
Relative Equivalence

in the Presence of Ambiguity

Oshri Adler, Cindy Eisner, and Tatyana Veksler

IBM Research - Haifa, Israel
{oshria,eisner,tatyana}@il.ibm.com

Abstract. We examine the problem of defining equivalence between two
functions (pieces of code) that are intended to perform analogous tasks,
but whose interfaces do not correspond in a straightforward way, even
to the point of ambiguity. We formalize the notion of what equivalence
means in such a case and show how to check it using constraints on a
model checking problem. We show that the presence of constraints com-
plicates the issue of predicate abstraction, and show that nevertheless
we can use predicates no finer than those needed in the absence of con-
straints. Our solution is being used to verify the migration of tens of
millions of lines of health insurance claims processing code from icd-
9 to icd-10, two versions of the International Statistical Classification
of Diseases and Related Health Problems (icd), whose correspondence
is complex and ambiguous in both directions. We present experimental
results on 90,000 real life functions.

1 Introduction

Given two functions f and f ′ that are over the same domain, or in the termi-
nology of hardware and software, have the same interface, it is easy to define
equivalence between them, and to see what it means to check that equivalence.
Also, if there is a one-to-one mapping between the domains of f and f ′, then
the definition of equivalence and what it means to check it is trivial. In the real
world, however, things are often not so neat and simple. Sometimes we have two
functions that are intended to perform analogous tasks, but whose interfaces do
not correspond in a straightforward way, even to the point of ambiguity. Given
such a setting, what does it mean for f and f ′ to be equivalent and how can it
be checked?

We encountered this interesting problem as part of an ibm engagement with
nasco�, an Atlanta, Georgia based company providing healthcare it solutions
to Blue Cross� and Blue Shield� (bcbs) Plans across the United States. The
goal was to verify migration of insurance claims processing software, henceforth
benefit code, from World Health Organization standard icd-9 to icd-10, two
versions of the International Statistical Classification of Diseases and Related
Health Problems (icd) [1]. Correct migration of benefit code is of paramount
importance to insurers, as benefit code directly affects the outflow of money.

Correspondence between icd-9 and icd-10 is given by a schema crosswalk,
a table showing analogous elements of the interfaces. The correspondence is

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 430–446, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Relative Equivalence in the Presence of Ambiguity 431

Table 1. Excerpt from an icd-9/icd-10 crosswalk

icd-9 icd-10

041.81 Mycoplasma A49.3 Mycoplasma infection, unspecified site

041.81 Mycoplasma B96.0 Mycoplasma pneumoniae as the cause
of diseases classified elsewhere

041.81 ∧ 466.0 Mycoplasma plus J20.0 Acute bronchitis due to
acute bronchitis mycoplasma pneumoniae

466.0 Acute bronchitis J20.9 Acute bronchitis, unspecified

a b c d e

f

U V W X Y Z

f ′

(a) Functions f and f ′

f f ′

a X ∧ Y

a Z

b ∧ c Z

d V ∧W

(b) Crosswalk

Fig. 1. A simple example

complex and ambiguous in both directions. For example, consider the excerpt
shown in Table 1. Icd-9 diagnosis 041.81 corresponds to icd-10 diagnosis A49.3
but also to B96.0, and if 041.81 appears in conjunction with 466.0, then together
they correspond to diagnosis J20.0. But 466.0 by itself corresponds to J20.9.

Furthermore, not every icd-9 code is expressible in icd-10 and vice versa. For
example, icd-9 code E927.0 (Overexertion from sudden strenuous movement)
has no comparable code in icd-10, while icd-10 code T 36.0X6, (Underdosing
of penicillins, initial encounter) has no comparable code in icd-9.

The general problem is illustrated in Fig. 1: We are given two functions f and
f ′ with completely different interfaces and a crosswalk describing how a single
(Boolean) input of f is expressed in the interface of f ′ as the conjunction of one
or more (Boolean) inputs of f ′, or vice versa. In this and all examples, we use
lower case letters for inputs of f and upper case letters for inputs of f ′.

If an input is not expressible in the other interface, it is not mapped by the
crosswalk. Input e of f and input U of f ′ are such inputs. Also, some inputs are
expressible only in conjunction with others. For instance, b ∧ c on the interface
of f is expressible as Z in the interface of f ′, but there is no way to express
b without c in the interface of f ′. Finally, some inputs are expressible in more
than one way – for instance, a on the interface of f and Z on the interface of f ′.

Given such a crosswalk, our mission is to decide whether f and f ′ are equiv-
alent relative to it. Intuitively, this means that they return the same value for
analogous inputs. For example, for the f and f ′ shown in Fig. 1, we expect that
f returns the same value on input d as an equivalent f ′ returns on input V ∧W .
But what about inputs not expressible in the other interface? Do we care what
they return? We do. Such cases represent an exposure for the insurance company.

432 O. Adler, C. Eisner, and T. Veksler

f(a,· · ·, e) {
if (d)

return 50;

else

return 0;

}
(a) f

f f ′

a X ∧ Y

a Z

b ∧ c Z

d V ∧W

(b) Crosswalk

f’1(U, · · ·, Z) {
if (V ∧ W)

return 50;

else

return 0;

}
(c) f ′

1

f’2(U, · · ·, Z) {
if (V)

return 50;

else

return 0;

}
(d) f ′

2

Fig. 2. We want f to be equivalent to f ′
1, but not to f ′

2

f(a, b, c, d, e) {
if (e)

return 75;

else

return 0;

}
(a) f

f f ′

a X ∧ Y

a Z

b ∧ c Z

d V ∧W

(b) Crosswalk

Fig. 3. A fundamental mismatch

If a doctor diagnoses V = 1 andW = 0 in icd-10, we can’t know what she would
have diagnosed in icd-9. Explicitly paying a non-default amount for a claim not
explicitly payable in the other interface introduces an element of uncertainty
into the financial forecast. Thus we will require that equivalent functions treat
such inputs in a default way – e.g., by falling into the “else” case.

