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Abstract. A barrier certificate is an inductive invariant function which
can be used for the safety verification of a hybrid system. Safety veri-
fication based on barrier certificate has the benefit of avoiding explicit
computation of the exact reachable set which is usually intractable for
nonlinear hybrid systems. In this paper, we propose a new barrier cer-
tificate condition, called Exponential Condition, for the safety verifica-
tion of semi-algebraic hybrid systems. The most important benefit of
Exponential Condition is that it has a lower conservativeness than the
existing convex conditions and meanwhile it possesses the convexity. On
the one hand, a less conservative barrier certificate forms a tighter over-
approximation for the reachable set and hence is able to verify critical
safety properties. On the other hand, the convexity guarantees its solv-
ability by semidefinite programming method. Some examples are pre-
sented to illustrate the effectiveness and practicality of our method.

Keywords: inductive invariant, barrier certificate, safety verification,
hybrid system, nonlinear system, sum of squares.

1 Introduction

Hybrid systems [1], [2] are models for those systems with interacting discrete and
continuous dynamics. Embedded systems are often modeled as hybrid systems
due to their involvement of both digital control software and analog plants.
In recent years, as embedded systems are becoming ubiquitous, more and more
researchers are devoted to the theory of hybrid systems. Reachability problems or
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safety verification problems are among the most challenging problems in verifying
hybrid systems. The aim of safety verification is to decide that starting from an
initial set, whether a continuous system or hybrid system can reach an unsafe set.
For this purpose, many methods have been proposed for various hybrid systems
with different features.

Deductive methods based on inductive invariant play an important role in the
verification of hybrid systems. An inductive invariant of a hybrid system is an
invariant ϕ that holds at the initial states of the system, and is preserved by all
discrete and continuous transitions. A safety property is an invariant ψ (usually
not inductive) that holds in all reachable states of the system. The standard
technique for proving a given property ψ is to generate an inductive invariant ϕ
that implies ψ. Therefore, the problem of safety verification is converted to the
problem of inductive invariant generation and hence avoid the reachability com-
putation of the hybrid system. The key points in generating inductive invariant
for hybrid systems is how to define an inductive condition that is the least con-
servative and how to efficiently compute the inductive invariant that satisfies the
inductive condition. Usually, these two aspects contradict with each other, that
is, an inductive condition with sufficiently low conservativeness often encounters
the computability or complexity problem. For different class of hybrid systems,
various inductive invariants and computational methods have been proposed.

Some methods were primarily proposed for constructing inductive invariant
for linear hybrid systems [3], [4]. In recent years, however, researchers concen-
trate more and more on nonlinear hybrid systems, especially on algebraic or
semi-algebraic hybrid systems (i.e. those systems whose vector fields are poly-
nomials and whose set descriptions are polynomial equalities or inequalities), as
they have a higher universality. In [5], [6], Sankaranarayanan et al. presented a
computational method based on the theory of ideal over polynomial ring and
quantifier elimination for automatically generating algebraic invariants for alge-
braic hybrid systems. Similarly, Tiwari et al. proposed in [7] a technique based
on the theory of ideal over polynomial ring to generate the inductive invariant for
nonlinear polynomial systems. In [8], [9], S. Prajna et al. proposed a new induc-
tive invariant called Barrier Certificate for verifying the safety of semialgebraic
hybrid systems and the computational method they applied is the technique of
sum-of-squares decomposition of semidefinite polynomials. In [10], C. Sloth et
al. proposed a new Barrier Certificate for a special class of hybrid systems which
can be modeled as an interconnection of subsystems. In [11], A. Platzer et al.
proposed the concept of Differential Invariant which is a boolean combination
of multiple polynomial inequalities for verifying semialgebraic hybrid systems.
In [12], S. Gulwani et al. proposed an inductive invariant similar to Differential
Invariant except that they defined a different inductive condition and they used
SMT solver to solve the inductive invariant. In [13], A. Taly et al. discussed
the soundness and completeness of several existing invariant condition and pre-
sented several simpler and practical invariant condition that are sound and rela-
tively complete for different classes of inductive invariants. In [14], A. Taly et al.
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proposed to use inductive controlled invariant to synthesize multi-modal contin-
uous dynamical systems satisfying a specified safety property.

