat et al.

The high level of assurance and a low entry barrier make this approach a very
attractive combination. A set of examples (implemented in C and C++) which
demonstrate the existing capabilities of the LLVM interpreter is distributed with
DIVINE.

5 Timed Automata

Timed automata as used in UPPAAL [1, 8] became a standard modelling formal-
ism. The new release of DIVINE comes with the ability to perform LTL model
checking and deadlock detection for real-time systems designed in UPPAAL. On
top of Uppaal Timed Automata Parser Libraryﬁ (UTAP) and DBM Libraryﬁ,
DIVINE implements an interpreter of timed automata, based on zone abstrac-
tion, see the scheme in Figure [1l

Both imported libraries and the new interpreter are built into the divine
binary, allowing the tool to directly accept .xml files as produced by UPPAAL
IDE. For such the real-time systems, DIVINE is capable of performing time
deadlock detection. Moreover, using the automata-based approach to LTL model
checking, DIVINE allows verification of properties expressed as untimed LTL
formulas over values of system data and clock variables. Since this approach
does not distinguish zeno and non-zeno behaviours, some counterexamples may
be spurious.

For untimed LTL model checking of real-time systems it suffices to provide the
tool with an .1t1 file of the same basename as the file describing the real-time
system. If such a file is present when DIVINE is executed, it is automatically
loaded and DIVINE offers to perform LTL model checking in addition to reacha-
bility analysis. Examples of real-time systems and corresponding LTL properties
are part of the DIVINE distribution bundle.

6 Interface to External Interpreters

In version 3.0, DIVINE officially provides support for connecting third-party
modelling formalisms. To this effect, DIVINE includes a model loader written to
the Common Explicit-State Model Interface specification (CESMI). The CESMI
specification defines a simple interface between the model-checking core and a
loadable module representing the model. Generation of model states is driven
by the needs of the model checking engine.

As a binary interface, CESMI requires a set of functions to be implemented
in a form of dynamic (shared) library: this library is called a CESMI module.
DIVINE’s CESMI loader then connects the functions implemented in the module
to the model checking engine: see also Figure[Il The two functions that must be
implemented by all CESMI modules provide the initial states of the state space
and generate immediate successors of any given state, respectively. A detailed

2 http://freecode.com/projects/libutap
3 http://freecode.com/projects/libudbm

http://freecode.com/projects/libutap
http://freecode.com/projects/libudbm

An Explicit-State Model Checker for Multithreaded C & C++ Programs 867

DiVinE
LLVM
f R LLVM bitcode
.bc
Interpreter
Timed
(o)
£
2
/] L
xml o
Timed automata E
Interpreter 8
/
- LTL2BA S
©
°
777 o
=
CESMI z
A :
.s0 :
CESMI Loader }—
*dlil

Fig. 1. Connecting DIVINE to new input languages

technical description of the interface is distributed with DIVINE. Note that the
CESMI module takes different form depending on the target platform: ELF
Shared Object files are supported on POSIX platforms, and Dynamically Linked
Libraries (DLLs) on Win32 (Win64) platforms.

One of the advantages of using the CESMI interface in a third party project
is that there is no need to implement an interpreter of the modelling language
within DIVINE. In fact, new systems can be connected to DIVINE without
changes to DIVINE itself, lowering the entry barrier for extending the tool.

A potential downside of the CESMI approach is that the CESMI module is
responsible for presenting a Biichi automaton for the purposes of LTL model
checking. While this requirement makes the CESMI specification more generic
and flexible, it could present additional burden on the authors of CESMI mod-
ules. To mitigate this problem, DIVINE provides a small library of support code,
automating both LTL conversion and construction of product automata. This
functionality is available via the divine compile --cesmi sub-command and
is documented in more detail in the tool manual.

The usefulness of the CESMI interface has been already demonstrated in
several cases. First, we implemented a compiler of DVE (the native DIVINE
modelling language) that builds CESMI modules and shows that a CESMI-
based pre-compiled state generator is much faster than a run-time interpreter [5].
CESMI interface has also been successfully used in extending DIVINE to verify
Mury models [5]. More recently, the CESMI specification allowed us to build
an interface between MATLAB Simulink and DIVINE, effectively creating a tool
chain for verification of Simulink models [1].

868 J. Barnat et al.

7 Availability and Future Plans

DIVINE is freely available under BSD license. Stable releases as well
as development snapshots and pre-releases are available for download at
divine.fi.muni.cz

Future development is expected to further improve scalability of the tool in
parallel and distributed-memory settings. Moreover, we expect better state-space
compression techniques and semi-symbolic model checking methods to again
extend the applicability of DIVINE, to even larger and more complex systems.
The set of C APIs offered by the LLVM interpreter will be expanded, extending
the class of programs which can be verified without modification. An important
future milestone is the addition of non-deterministic I/O and simulation of other
system interactions.

References

1. Barnat, J., Beran, J., Brim, L., Kratochvila, T., Roc¢kai, P.: Tool Chain to Support
Automated Formal Verification of Avionics Simulink Designs. In: Stoelinga, M.,
Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 78-92. Springer, Heidelberg
(2012)

2. Barnat, J., Brim, L., Rockai, P.: DiVinE Multi-Core — A Parallel LTL Model-
Checker. In: Cha, S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA
2008. LNCS, vol. 5311, pp. 234-239. Springer, Heidelberg (2008)

3. Barnat, J., Brim, L., Cern4, I.: Cluster-based LTL model checking of large systems.
In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005.
LNCS, vol. 4111, pp. 259-279. Springer, Heidelberg (2006)

4. Barnat, J., Brim, L., Cern, 1., Moravec, P., Rockai, P., Simecek, P.: DIVINE — A
Tool for Distributed Verification. In: Ball, T, Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 278-281. Springer, Heidelberg (2006)

5. Barnat, J., Brim, L., Rockai, P.: DiVinE multi-core — A parallel LTL model-checker.
In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008.
LNCS, vol. 5311, pp. 234-239. Springer, Heidelberg (2008)

6. Barnat, J., Havlicek, J., Rockai, P.: Distributed LTL Model Checking with Hash
Compaction. In: Proceedings of PASM/PDMC 2012 (to appear 2013)

7. Behrmann, G., David, A., Larsen, K.G., Mdller, O., Pettersson, P., Yi, W.: UPPAAL
- present and future. In: Proc. of 40th IEEE Conference on Decision and Control.
IEEE Computer Society Press (2001)

8. Behrmann, G., Hune, T., Vaandrager, F.W.: Distributing Timed Model Checking
- How the Search Order Matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 216-231. Springer, Heidelberg (2000)

9. Laarman, A., van de Pol, J., Weber, M.: Multi-Core LTSMIN: Marrying Modularity
and Scalability. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 506-511. Springer, Heidelberg (2011)

10. Rockai, P., Barnat, J., Brim, L.: Improved State Space Reduction for LTL Model
Checking of C & C++ Programs. In: Submitted to The 4th NASA Formal Methods
Symposium (2013)

divine.fi.muni.cz

	DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded C & C++ Programs

	1 Introduction
	2 Engine Improvements Since DiVinE 2.5
	3 DVE: The Native Modelling Language
	4 LLVM: Model Checking Multithreaded C++
	5 Timed Automata
	6 Interface to External Interpreters
	7 Availability and Future Plans
	References