Related Work. The term schema crosswalk is a term from database theory,
and the question of relative equivalence can be asked about any pair of databases
related by a crosswalk. However, we are unaware of related work; to the best of
our knowledge the issues we explore here have not been explored in the context
of databases, where the emphasis is usually on merging the contents of two
databases rather than comparing code that interfaces with the databases as is.

2 Relative Equivalence

We now explore the issue of relative equivalence in more detail and define it
precisely. We want to define that f and f ′ are equivalent if they each treat
explicitly only inputs expressible in the other interface, and return the same
value for analogous inputs. For example, we want to define that f and f ′

1 of
Fig. 2 are equivalent, and that f and f ′

2 are not.
Consider now Fig. 3: f treats input e, not expressible in the other interface,

in a non-default manner, thus we do not want it to be equivalent to any f ′. We
call such cases a fundamental mismatch between f and the crosswalk, because
the inequivalence of f to f ′ is due to the crosswalk and not to the behavior of f ′.

Relative Equivalence in the Presence of Ambiguity 433

f(a, b, c, d) {
if (a)

return 50;

else if (c)

return 20;

else

return 0;

}
(a) f

f f ′

a ∧ c A

b ∧ d B

(b) Crosswalk

Fig. 4. Another fundamental mismatch

f1(a, b, c, d) {
if (a ∧ c)

return 100;

else

return 0;

}
(a) f1

f2(a, b, c, d) {
if (a)

if (c)

return 100;

return 0;

}
(b) f2

f f ′

a ∧ c A

b ∧ d B

(c) Crosswalk

f’(A, B) {
if (A)

return 100;

else

return 0;

}
(d) f ′

Fig. 5. f1 and f2 are equivalent, and we want both to be equivalent to f ′

Figure 4 also shows a fundamental mismatch: f distinguishes between a∧¬c,
returning 50, and ¬a ∧ c, returning 20, but the interface of f ′ defined by the
crosswalk cannot distinguish between them. It seems we should not allow the
code to mention a without c or c without a, but this is going too far. The f1
and f2 of Fig. 5 are equivalent, so if f1 is equivalent to f ′ (and intuitively, it is),
then we want also that f2 is equivalent to f ′. Thus we must allow inputs not
expressible in the other interface to stand alone, depending on the context.

That is, we want a semantic, not a syntactic, definition of equivalence, so we
can identify equivalence between functions with differing control flows. Thus we
will work over equivalence classes of input vectors to f and f ′, where an equiva-
lence class is a set of input vectors for which the function returns the same value,
and an input vector is a valuation of the individual inputs. For example, f1 of
Fig. 5 has two equivalence classes. One returns 100 and consists of vectors in which
a = c = 1; the other returns 0, and consists of all other input vectors.

Definition 1 (Equivalence class). An equivalence class of a function f is a
maximal set of input vectors V such that for all v1, v2 ∈ V : f(v1) = f(v2).

We are now ready to define relative equivalence. Let P and P ′ be disjoint sets
of atomic propositions. P and P ′ represent the inputs of f and f ′, respectively.
The crosswalk is represented by the relation J , and we use ϕ(v) and ϕ(v′) to
move from elements of J back to conjunctions as used in the crosswalk.

434 O. Adler, C. Eisner, and T. Veksler

f(a, · · ·, e) {
if (e)

return 50;

else

return 0;

}
(a) f

J =

a

⎧
⎪⎪⎨

⎪⎪⎩

({a}, {X, Y }),
({a}, {Z}),
({b, c}, {Z}),
({d}, {V,W})

⎫
⎪⎪⎬

⎪⎪⎭

(b) J

f’(U, · · ·, Z) {
if (false)

return 50;

else

return 0;

}
(c) Trans. of f

g(a, · · ·, e) {
if (false)

return 50;

else

return 0;

}
(d) Trans. of f ′

Fig. 6. Translation of a fundamental mismatch

Definition 2 (Justified by the crosswalk (J)). J ⊆ 2P × 2P
′
is a relation

such that for every (v, v′) ∈ J , either v or v′ is a singleton.

Definition 3 (Conjunctive formula (ϕ(v), ϕ(v′))). Let v ⊆ P and v′ ⊆ P ′.
Then ϕ(v) denotes the formula

∧
p∈v p and ϕ(v′) denotes the formula

∧
p′∈v′ p′.

For example, the crosswalk of Fig. 5 is formalized as J = {({a, c}, {A}), ({b, d},
{B})} and we have that ϕ({a, c}) = a ∧ c.

We now define translations between propositional formulas over P and P ′.