In this paper, we propose a new barrier certificate (called Exponential Con-
dition) for the safety verification of semialgebraic hybrid systems. A barrier
certificate is a special class of inductive invariant for the safety verification of
hybrid systems: a function ϕ(x) which maps all the states in the reachable set
to non-positive reals and all the states in the unsafe set to positive reals. Given
a dynamical system S with dynamics ẋ = f(x) with initial set Init, to prove
a safety property P (we use Xu to denote the unsafe set) is satisfied by S, the
basic idea of Exponential Condition is to identify a function ϕ(x) such that 1)
ϕ(x) ≤ 0 for any point x ∈ Init, 2) ϕ(x) > 0 for any point x ∈ Xu, and 3)
Lfϕ(x) ≤ λϕ(x), where Lfϕ(x) =

∂ϕ
∂x f(x) =

∑n
i=1

∂ϕ
∂xi

fi(x) is the Lie derivative
of ϕ with respect to the vector field f and λ is any negative constant real value.
The first condition and the third condition together guarantee that ϕ(x) ≤ 0 for
any point x in the reachable set R, which implies that R∩Xu = ∅. Therefore, we
can assert that the safety property P is satisfied by the system M as long as we
can find a function ϕ(x) satisfying the above condition. The above condition can
be extended to semialgebraic hybrid systems naturally. The idea is to identify
a set of functions {ϕi(x)}, one for each mode of the hybrid system, which not
only satisfy the above condition but also satisfy an additional sign-preserving
constraint for each discrete transition.

The most important benefit of Exponential Condition is that it is less conser-
vative than Convex Condition [8] and Differential Invariant [11], where the Lie
derivative of ϕ(x) is required to satisfy that Lfϕ(x) ≤ 0 (a stronger condition
than Lfϕ(x) ≤ λϕ(x)), and meanwhile, it possesses the property of convex-
ity as well. On the one hand, a less conservative inductive invariant forms a
tighter over-approximation for the reachable set and hence is able to verify criti-
cal safety properties (i.e., the unsafe region is very close to reachable region). On
the other hand, a convex inductive invariant condition can be solved efficiently
by semidefinite programming method, which is widely used for computing Lya-
punov functions in the stability analysis of nonlinear systems. In fact, there
exist some other less conservative inductive invariants than Exponential Condi-
tion, such as [8], [12], [13], however, these inductive conditions are not convex
and thus cannot be solved by semidefinite programming method. Instead, they
are usually solved by quantifier elimination and SMT solver, which usually has a
much higher computational complexity than semidefinite programming method.

Given a semialgebraic hybrid system, we choose a set of polynomials of bounded
degree with unknown coefficients as the candidate inductive invariant, and then
we obtain a set of positive semidefinite polynomials (i.e. P (x) ≥ 0) according
to Exponential Condition. Therefore, the generation of barrier certificate based
on Exponential Condition can be transformed to the problem of sum-of-squares
programming of positive semidefinite polynomials [15]. Based on our theory, we
develop an algorithm for generating the inductive invariant satisfying Exponential
Condition. Experiments on both nonlinear systems and hybrid systems show the
effectiveness and practicality of our method.
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The remainder of this paper is organized as follows. Section 2 introduces the
preliminaries of our method. Section 3 presents the barrier certificate conditions
for continuous systems and hybrid systems. Section 4 introduces the computa-
tional method we use to construct barrier certificates according to the barrier
certificate conditions. Section 5 gives some examples to demonstrate the appli-
cation of our method to the safety verification of continuous and hybrid systems.
Finally, we conclude our work in Section 6.

2 Preliminaries

In this paper, we adopt the model proposed in [16] as our modeling framework.
Many other models for hybrid system can be found in [17], [2].

A continuous system is specified by a differential equation

ẋ = f(x) (1)

where x ∈ R
n and f is a Lipschitz continuous vector function from R

n to R
n.

Note that the Lipschitz continuity guarantees the existence and uniqueness of
the solution x(t) to the system (1). A hybrid system can then be defined as:

Definition 1. (Hybrid System) A hybrid system is a tuple H = 〈L,X,E,R,G,
I, F 〉, where

– L is a finite set of locations (or modes);
– X ⊆ R

n is the continuous state space. The hybrid state space of the system
is denoted by X = L×X and a state is denoted by (l, x) ∈ X ;

– E ⊆ L× L is a set of discrete transitions;
– G : E 
→ 2X is a guard mapping over discrete transitions;
– R : E ×X 
→ 2X is a reset mapping over discrete transitions;
– I : L 
→ 2X is an invariant mapping;
– F : L 
→ (X 
→ X) is a vector field mapping which assigns to each location l

a vector field fl.

The transition and dynamic structure of the hybrid system defines a set of tra-
jectories. A trajectory is a sequence starting from a state (l0, x0) ∈ X0, where
X0 ⊆ X is an initial set, and consisting of a series of interleaved continuous flows
and discrete transitions. During the continuous flows, the system evolves follow-
ing the vector field F (l) at some location l ∈ L until the invariant condition I(l)
is violated. At some state (l, x), if there is a discrete transition (l, l′) ∈ E such
that (l, x) ∈ G(l, l′) (we write G(l, l′) for G((l, l′))), then the discrete transition
can be taken and the system state can be reset to R(l, l′, x). The problem of
safety verification of a hybrid system is to prove that the hybrid system cannot
reach an unsafe set Xu from an initial set X0.

Some notations that are used in this paper are presented here. R denotes the
real number field. C1(Rn) denotes the space of 1-time continuously differentiable
functions mapping X ⊆ R

n to R. R[x] denotes the polynomial ring in x over the
real number field and R[x]m denotes the m-dimensional polynomial vector space
over R[x]. MT denotes the transpose of the matrix M .
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3 Conditions for Constructing Barrier Certificates

3.1 Barrier Certificate Condition for Continuous Systems

Given a continuous system S, an initial set X0 and an unsafe set Xu, a barrier
certificate is a real-valued function ϕ(x) of states satisfying that ϕ(x) ≤ 0 for any
point x in the reachable set R and ϕ(x) > 0 for any point x in the unsafe set Xu

(called General Constraint hereafter). Therefore, if there exists such a function
ϕ(x), we can assert that R ∩Xu = ∅, that is, the system can not reach a state
in the unsafe set from the initial set. However, the exact reachable set R is not
computable for most hybrid systems, we cannot decide directly whether ϕ(x) ≤ 0
holds for all the points in R. Therefore, various alternative inductive conditions
that are equivalent to or sufficient for General Constraint were proposed. In
what follows, we present a new barrier certificate which is a sufficient condition
for General Constraint.

Consider a continuous system C specified by the differential equation (1), we
assume that X0(⊆ X), Xu are the initial set and the unsafe set respectively.
Then, we have the following theorem as a barrier certificate condition.

Theorem 1 (Exponential Condition). Given the continuous system (1) and
the corresponding sets X, X0 and Xu, for any given λ ∈ R, if there exists
a barrier certificate, i.e, a real-valued function ϕ(x) ∈ C1(Rn) satisfying the
following formulae:

∀x ∈ X0 : ϕ(x) ≤ 0 (2)
∀x ∈ X : Lfϕ(x) − λϕ(x) ≤ 0 (3)
∀x ∈ Xu : ϕ(x) > 0 (4)

then the safety property is satisfied by the system (1).

Proof. Suppose x0 ∈ X0 and x(t) be the corresponding particular solution of
the system (1). We aim to prove that for any function ϕ(x(t)) satisfying the
formulae (2)- (4), the following formula holds:

∀ζ ≥ 0 : ϕ(x(ζ)) ≤ 0. (5)

Let g(x) = Lfϕ(x) − λϕ(x), then by (3)

∀x ∈ X : g(x) ≤ 0 (6)

Since dϕ(x(t))
dt = ∂ϕ

∂x
dx
dt = ∂ϕ

∂x f(x) = Lfϕ(x), we have the differential equation
about ϕ(x(t)) {

dϕ(x(t))
dt − λϕ(x(t)) − g(x(t)) = 0

ϕ(x(0)) = ϕ(x0)
(7)

By solving the differential equation (7), we have the following solution:

ϕ(x(t)) = (

∫ t

0

(g(x(τ))e−λτ dτ + ϕ(x0))e
λt. (8)
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Fig. 1. Dependency of Barrier Certificate Condition on λ. As the value of λ decreases
(e.g. from 1/4 to −3), the upper-bound of the value of ϕ(x(t)) approaches to zero
infinitely, which means the barrier certificate condition becomes less conservative.

By (6), we have
∫ t

0

(g(x(τ))e−λτ dτ ≤ 0. (9)

then by (9) and ϕ(x0) ≤ 0, we finally have

ϕ(x(t)) ≤ ϕ(x0)e
λt ≤ 0. (10)

Hence, for any ζ ≥ 0, ϕ(x(ζ)) ≤ 0 holds. 
�
Remark 1. The formulae (2) and (4) ensure that the barrier separates the initial
set X0 from the unsafe set Xu, and the formula (3) ensures that system trajec-
tories cannot escape from inside of the barrier. These formulae together imply
that ϕ(x) ≤ 0 is an inductive invariant of the system (1).

From another point of view, the semi-algebraic set {x ∈ R
n|ϕ(x) ≤ 0} forms an

over-approximation for the reachable set of the system (1), and the zero level
set of the function ϕ(x) (i.e., {x ∈ R

n|ϕ(x) = 0}) forms the boundary of the
over-approximation. In order to be less conservative, we hope the boundary of
the over-approximation encloses the reachable set {x(t)|x(0) ∈ X0, ẋ = f(x), t ∈
R+} as tightly as possible, in other words, to make the upper-bound of ϕ(x(t))
approach zero as closely as possible. According to the above proof (i.e., (10)), the
scope over which the function ϕ(x(t)) can range depends closely on the value of
the parameter λ: the less value the λ is, the closer the upper-bound of the scope
that ϕ(x(t)) can reach is to zero (see Fig. 1). Roughly speaking, the values of
λ are divided into three classes according to the conservativeness of the barrier
certificate condition:
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– λ = 0. In this case, the formula (3) is degenerated to ∂ϕ
∂x f(x) ≤ 0, which is the

case of Convex Condition. This condition implies that the value of ϕ(x(t))
will never get close to zero over time t. Thus, the condition is very conserva-
tive. Similarly, Differential Invariant is a generalization of Convex Condition
and accordingly it completely inherits the conservativeness of Convex Con-
dition (Refer to [18] for a detailed explanation on this point).