Definition 4 (Translation (T (ψ), T ′(ψ′))). Let Φ and Φ′ be the set of proposi-
tion formulas over P and P ′, respectively. Let p ∈ P , p′ ∈ P ′ and ψ, ψ1, ψ2 ∈ Φ,
ψ′, ψ′

1, ψ
′
2 ∈ Φ′. The functions T : Φ �→ Φ′ and T ′ : Φ′ �→ Φ are defined as follows:

• T (p) =
∨

{v′ | (v,v′)∈J and p∈v}
ϕ(v′) • T ′(p′) =

∨

{v′ | (v,v′)∈J and p′∈v′}
ϕ(v)

• T (ψ1 ∧ ψ2) = T (ψ1) ∧ T (ψ2) • T ′(ψ′
1 ∧ ψ′

2) = T ′(ψ′
1) ∧ T ′(ψ′

2)
• T (ψ1 ∨ ψ2) = T (ψ1) ∨ T (ψ2) • T ′(ψ′

1 ∨ ψ′
2) = T ′(ψ′

1) ∨ T ′(ψ′
2)

• T (¬ψ) = ¬T (ψ) • T ′(¬ψ′) = ¬T ′(ψ′)

In the sequel, f and f ′ will be defined as relatively equivalent if the formulas char-
acterizing their equivalence classes translate into each other. Before proceeding
to the formal definition, let’s take a look at how we can translate functions by
translating the conditional expressions that form the basis of the equivalence
classes, and what happens when we try to translate propositions not expressible
in the other interface. Consider Fig. 5: T (a) = T (c) = A, and T ′(A) = a ∧ c.
Therefore the “if” statement of f1 and both “if” statements of f2 translate into
“if (A)”. Also, the “if” statement of f ′ translates into “if(a ∧ c)”. Thus we
can use T and T ′ to show that f1 and f2 are both equivalent to f ′.

When we attempt to do the same with f ’s that are fundamental mismatches,
we will get that translating forwards and back will not get us to where we started.
Consider for example Fig. 6. We have that f translates into f ′, because there
are no lines of the crosswalk containing e, so T (e) is the empty disjunction false.
Then, false = p∧¬p for some p, so we get that T ′(false) = false and translating
f ′ back into the other interface gives us the g of Fig. 6d. In particular, f ′ does not

Relative Equivalence in the Presence of Ambiguity 435

f(a, b, c, d) {
if (a)

return 50;

else if (c)

return 20;

else

return 0;

}
(a) f

J =

a

{
({a, c}, {A}),
({b, d}, {B})

}

(b) J

f’(A, B) {
if (A)

return 50;

else if (A)

return 20;

else

return 0;

}
(c) Trans. of f

g(a, b, c, d) {
if (a ∧ c)

return 50;

else if (a ∧ c)

return 20;

else

return 0;

}
(d) Trans. of f ′

Fig. 7. Translation of another fundamental mismatch

translate back to f . The same thing will happen with the fundamental mismatch
we saw in Fig. 4 – its translation forward and back is shown in Fig. 7.

Formally, an input vector of a function is a valuation v of a set Q (e.g., P or
P ′), associating each proposition with a value T or F. Note that equivalently, a
valuation v can be associated with the subset {q ∈ Q | q has the value T in v}.
We abuse notation and use valuations of Q and subsets of Q (elements of 2Q)
interchangeably. For a valuation v and a propositional formula ψ, we use v |= ψ to
denote that ψ holds on valuation v and we use [ψ] to denote the set of valuations
on which ψ holds. We use ψ1 ≡ ψ2 to denote that [ψ1] = [ψ2].

Recall that an equivalence class is just a set of valuations and thus can be
denoted by [ψ] for some formula ψ. For example, the equivalence classes of f
of Fig. 7a are [a], [¬a ∧ c] and [¬a ∧ ¬c]. For an equivalence class [ψi] of a
function f , let f([ψi]) denote the value returned by f for every element of [ψi].
For simplicity we assume that there is a total order on the values returned by
f and f ′; if there is not, choose an order arbitrarily. Thus we can assume wlog
that equivalence classes are ordered such that f([ψi]) < f([ψi+1]). We now define
relative equivalence based on T and T ′ of Definition 4 as follows:

Definition 5 (Relative equivalence). Let f : 2P �→ R and f ′ : 2P
′ �→ R for

some range R, and let [ψi] for i ≤ n be the equivalence classes of f and [ψ′
j] for

j ≤ n′ be the equivalence classes of f ′. Then f is equivalent to f ′ relative to J ,
denoted f ∼ f ′, if:

n = n′ and for every i ≤ n : f([ψi]) = f ′([ψ′
i]) and ψi ≡ T ′(ψ′

i) and ψ
′
i ≡ T (ψi)

The definition of T and T ′, and thus of relative equivalence, is based on syntax,
but these are semantic notions, as stated by the following proposition.

Proposition 1. Let ψ1, ψ2 ∈ Φ such that ψ1 ≡ ψ2 and ψ′
1, ψ

′
2 ∈ Φ′ such that

ψ′
1 ≡ ψ′

2. Then T (ψ1) ≡ T (ψ2) and T
′(ψ′

1) ≡ T ′(ψ′
2).

Consider now Fig. 8. The equivalence classes of f are given by ψ4 = d, ψ3 = ¬d∧
p, ψ2 = ¬d∧¬p∧s and ψ1 = ¬d∧¬p∧¬s (recall that we order equivalence classes
according to their return value) and those of f ′ are given by ψ′

4 = X ∨ (Q ∧R),

436 O. Adler, C. Eisner, and T. Veksler

f(d, p, s) {
if (d)

return 50;

else if (p)

return 20;

else if (s)

return 10;

else

return 0;

}
(a) f

J = a

⎧
⎪⎪⎨

⎪⎪⎩

({d}, {X}),
({d}, {Q,R}),
({p}, {P,R}),
({s}, {R})

⎫
⎪⎪⎬

⎪⎪⎭

(b) J

f’(X,Q,R,P) {
if (X ∨ (Q ∧ R))

return 50;

else if (P ∧ R)

return 20;

else if (R)

return 10;

else

return 0;

}
(c) An equivalent f ′

Fig. 8. An equivalent f and f ′, this time formally

ψ′
3 = ¬(X∨(Q∧R))∧(P∧R) ≡ ¬X∧¬Q∧P∧R, ψ′

2 = ¬(X∨(Q∧R))∧¬(P∧R)∧
R ≡ ¬X ∧¬Q∧¬P ∧R and ψ′

1 = ¬(X ∨ (Q∧R))∧¬(P ∧R)∧¬R ≡ ¬X ∧¬R.
Also, from J we have that T (d) = X ∨ (Q ∧ R), T (p) = P ∧ R, T (s) = R,
T ′(X) = d, T ′(Q) = d, T ′(P) = p and T ′(R) = d ∨ p ∨ s. Substituting gives
T (ψi) = ψ′

i and T
′(ψ′

i) = ψi for 1 ≤ i ≤ 4, thus f ∼ f ′.
Now consider functions f and f ′ that switch the first and third conditions in

Figs. 8a and 8c. Doing so would change the equivalence classes. In particular we
would have that ψ4 = s and ψ′

4 = R, but T ′(R) = d ∨ p ∨ s �≡ s, thus such an f
and f ′ would not be relatively equivalent.

3 Checking Relative Equivalence

Having defined relative equivalence, how can it be checked? One way would be to
calculate equivalence classes and check whether they are in the correct relation.
However, real life benefit code functions calculate tens of outputs, so doing so
would require multiple semantic analyses. Thus we prefer a way that avoids
calculating equivalence classes and instead uses a single run of a model checker.
We are looking for a relation R ⊆ 2P × 2P

′
, such that f ∼ f ′ can be checked by

checking whether f(v) = f ′(v′) for every (v, v′) ∈ R.
In the sequel, we represent an input vector by a set, where the elements of the

set are the inputs that have the value 1. For example, for the f of Fig. 8a, {d, s}
represents the input vector in which d = s = 1 and p = 0. Now, it seems that
checking equivalence of f and f ′ relative to a crosswalk should entail checking
that f and f ′ return the same value for corresponding input vectors, where by
correspond we mean that they are analogous according to the crosswalk. For
example, consider the J of Fig. 9. Input vector {a} of f corresponds to input
vector {X,Y } of f ′, input vector {b} of f corresponds to input vector {Z} of f ′,
and input vector {a, b} of f corresponds to input vector {X,Y, Z} of f ′.

Is it sufficient to check all pairs of corresponding input vectors? No. Doing so
will result in a verdict of “equivalent” for the f and f ′

1 shown in Fig. 9, even

Relative Equivalence in the Presence of Ambiguity 437

f(a, b) {
if (a)

return 50;

else

return 0;

}
(a) f

J =

a

{
({a}, {X,Y }),
({b}, {Z})

}

(b) J

f’1(X, Y, Z) {
if (X)

return 50;

else

return 0;

}
(c) f ′

1 �∼ f

f’2(X, Y, Z) {
if (X ∧ Y)

return 50;

else

return 0;

}
(d) f ′

2 ∼ f

Fig. 9. Checking all pairs of corresponding input vectors is insufficient

f(a, b, c, d) {
if (a)

return 100;

else

return 0;

}
(a) f

J =

a

⎧
⎨

⎩

({a}, {A}),
({b}, {B}),
({c}, {C,D})

⎫
⎬

⎭

(b) J

f’(A, B, C, D) {
if (A)

return 100;

else

return 0;

}
(c) f ′

Fig. 10. Input vector {A,B,C} of f behaves in a non-default way

f(a, c) {
if (a)

return 50;

else if (c)

return 20;

else

return 0;

}
(a) f

J =

a

{
({a}, {A,B}),
({c}, {C,D})

}

(b) J

f’1(A, B, C, D) {
if (A ∧ B)

return 50;

else if (C)

return 20;

else

return 0;

}
(c) Buggy migration

f’2(A, B, C, D) {
if (A ∧ B)

return 50;

else if (C ∧ D)

return 20;

else

return 0;

}
(d) Good migration

Fig. 11. A good and a buggy migration

though f is equivalent to f ′
2 but not to f ′

1. The only input vectors that can
distinguish between f ′

1 and f ′
2 are ones in which X holds but Y does not, but

such vectors have no corresponding vector in the other interface. It seems we can
deal with this by requiring a “default” behavior from such input vectors, where
by default we mean that the calculation falls into some “else” case. However,
consider the example of Fig. 10. Input vector {A,B,C} of f ′ has no equivalent in
f , yet behaves in a non-default way. It makes no sense to require that {A,B,C}
falls into the “else” case, since f and f ′ are clearly equivalent as written.

So how should we pair a vector with no corresponding vector in the other in-
terface? Consider Fig. 11, in which f has been migrated twice to a new interface.