– λ < 0. In this case, we know that 1) ϕ(x(t)) ≤ ϕ(x0)e
λt ≤ 0, and 2) ∂ϕ

∂x f(x) ≤
λϕ(x) ≥ 0. These two inequalities together imply that the value of ϕ(x(t))
can increase over the time t but never get across the upper bound 0, provided
that ϕ(x(0)) ≤ 0 at the beginning.

– λ > 0. In this case, ∂ϕ
∂x f(x) ≤ λϕ(x) ≤ 0, which means that the value

of ϕ(x(t)) get far away from 0. Apparently, the condition is much more
conservative than the first case.

Therefore, as long as we let λ < 0, we can get less conservative barrier cer-
tificate conditions than Convex Condition and Differential Invariant. Note that
Exponential Condition is convex as well and its convexity can be easily proved
by verifying that for any two functions ϕ1(x) and ϕ2(x) satisfying the formu-
lae (2)–(4) and any θ with 0 ≤ θ ≤ 1, ϕ(x) = θϕ1(x) + (1 − θ)ϕ2(x) satisfies
the formulae (2)–(4) as well. Based on this fact, we can convert the problem of
constructing barrier certificate into the problem of convex optimization which
we will discuss in Section 4.

In the following subsection, we extend the barrier certificate condition for
continuous systems to hybrid systems.

3.2 Barrier Certificate Condition for Hybrid Systems

Different from the barrier certificate for a continuous system, the barrier cer-
tificate for a hybrid system consists of a set of functions {ϕl(x)|l ∈ L}, each
of which corresponds to a discrete location of the system and forms a barrier
between the reachable set and the unsafe set at that individual location. For
each function ϕl(x) at location l, in addition to defining constraints for the con-
tinuous flows, the barrier certificate conditions have to take into account all the
discrete transitions starting from location l to make the overall barrier certificate
an inductive invariant. Formally, we define the barrier certificate condition for
hybrid systems as the following theorem.

Theorem 2 (Hybrid-Exp Condition). Given the hybrid system H = 〈L,X,
E,R,G, I, F 〉, the initial set X0 and the unsafe set Xu of H, then, for any given
set of constant real numbers Sλ = {λl ∈ R|l ∈ L} and any given set of constant
non-negative real numbers Sγ = {γll′ ∈ R+|(l, l′) ∈ E}, if there exists a set of
functions {ϕl(x)|ϕl(x) ∈ C1(Rn), l ∈ L} such that, for all l ∈ L and (l, l′) ∈ E,
the following formulae hold:
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Fig. 2. A hybrid system without barrier certificate satisfying Convex Condition

∀x ∈ Init(l) : ϕl(x) ≤ 0 (11)
∀x ∈ I(l) : Lflϕl(x)− λlϕl(x) ≤ 0 (12)
∀x ∈ G(l, l′), ∀x′ ∈ R((l, l′), x) : γll′ϕl(x) − ϕl′(x

′) ≥ 0 (13)
∀x ∈ Unsafe(l) : ϕl(x) > 0 (14)

where Init(l) and Unsafe(l) denote respectively the initial set and the unsafe set
at location l, then the safety property is satisfied by H.

The proof of Theorem 2 can be found in [18]. Informally, the formulae (11), (12)
and (14) together ensure that at each location l ∈ L, the system never evolves
into an unsafe state continuously. The formula (13) ensures that the system
never jumps from a safe state to an unsafe state discretely. By induction, the
formulae (11)–(14) together guarantee the safety of the system.

Remark 2. The selection of the parameter set Sλ is essential to the conserva-
tiveness of the barrier certificate conditions. As discussed in Subsection 3.1, by
setting all the elements of Sλ to 0, we can derive Convex Condition for hybrid
systems. However, Convex Condition is too restrictive to be useful for hybrid
systems. For example, see the hybrid system in Fig. 2, there is a reset operation
x = xr (which is often the case) at the transition (l2, l1). Assume there exists a
barrier certificate {ϕl1(x), ϕl2(x)} if we set all the elements of Sλ to 0 and (with-
out loss of generality) set all the elements of Sγ to 1, then for any trajectory
containing at least two times of the transition (l2, l1), one at time instant t1 and
another at t2, t1 < t2, respectively, we can assert that ϕl1(xl1t1) > ϕl1(xl1t2)
according to Theorem 2, this contradicts with xl1t1 = xl1t2 = xr, that is, the
barrier certificate satisfying Convex Condition does not exist no matter what
the unsafe set is. Therefore, in order to make the barrier certificate condition
less conservative, we try to choose negative values for λl ∈ Sλ and theoretically:
the less, the better. However, in practice, the optimal domain for λ may depend
on the specific computational method. For example, the interval [−1, 0) appears
to be optimal and not too sensitive in-between for the semidefinite programming
method used in this paper.