438 O. Adler, C. Eisner, and T. Veksler

Input vector {C} has no corresponding input vector according to J , because C
does not “stand alone” in any element of J . Thus we expect that in a correct
migration, C cannot influence the returned value without D, so we expect that a
correct migration f ′ returns the same value for {C} that it returns on ∅, and in
general that for any input vector v′ of f ′ such that C ∈ v′ but D /∈ v′, we have
that f ′(v′) = f ′(v′ \ {C}). We call C in vectors {C} and {A,B,C} an orphan
input, because the vector does not contain enough other inputs to complete a
line in the crosswalk. The remainder of an input vector consists of all its orphans:

Definition 6 (Remainder (r(v), r′(v′))). r : 2P �→ 2P and r′ : 2P
′ �→ 2P

′
are

defined as follows:

r(v) = {p ∈ v | �w ⊆ v, w′ ⊆ P ′ s.t. ({p} ∪ w, w′) ∈ J}
r′(v′) = {p′ ∈ v′ | �w ⊆ P, w′ ⊆ v′ s.t. (w, {p′} ∪ w′) ∈ J}

For example, using the J of Fig. 11, we have that r′({A,B,C}) = {C}.
Using the notion of remainder, we define the relation R as follows:

Definition 7 (Relevant input pairs (R)). The set of relevant input pairs is

given by R ⊆ 2P × 2P
′
defined as follows:

R = {(v, v′) | v ∈ 2P and v′ ∈ 2P
′
and ∃v1, v2, · · · vk, v′1, v′2, · · · v′k s.t.

v = v1 ∪ v2 ∪ · · · ∪ vk and v′ = v′1 ∪ v′2 ∪ · · · ∪ v′k and
vk = r(v) and v′k = r′(v′) and ∀i < k : (vi, v

′
i) ∈ J}

For example, using the J of Fig. 11, we have that ({a, c}, {A,B,C,D}) ∈ R
because {a, c} = v1 ∪ v2 ∪ v3 and {A,B,C,D} = v′1 ∪ v′2 ∪ v′3 for v1 = {a},
v2 = {c}, v3 = ∅, v′1 = {A,B}, v′2 = {C,D} and v′3 = ∅, and we have that
(v1, v

′
1), (v2, v

′
2) ∈ J , v3 = r({a, c}), and v′3 = r′({A,B,C,D}). Also, (∅, {C}), a

vector pair that finds the migration bug, is in R, because ∅ = v1 and {C} = v′1
for v1 = ∅ and v′1 = {C} and v1 = r(∅) and v′1 = r′({C}).
R includes every pair of corresponding vectors (and then the remainders are

empty) and also pairs vectors without a corresponding vector in a way that
expects that the remainders don’t influence the function. Intuitively, checking
that f and f ′ return the same value for every pair in R should be a way to show
that f and f ′ are relatively equivalent. The following theorem confirms this.

Theorem 1 (Checking relative equivalence)

f ∼ f ′ iff ∀(v, v′) ∈ R : f(v) = f ′(v′)

The proof of the =⇒ direction is based on the following lemma.

Lemma 1 (Relating R and T , T ′). Let (v, v′) ∈ R and let π ∈ Φ and π′ ∈ Φ′

such that π ≡ T ′(π′) and π′ ≡ T (π). Then v |= π ⇐⇒ v′ |= π′.

To prove the ⇐= direction, we observe that every equivalence class containing
v ∈ 2P must contain as well all valuations in 2P that are transitively related to
v by R, and similarly for v′ ∈ 2P

′
. We define:

Relative Equivalence in the Presence of Ambiguity 439

Definition 8 (Expected same-behavior valuations of (v, v′) (E(v, v′))).
Let (v, v′) ∈ R. Then E(v, v′) is the subset of 2P ∪ 2P

′
defined inductively as

follows:

– v, v′ ∈ E(v, v′).
– If w ∈ E(v, v′) and (w,w′) ∈ R, then w′ ∈ E(v, v′)
– If w′ ∈ E(v, v′) and (w,w′) ∈ R, then w ∈ E(v, v′)

The challenge is to show that each E(v, v′) can be represented as [π] ∪ [π′] such
that π ≡ T ′(π′) and π′ ≡ T (π), for some π, π′, as stated by the following lemma:

Lemma 2 (Expressing E(v, v′)). Let (v, v′) ∈ R. Then ∃π, π′ such that π ≡
T ′(π′) and π′ ≡ T (π) and E(v, v′) = [π] ∪ [π′].

The proof of Lemma 2 is based on showing that E(v, v′) “has no holes”, that
is, that if u and z are in E(v, v′), then every w such that u ⊆ w ⊆ z is also
in E(v, v′). This allows us to define a partial order on the various E(v, v′), and
we form the necessary formulas starting from the single maximal element in the
partial order, E(P, P ′). Taking the disjunction of ϕ(u) for all minimal elements
u ∈ 2P in E(v, v′) gives us a formula characterizing every valuation x ∈ 2P that
is in E(v, v′) or in some E(w,w′) � E(v, v′). From there it is a simple matter to
remove the valuations that are too big, by conjuncting with the negation of the
formulas formed previously for larger E(w,w′)’s.

4 Model Checking Setup

We have a theory of relative equivalence and a set of input pairs sufficient to
check it. Using these, we set up our model checking problem as follows. We
compile a pair of benefit code functions into an smv [7] model constructed in a
straightforward manner, similar to the method described in [5,6]. A dedicated
state variable keeps track of the control flow, whose behavior may depend on
the value of other state variables. Each input is allocated a state variable, which
wakes up in a non-deterministic state and keeps its value throughout the run.
Each variable of the original code is also allocated a state variable, and is assigned
a value when the control flow reaches a relevant line.

The actual benefit code language is proprietary. While it does not contain
loops, it does contain some constructs that are quite tricky to model. Due to
space constraints, the details are beyond the scope of this paper. In Fig. 12a we
show an example that uses pseudo-code based on the syntax of C, similarly to
previous examples. The f and f ′ shown in Fig. 12a might compile to the model
Mc shown in Fig. 12b. The behaviors of variables line1 and line2 represent the
control flow of f and f ′, respectively, and the behaviors of variables pay1 and
pay2 represent the behavior of variables pay in f and f ′, respectively.

It remains to constrain the inputs to pairs in R and to check that pay1 =

pay2 whenever both computations have ended (line1 = 4 and line2 = 4).

440 O. Adler, C. Eisner, and T. Veksler

For brevity, declarations
and initializations are
not shown in the smv
model.

f(a, b) {
1 if (a ∧ b)

2 pay = 50;

else

3 pay = 0;

4 }

f’(V, W) {
1 if (V ∨ W)

2 pay = 50;

else

3 pay = 0;

4 }
(a) f and f ′

assign next(line1) := case

line1=1: if (a ∧ b) then 2 else 3 endif;

else : 4;

esac;

assign next(line2) := case

line2=1: if (V ∨ W) then 2 else 3 endif;

else : 4;

esac;

assign next(pay1) := case

line1 = 2: 50;

line1 = 3: 0;

else: pay1;

esac;

assign next(pay2) := case

line2 = 2: 50;

line2 = 3: 0;

else: pay2;

esac;

(b) The (concrete) smv model Mc

Fig. 12. Compiling f and f ′ to an smv model

For p ∈ P , let Jp = {(u, u′) ∈ J | p ∈ u} and similarly for p′ ∈ P ′ let Jp′
=

{(u, u′) ∈ J | p′ ∈ u′}. We constrain each element p ∈ P and p′ ∈ P ′ as follows:

p′ ↔
((∨

(u,u′)∈Jp′
(ϕ(u) ∧ ϕ(u′))

) ∨ (
p′ ∧

∧

(u,u′)∈Jp′
¬ϕ(u)

))
′ (1)

p′ ↔
((∨

(u,u′)∈Jp′
(ϕ(u) ∧ ϕ(u′))

) ∨ (
p′ ∧

∧

(u,u′)∈Jp′
¬ϕ(u′)

))
(2)

Definition 9 (Concrete constraint (Cc)). Let Cc be the conjunction of Equa-
tions (1) and (2) for each p ∈ P and p′ ∈ P ′.

Constraining our model checking problem using Cc allows us to check relative
equivalence, as stated by the following theorem.

Theorem 2 (Using the concrete constraint)

f ∼ f ′ iff ∀(v, v′) s.t. (v ∪ v′) |= Cc : f(v) = f ′(v′)

Relative Equivalence in the Presence of Ambiguity 441

Mc (Fig. 12b)

(a) Model

Cc (Def. 9)

(b) Constraint

G((line1=MAX1∧line2=MAX2) → (pay1=pay2))

(c) Property we check

Fig. 13. The complete (concrete) model checking problem

fa(q1, q2) {
1 if (q1 ∧ q2)

2 pay = 50;

else

3 pay = 0;

4 }
(a) f

f’a(Q1) {
1 if (Q1)

2 pay = 50;

else

3 pay = 0;

4 }
(b) f ′

Fig. 14. Abstract versions of the f and f ′ shown in Fig. 12

For example, let J = {({a}, {A}), ({b}, {B,C})}, then our constraint would be:

(a ↔ ((a ∧ A) ∨ (a ∧ ¬a))) ∧
(b ↔ ((b ∧B ∧ C) ∨ (b ∧ ¬b))) ∧
(A ↔ ((a ∧ A) ∨ (A ∧ ¬A))) ∧
(B ↔ ((b ∧B ∧ C) ∨ (B ∧ ¬(B ∧ C)))) ∧
(C ↔ ((b ∧B ∧ C) ∨ (C ∧ ¬(B ∧ C))))

(3)

giving

R =

{
(∅, ∅), (∅, {B}), (∅, {C}), ({a}, {A}), ({a}, {A,B}),
({a}, {A,C}), ({b}, {B,C}), ({a, b}, {A,B,C})

}

(4)

Thus our complete (concrete) model checking problem, shown in Fig. 13, consists
of the model Mc, the constraint Cc, and the property shown in Fig. 13c.

4.1 Complications Arising from Predicate Abstraction

A single line of benefit code can access files called tables representing large dis-
junctions of inputs, often consisting of hundreds of disjuncts each, so checking
even a small function might involve thousands of state variables. Thus to avoid
the size problem we use abstract versions of f and f ′, built by using predicates
to represent disjunctions. We use the coarsest such abstraction that does not
lose precision, thus our abstractions are exact in the sense of [3,4]. For example,
the abstractions of the f and f ′ of Fig. 12 are shown in Fig. 14. Recall that
we allocate predicates to disjunctions but not to conjunctions, thus fa uses two
predicates while f ′

a uses only one. We define:

Definition 10 (Represents). Let S be a set of atomic propositions, let {S1, S2,
· · · , S�} be a partition of S and for every Si, let qi abstract

∨
p∈Si

p. Then qi
represents s if s ∈ Si.