The selection of Sγ is relatively simple. We usually set all of its elements to 1
except for the discrete jumps with a reset operation that is independent of the
pre-state of the jump, for which we usually set γll′ to 0.
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4 Construction Method for Barrier Certificate

Constructing inductive invariants for general hybrid systems is very hard. For-
tunately, for some existing inductive conditions, several computational methods
are available for semialgebraic hybrid systems. The most representative methods
include the fixed-point method based on saturation [11], the constraint-solving
methods based on semidefinite programming [9] and quantifier elimination [12]
and the Gröbner bases method [7], [6]. Similar to Convex Condition, Exponential
Condition defines a convex set of barrier certificate functions as well and hence
can be solved by semidefinite programming method supposing the hybrid system
is semialgebraic and the barrier certificate function ϕ(x) is a polynomial.

In our computational method, a barrier certificate is assumed to be a set
Φ = {ϕl(x)|l ∈ L} of multivariate polynomials of fixed degrees with a set of
unknown real coefficients. According to the constraint inequalities in Theorem 1
or Theorem 2, we can obtain a set of positive semidefinite (PSD) polynomials
Q = {Qi|Qi(x) ≥ 0, deg(Qi) = 2n, x ∈ R

n, n ∈ N}, where deg(·) returns the
degree of a polynomial. Note that a polynomial Q(x) of degree 2k is said to be
PSD if and only if Q(x) ≥ 0 for all x ∈ R

n. Thus, our objective is to find a set
of real-valued coefficients for ϕl ∈ Φ to make all the Qi ∈ Q be PSD.

A famous sufficient condition for a polynomial P (x) of degree 2k to be PSD
is that it is a sum-of-squares (SOS ) P (x) =

∑
qi(x)

2 for some polynomials qi(x)
of degree k or less [19]. Furthermore, it is equivalent to that P (x) has a positive
semidefinite quadratic form, i.e., P (x) = v(x)Mv(x)T , where v(x) is a vector
of monomials with respect to x of degree k or less and M is a real symmetric
PSD matrix with the coefficients of P (x) as its entries. Therefore, the problem
of finding a PSD polynomial P (x) can be converted to the problem of solving a
linear matrix inequality (LMI ) M � 0 [20], which can be solved by semidefinite
programming [21].

In our work, we extend SOSTOOLS based on the theory in this paper to
implement an algorithm for discovering barrier certificate automatically.

4.1 Sum-of-Squares Transformation for Continuous System

In order to be solvable for the barrier certificate condition by SOS programming,
we need to restate it with multivariate polynomials. In this context, we assume
that all the state sets involved in the condition are semialgebraic, that is, they can
be written as {x ∈ R

n|P1(x) ≥ 0, ..., Pm(x) ≥ 0, Pi(x) ∈ R[x], 1 ≤ i ≤ m}). For
convenience, we write it compactly as {x ∈ R

n|P(x) ≥ 0,P(x) ∈ R[x]m}, where
P(x) = (P1(x), P2(x), ..., Pm(x)). In addition, each dimension of the vector field
f(x) and the barrier certificate function ϕ(x) are all polynomials in R[x]. Based
on the previous assumption, we present the sum-of-squares transformation of
Exponential Condition for continuous systems as the following corollary.

Corollary 1. Given the continuous polynomial system (1) and the initial set
X0 = {x ∈ R

n|I0(x) ≥ 0, I0(x) ∈ R[x]r} and the unsafe set Xu = {x ∈
R

n|U(x) ≥ 0, U(x) ∈ R[x]s}, where r and s are the dimensions of the poly-
nomial vector spaces, for any given λ ∈ R and any given real number ε > 0,
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if there exists a polynomial function ϕ(x) ∈ R[x] and two SOS polynomial vec-
tors (i.e., every element of the vector is a SOS polynomial) μ(x) ∈ R[x]r and
η(x) ∈ R[x]s satisfying that the following polynomials

− ϕ(x) − μ(x)I0(x) (15)
− Lfϕ(x) + λϕ(x) (16)
ϕ(x) − η(x)U(x) − ε (17)

are all SOSs, then the safety property is satisfied by the system (1).