442 O. Adler, C. Eisner, and T. Veksler

f(a, b) {
if (a ∨ b)

return 50;

else

return 0;

}
(a) f

J =

a

{
({a}, {A}),
({b}, {B,C})

}

(b) J

f’(A, B, C) {
if (A ∨ B)

return 50;

else

return 0;

}
(c) f ′, a buggy migration of f

fa(q) {
if (q)

return 50;

else

return 0;

}
(d) fa, an abstraction of f

f’a(Y, Z) {
if (Y)

return 50;

else

return 0;

}
(e) f ′

a, an abstraction of f ′

Fig. 15. A buggy migration and its predicate abstraction

It is easy to see that if we partition P and P ′ carefully, we can get that the model
Ma built from fa and f ′

a is bisimulation equivalent to the model Mc built from
f and f ′. However, taking our constraints into consideration, the abstraction
seems to break down. For example, let Ja be obtained from J by replacing every
element p ∈ P ∪ P ′ with the predicate q that represents it, and then constrain
every q ∈ A using a version of Equation (1) that uses Ja instead of J , and
similarly for every q′ ∈ A′. The constraints may make finer distinctions than
those made by our predicates, thus using this abstraction we miss bugs.

For example, consider the buggy migration and its predicate abstraction
shown in Fig. 15. Using predicates q abstracting a ∨ b, Y abstracting A ∨ B
and Z abstracting C, we get Ja = {({q}, {Y }), ({q}, {Y, Z})}, which gives:

(q ↔ ((q ∧ Y) ∨ (q ∧ Y ∧ Z) ∨ (q ∧ ¬q))) ∧
(Y ↔ ((q ∧ Y) ∨ (q ∧ Y ∧ Z) ∨ (Y ∧ ¬Y ∧ ¬(Y ∧ Z)))) ∧
(Z ↔ ((q ∧ Y ∧ Z) ∨ (Z ∧ ¬(Y ∧ Z))))

(5)

representing the following (bad) abstract R, call it Rb:

Rb = {(∅, ∅), (∅, {Z}), ({q}, {Y }), ({q}, {Y, Z})} (6)

Rb is bad because fa and f ′
a return the same value for every input pair in Rb,

thus we have missed the migration bug.
One solution would be to build finer predicates that take the concrete con-

straints into consideration, but given how our constraints are built, with every
atomic proposition on one side of an ↔, that would seem to leave us with no ab-
straction at all. Happily, we can avoid building finer predicates than the coarsest

Relative Equivalence in the Presence of Ambiguity 443

required for bisimulation – this makes intuitive sense, since if f cannot distin-
guish between input vector v1 and v2, there cannot be any reason to check both.
What we want is to check every pair in Ra, obtained from R by replacing every
p ∈ P and p′ ∈ P ′ with the predicate that represents it. All that remains is to
constrain the abstract inputs to pairs in Ra.

We define our abstract constraint Ca as follows:

Definition 11 (Abstract constraint (Ca)). Let {P1, P2, · · · , P�} be a parti-
tion of P represented by predicates {q1, q2, · · · q�} and let {P ′

1, P
′
2, · · ·P ′

�′} be a
partition of P ′ represented by predicates {q′1, q′2, · · · q′�′}.

Ca =∃
p∈P
∃

p′∈P ′

⎛

⎝
�∧

i=1

(
qi ↔

∨

p∈Pi

p
)

∧
�′∧

j=1

(
q′j ↔

∨

p′∈P ′
j

p′
)

∧ Cc

⎞

⎠

Using Ca, built at compile time, allows us to check that f and f ′ are relatively
equivalent by comparing fa and f ′

a, as stated by the following theorem.

Theorem 3 (Using the abstract constraint). Let fa be an abstraction of f
and let f ′

a be an abstraction of f ′. Then

f ∼ f ′ iff ∀(x, x′) s.t. (x ∪ x′) |= Ca : fa(x) = f ′
a(x

′)

For example, using our predicates q abstracting a ∨ b, Y abstracting A ∨B and
Z abstracting C, we get the following abstraction of the R from Equation (4):

Ra = {(∅, ∅), (∅, {Y }), (∅, {Z}), ({q}, {Y }), ({q}, {Y, Z})} (7)

Then the migration bug of Fig. 15 will be found by the abstract pair (∅, {Y }),
representing the concrete pair (∅, {B}).

Our complete abstract model checking problem, then, consists of the abstract
model Ma, the abstract constraint Ca, and the property shown in Fig. 13c.

5 Experimental Results

We implemented our method in a tool to formally verify migration of benefit code
from icd-9 to icd-10 as part of an ibm engagement with nasco. The result is be-
ing used to verify migration of tens of millions of lines of benefit code, consisting
of millions of relatively small functions. As part of our testing process we gathered
statistics on a subset of the real code, consisting of some 90,000 functions, com-
paring them to an ad hoc migration developed specially for testing purposes. We
used gem files published by the Centers for Medicare and Medicaid Services [2],
in which J consists of approximately 175,000 pairs, mapping some 17,000 icd-9
diagnosis and procedure codes to some 141,000 icd-10 codes. In this section we
present some practical details regarding the implementation, and information on
the performance of our tool on its realistic test base.