Proof. It is sufficient to prove that any ϕ(x) satisfying (15)–(17) also satisfies
(2)–(4). By (15), we have −ϕ(x) − μ(x)I0(x) ≥ 0, that is, ϕ(x) ≤ −μ(x)I0(x).
Because for any x ∈ X0, −μ(x)I0(x) ≤ 0, this means ϕ(x) ≤ 0. Similarly, we
can derive (3) from (16). By (17), it’s easy to prove that ϕ(x) − ε ≥ 0 holds for
any x ∈ Xu. Since ε is greater than 0, then the formula (4) holds. Therefore, the
system (1) is safe. 
�
Remark 3. Since the polynomials (15)–(17) are required to be SOS s, each of
them can be transformed to a positive semidefinite quadratic form v(x)Miv(x)

T ,
where Mi is a real symmetric PSD matrix with the coefficients of ϕ(x), μ(x) and
η(x) as its variables. As a result, we obtain a set of LMI s {Mi � 0} which can
be solved by semidefinite programming.

We use Algorithm 1 to compute the desired barrier certificate. In the algo-
rithm, we first choose a small set of negative values Λ as a candidate set for λ
and an integer interval [dMin, dMax] as a candidate set for degree d of ϕ(x).
Then, we attempt to find a barrier certificate satisfying the formulae (15)–(17)
for a fixed pair of λ and d until such one is found. Theoretically, according to
the analysis about the dependence of conservativeness of barrier certificate on
the value of λ, we should set λ to as small negative value as possible. How-
ever, experiments show that too small negative numbers for λ often lead the
semidefinite programming function to numerical problems. In practice, the neg-
ative values in the interval [−1, 0) are good enough for λ to verify very critical
safety properties. Note that the principle for step 3 in Algorithm 1 is that if
ϕ(x) has a dominating degree in both polynomials, there couldn’t exist a so-
lution that make both polynomials be SOS s because −ϕ(x) and ϕ(x) occur in
(15) and (17) simultaneously. The motive for eliminating the monomials with
small coefficients in step 7 is from the observation that those monomials are
usually the cause of the failed SOS decomposition for the polynomials when the
semidefinite programming function gives a seemingly feasible solution.

The idea for constructing barrier certificates for continuous systems can be
easily extended to hybrid systems. We describe it in the following subsection.

4.2 Sum-of-Squares Transformation for Hybrid System

Similar to continuous system, in order to be solvable by semidefinite program-
ming, we need to limit the hybrid system model in Section 2 to semialgebraic
hybrid system.
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Algorithm 1. Computing Barrier Certificate for Continuous System
Input: f : array of polynomial vector field; I0: array of polynomials defining X0;

U : array of polynomials defining Xu

Output: ϕ: barrier certificate polynomial
Variables : λ: a real negative value; d: degree of ϕ
Constants: Λ: array of candidate values for λ; ε: a positive value; dMin,

dMax: the minimal degree and maximal degree of ϕ to be found

1 Initialize. Set Λ to a set of negative values between −1 and 0; Set ε to a small
positive value; Set dMin and dMax to positive integer respectively;

2 Pick λ and d. For each λ ∈ Λ and for each d from dMin to dMax, perform step
3–7 until a barrier certificate is found;

3 Decide the degree of μ(x) and η(x) according to d. To be SOSs for both (15)
and (17), at least one of the degrees of μ(x)I0(x) and η(x)U(x) is greater than
or equal to the degree of ϕ(x);

4 Generate complete polynomials ϕ(x), μ(x) and η(x) of specified degree with
unknown coefficient variables;

5 Eliminate the monomials of odd top degrees in (15)–(17), μ(x) and η(x),
respectively. To be a SOS, a polynomial has to be of even degree. Concretely, let
the coefficients of the monomials to be eliminated be zero to get equations
about coefficient variables and then reduce the number of coefficient variables
by solving the equations and substituting free variables for non-free variables in
all the related polynomials;

6 Perform the SOS programming on the positive semidefinite constraints
(15)–(17) and μ(x), η(x);

7 Check if a feasible solution is found, if not found, continue with a new loop;
else, check if the solution can indeed enable the corresponding polynomials to
be SOSs, if so, return ϕ(x); else, for all the polynomials in the programming,
eliminate all the monomials whose coefficients have too small absolute
values(usually less than 10−5) by using the same method as step 5, then go to
step 6 unless an empty polynomial is produced;

Consider the hybrid system H = 〈L,X,E,R,G, I, F 〉, where the mappings
F,R,G, I of H are defined with respect to polynomial inequalities as follows:

– F : l 
→ fl(x)
– G : (l, l′) 
→ {x ∈ R

n|Gll′(x) ≥ 0, Gll′(x) ∈ R[x]pll′ }
– R : (l, l′, x) 
→ {x′ ∈ R

n|Rll′x(x
′) ≥ 0, Rll′x(x

′) ∈ R[x]qll′ }
– I : l 
→ {x ∈ R

n|Il(x) ≥ 0, Il(x) ∈ R[x]rl}
and the mappings of the initial set and the unsafe set are defined as follows:

– Init : l 
→ {x ∈ R
n| Initl(x) ≥ 0, Initl(x) ∈ R[x]sl}

– Unsafe : l 
→ {x ∈ R
n|Unsafel(x) ≥ 0,Unsafel(x) ∈ R[x]tl}

where pll′ , qll′ , rl, sl and tl are the dimensions of polynomial vector spaces.
Then we have the following corollary for constructing barrier certificate for the
semialgebraic hybrid system H.
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Corollary 2. Let the hybrid system H and the initial state set mapping Init and
the unsafe state set mapping Unsafe be defined as the above. Then, for any given
set of constant real numbers Sλ = {λl ∈ R|l ∈ L} and any given set of constant
non-negative real numbers Sγ = {γll′ ∈ R+|(l, l′) ∈ E} ,and any given small real
number ε > 0, if there exists a set of polynomial functions {ϕl(x) ∈ R[x]|l ∈ L}
and five sets of SOS polynomial vectors {μl(x) ∈ R[x]sl |l ∈ L}, {θl(x) ∈
R[x]rl |l ∈ L}, {κll′(x) ∈ R[x]pll′ |(l, l′) ∈ E} , {σll′ (x) ∈ R[x]qll′ |(l, l′) ∈ E} and
{ηl(x) ∈ R[x]tl |l ∈ L}, such that the polynomials

ϕl(x) − μl(x) Initl(x) (18)
λlϕl(x)− Lflϕl(x) − θl(x)Il(x) (19)
γll′ϕl(x) − ϕl′(x

′)− κll′(x)Gll′ (x)− σll′ (x
′)Rll′x(x

′) (20)
ϕl(x) − ε− ηl(x)Unsafel(x) (21)

are SOSs for all l ∈ L and (l, l′) ∈ E, then the safety property is satisfied by the
system H.

Proof. Similar to Corollary 1, it’s easy to prove that any set of polynomials
{ϕl(x)} satisfying (18)–(21) also satisfies (11)–(14), hence the hybrid system H

is safe. 
�
The algorithm for computing the barrier certificates for hybrid systems is similar
to the algorithm for continuous systems except that it needs to take into account
the constraint (20) for the discrete transitions. We do not elaborate on it here
any more. Note that the strategy for the selection of λ’s for continuous system
applies here as well and we only need to set all the elements of Sγ to 1 except for
the discrete transition whose post-state is independent of the pre-state, where
we set γll′ to 0 to reduce the computational complexity.

5 Examples

5.1 Example 1

Consider the two-dimensional system (from [22] page 315)
[
ẋ1
ẋ2

]

=

[
x2

−x1 + 1
3x

3
1 − x2

]

with X = R
2, we want to verify that starting from the initial set X0 = {x ∈

R
2|(x1−1.5)2+x22 ≤ 0.25}, the system will never evolve into the unsafe set Xu =

{x ∈ R
2|(x1 + 1)2 + (x2 + 1)2 ≤ 0.16}. We attempted to use both the Convex-

Condition-based method proposed in [8] and the Exponential-Condition-based
method in this paper to find the barrier certificates with a degree ranging from 2
to 10. (Note that in [12], [13], the inductive invariants are not sufficient in general
according to [14] and hence cannot be applied to our examples. The work of [19]
applies only to a very special class of hybrid systems which is not applicable
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to our examples either.) During this process, all the programming polynomials
are complete polynomials automatically generated (instead of the non-complete
polynomials consisting of painstakingly chosen terms) and all the computations
are performed in the same environment. The result of the experiment is listed in
Table 5.1. The first column is the degree of the barrier certificate to be found,
the second column is the runtime spent by the Convex-Condition-based method,
and the rest columns are the runtime spent by the Exponential-Condition-based
method for different value of λ. Note that the symbol × in the table indicates
that the method failed to find a barrier certificate with the corresponding degree
either because the semidefinite programming function found no feasible solution
or because it ran into a numerical problem.

Table 1. Computing results for Convex Condition and Exponential Condition

Degree Convex Condition Exponential Condition
of

T ime(sec) T ime(sec)
ϕ(x) λ = −1

8
λ = −1

4
λ = −1

2 × 0.4867 0.4836 0.2496
3 × 0.5444 0.6224 0.4976
4 0.4368 0.4103 0.4072 0.3853
5 × 0.4321 0.4103 0.3947
6 × 0.3214 0.3011 0.2714
7 × 0.9563 0.9532 0.9453
8 × 0.9188 0.8970 0.7893
9 × 1.4944 1.4149 1.5132
10 × 1.4336 1.3931 1.3650

As shown in Table 5.1, the Convex-Condition-based method succeeded only
in one case (Degree = 4) due to the conservativeness of Convex Condition.
Comparably, our method found all the barrier certificates of the specified degrees
ranging from 2 to 10. Especially, the lowest degree of barrier certificate we found
is quadratic: ϕ(x) = −.86153− .87278x1−1.1358x2− .23944x21− .5866x1x2 with
μ(x) = 0.75965 and η(x) = 0.73845 when λ is set to −1. The phase portrait
of the system and the zero level set of ϕ(x) are shown in Fig. 3(a). Note that
being able to find a lower degree of barrier certificates is essential in reducing
the computational complexity.

In addition, we can see from Table 5.1 that the runtime of Exponential-
Condition-based method decreases with the value of λ for each fixed degree
except for Degree = 3, 9, this observation can greatly evidence our theoretical
result about λ selection: the less, the better.

5.2 Example 2

In this example, we consider a hybrid system with two discrete locations (from [9]).
The discrete transition diagram of the system is shown in Fig. 3(b) and the vector
fields describing the continuous behaviors are as follows:
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Fig. 3. (a) Phase portrait of the system in Subsection 5.1. The solid patches from right
to left are X0 and Xu, respectively, the solid lines depict the boundary of the reachable
region of the system from X0, and the dashed lines are the zero level set of a quadratic
barrier certificate ϕ(x) which separates the unsafe region Xu from the reachable region.
(b) Discrete transition diagram of the hybrid system in Subsection 5.2.

f1(x) =

⎡

⎣
x2

−x1 + x3
x1 + (2x2 + 3x3)(1 + x23)

⎤

⎦ , f2(x) =

⎡

⎣
x2

−x1 + x3
−x1 − 2x2 − 3x3

⎤

⎦

At the beginning, the system is initialized at some point in X0 = {x ∈ R
3|x21 +

x22 + x23 ≤ 0.01} and then it starts to evolve following the vector fields f1(x)
at location 1(NO CONTROL mode). When the system reaches some point in
the guard set G(1, 2) = {x ∈ R

3|0.99 ≤ x21 + 0.01x22 + 0.01x33 ≤ 1.01}, it can
jump to location 2 (CONTROL mode) nondeterministically without performing
any reset operation (i.e., R(1, 2, x) = G(1, 2)). At location 2, the system will
operate following the vector field f2(x), which means that a controller will take
over to prevent x1 from getting too big. As the system enters the guard set
G(2, 1) = {x ∈ R

3|0.03 ≤ x21 + x22 + x23 ≤ 0.05}, it will jump back to location
1 nondeterministically again without reset operation (i.e., R(2, 1, x) = G(2, 1)).
Different from the experiment in [9], where the objective is to verify that |x1| <
5.0 in CONTROL mode, our objective is to verify that x1 will stay in a much
more restrictive domain in CONTROL mode: |x1| < 3.2.

We define the unsafe set as Unsafe(1) = ∅ and Unsafe(2) = {x ∈ R
3|3.2 ≤

x1 ≤ 10} ∪ {x ∈ R
3|−10 ≤ x1 ≤ −3.2}, which is sufficient to prove |x1| ≤ 3.2

in CONTROL mode. Similarly, we tried to use both the method in this paper
and the method in [8] to compute the barrier certificate. By setting λ1 = λ2 =
− 1

5 and γ12 = γ21 = 1, our method found a pair of quartic barrier certificate
functions: φ1(x) and φ2(x), whose zero level set is shown in Fig. 4(a) and Fig. 4(b)
respectively. As you can see, at each location l = 1, 2, the zero level set of φl(x)
forms the boundary of the over-approximation φl(x) ≤ 0 (denoting the points
within the pipe) for the reachable set at location l. On the one hand, the hybrid
system starts from and evolves within the corresponding over-approximation and
jumps back and forth between the two over-approximations. On the other hand,
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(a) φ1(x) = 0 (b) φ2(x) = 0 (c) 3.2 ≤ x1 ≤ 10, φ2(x) = 0

Fig. 4. Barrier certificates φ1(x) and φ2(x) for the hybrid system in Subsection 5.2.
φl(x) = 0 (l = 1, 2) forms the boundary of the over-approximation φl(x) ≤ 0 and
separates the inside reachable set from the outside unsafe set (e.g. 3.2 ≤ x1 ≤ 10).

the unsafe set does not intersect the over-approximation formed by φ2(x) ≤ 0
(see Fig. 4(c)). Therefore, the safety of the system is guaranteed. However, using
the method in [8], we cannot compute the barrier certificate, which means it
cannot verify the system.

6 Conclusion

In this paper, we propose a new barrier certificate condition (called Exponential
Condition) for the safety verification of hybrid systems. Our barrier certificate
condition is parameterized by a real number λ and the conservativeness of the
barrier certificate condition depends closely on the value of λ: the less value
the λ is, the less conservative the barrier certificate condition is. The most im-
portant benefit of Exponential Condition is that it possesses a relatively low
conservativeness as well as the convexity and hence can be solved efficiently by
semidefinite programming method.

Based on our method, we are able to construct polynomial barrier certificate
to verify very critical safety property for semialgebraic continuous systems and
hybrid systems. The experiments on a continuous system and a hybrid system
show the effectiveness and practicality of our method.
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