As we have seen, some functions are fundamental mismatches with respect to
J , thus not migratable, and so correct-by-construction migration is not possible

444 O. Adler, C. Eisner, and T. Veksler

Table 2. Size, compile and run time (in seconds)

Plan # f ’s Lines of Code Compile Time Run Time
Total Ave Med Max Total Ave Med Max Total Ave Med Max

A 149 4241 28.5 22 160 56 0.4 0.1 9.9 86 0.6 0.5 11.3

B 13,673 344,184 25.2 21 632 21,521 1.6 0.2 11.4 158,197 11.6 6.0 445.3

C 20,395 538,281 26.4 26 632 38,115 1.9 0.2 12.4 128,421 6.3 5.5 459.2

D 4,727 135,746 28.7 23 428 1,966 0.4 0.5 12.2 2,187 0.5 0.5 509.5

E 49,523 395,781 8.0 7 232 7,497 0.2 0.1 11.6 44,825 0.9 0.6 999.0

F 1,607 77,347 48.1 32 330 3,655 2.3 0.3 11.2 156,049 97.1 1.5 965.3

Table 3. Comparison results

Plan Count %
Migration Fundamental Other Migration Fundamental Other

Correct Mismatch Mismatch Correct Mismatch Mismatch

A 138 11 0 92.6 7.4 0.0

B 13,673 0 0 100.0 0.0 0.0

C 13,141 7,200 54 64.4 35.3 0.3

D 4,584 139 4 97.0 2.9 0.1

E 49,248 169 106 99.4 0.3 0.2

F 1,400 175 32 87.1 10.9 2.0

without a check for migratability. Even for migratable functions, the process is
not so simple: Not every expression is expressible in the proprietary language
used in the benefit code, so some expressions need to be split into sequential or
nested conditional statements in such a way that the migrated function f ′ might
be syntactically far from the original function f ; in particular, the control flow
of f and f ′ may be quite different. For these and other reasons, the migration
process consists of two steps. First a heuristic migration is performed that pro-
duces correct results in most but not all cases, then a verification step checks
if the migration is correct. If it is not, a counterexample is produced and the
migration is fixed manually and re-verified.

Our experiment consisted of applying our method to 90,000 real benefit code
functions belonging to six different insurance plans, comparing them to an ad
hoc migration developed specially for testing purposes. Our industrial strength
model checker RuleBase PE [8], designed for very large model checking problems,
incurs unnecessary overhead when applied to small problems. Instead, we run
directly on Discovery, RuleBase PE’s BDD-based model checking engine. Table 2
shows, for each plan, the total, average, median and maximum lines of code per
function and compile and run time in seconds on a 2 × 2.4 GHz Intel Xeon
processor with 2 GB RAM running Red Hat 5.6. For testing purposes, we timed
out at 1,000 seconds run time. Out of just over 90,000 test cases, 140 timed out
and are not included in the numbers shown in Table 2.

Table 3 shows the model checking results. In most cases, our ad hoc
migration was correct. Some cases were identified as suspected fundamental

Relative Equivalence in the Presence of Ambiguity 445

mismatches at compile time and those that were confirmed at run time are listed
in the column labeled “Fundamental Mismatch”. We find suspected fundamen-
tal mismatches at compile time when we discover during predicate abstraction
that some atomic proposition should be used by f but is not. For example, if
({a, b}, {A}) ∈ J and there is no other (v, v′) ∈ J such that a ∈ v, then an f that
uses a but not b cannot be correctly migrated unless the use of a is in dead code.
Run time distinguishes between real and spurious suspected fundamental mis-
matches. Note that the 7,200 fundamental mismatches found for Plan C most
likely result from a smaller number of errors in some table used by multiple
functions.

The other mismatches shown in Table 3 represent either fundamental mis-
matches not identified at compile time (e.g., in the above example, if both a
and b are used in the code but in the wrong context) or bugs in our ad hoc
migration.

6 Conclusion

We have formalized the notion of relative equivalence and characterized the set of
cases R sufficient to check it. We have shown how predicate abstraction interacts
with constraint generation and presented a solution that avoids overrefinement.
We have implemented our solution in a tool currently being used to migrate
tens of millions of lines of insurance claims processing code from from icd-9 to
icd-10, two versions of the International Statistical Classification of Diseases
and Related Health Problems. We have presented experimental results for the
migration of 90,000 real functions from this code, using a crosswalk consisting
of approximately 175,000 subset pairs, that maps 17,000 icd-9 codes to 141,000
icd-10 codes and is ambiguous in both directions. Future work is to explore
the applicativity of our work beyond icd, for instance in the context of
databases.

Acknowledgements. Thank you to Gadi Aleksandrowicz, Elena Guralnik,
Alexander Ivrii, Shiri Moran, Ziv Nevo, Avigail Orni, Julia Rubin, Karen Yorav
and anonymous reviewers for important comments on early versions of
this work.

References

1. Centers for Disease Control and Prevention,
http://www.cdc.gov/nchs/icd.htm

2. Centers for Medicare and Medicaid Services,
https://www.cms.gov/Medicare/Coding/ICD10/index.html

3. Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Abstraction. ACM
Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994)

http://www.cdc.gov/nchs/icd.htm
https://www.cms.gov/Medicare/Coding/ICD10/index.html

446 O. Adler, C. Eisner, and T. Veksler

4. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (2001)
5. Eisner, C.: Model Checking the Garbage Collection Mechanism of SMV. Electronic

Notes in Theoretical Computer Science 55(3), 289–303 (2001)
6. Eisner, C.: Formal Verification of Software Source Code through Semi-automatic

Modeling. Software and System Modeling 4(1), 14–31 (2005)
7. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
8. RuleBase Parallel Edition,

https://www.research.ibm.com/haifa/projects/verification/RB_Homepage/

https://www.research.ibm.com/haifa/projects/verification/RB_Homepage/

	Relative Equivalence in the Presence of Ambiguity

	1 Introduction
	2 Relative Equivalence
	3 Checking Relative Equivalence
	4 Model Checking Setup
	4.1 Complications Arising from Predicate Abstraction

	5 Experimental Results
	6 Conclusion
	References

