
SVA and PSL Local Variables - A Practical Approach

Roy Armoni, Dana Fisman, and Naiyong Jin

Synopsys

Abstract. SystemVerilog Assertions (SVA), as well as Property Specification
Language (PSL) are linear temporal logics based on LTL [14], extended with
regular expressions and local variables. In [6] Bustan and Havlicek show that the
local variable extensions, as well as regular expressions with intersection, ren-
der the verification problem of SVA and PSL formulae EXPSPACE-complete. In
this paper we show a practical approach for the verification problem of SVA and
PSL with local variables. We show that in practice, for a significant and meaning-
ful subsets of those languages, which we denote PSLpract, local variables do not
increase the complexity of their verification problem, keeping it in PSPACE.

1 Introduction

SystemVerilog is an industrial standard unified hardware design and verification lan-
guage. SystemVerilog Assertions (SVA) [11,7] is a subclass of SystemVerilog, used
to declaratively specify functional behaviours of hardware designs. Similarly, Prop-
erty Specification Language (PSL) [10,8] is used to declaratively specify functional be-
haviours of hardware designs independent of the design language. Typically, both SVA
and PSL properties are then either validated during dynamic simulation or formally
verified.

Several works during the recent decade defined industrial functional specification
languages and studied the complexity of the verification problem of those languages
[2,1,4,6].1 SVA, part of the IEEE 1800 SystemVerilog standard, is a linear time tem-
poral logic, based on Pnueli’s LTL [14], extended with syntactic sugaring, regular ex-
pressions with intersection, connectives between regular expressions and formulae, and
local variables. PSL, IEEE 1850 standard, has similar constructs except that its local
variables’ semantics differs slightly [9].

The expressiveness of SVA and PSL as well as the worst case complexity of their
verification problem have already been studied before. Armoni et al [1] show that
the expressive power of LTL extended with regular expressions (the ForSpec tempo-
ral logic) is exactly all the ω-regular languages. They also show that the complexity of
the verification problem for this language is PSPACE-complete in the absence of time
windows, and becomes EXPSPACE-complete when time windows are present. Bustan
and Havlicek [6] further investigate the complexity of SVA verification with four in-
dependent extensions, namely intersection of regular expressions, local variables, PSL
flavoured quantified variables, and additional syntactic sugaring in the form of property

1 Given a design M and a temporal logic formula ϕ the verification problem asks whether M
satisfies ϕ (i.e. whether ϕ holds on all computations of M).

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 197–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

198 R. Armoni, D. Fisman, and N. Jin

declarations with arguments. None of this constructs enhances the expressiveness of
the language, but they do add succinctness. As for complexity, [6] show that each of
these additions results in bringing the verification problem to the EXPSPACE-complete
class. Yet, they conclude that the usefulness of the discussed constructs overshadows
their cost, thus using them is worthwhile.

In light of this discussion we would like to distinguish between syntactic sugaring
and regular expressions intersection on the one hand, and different forms of variables on
the other hand. We claim that property declarations with arguments usually do not add
any burden to the complexity of the verification of SVA. The EXPSPACE-hardness is
obtained by deep nested declarations that expand a property of exponential size, which
is not a typical usage of this feature. Similarly a sporadic usage of regular expression
intersections, which is how intersections are usually used, does not significantly in-
crease the complexity of the SVA verification problem. As in property declaration, the
EXPSPACE-hardness is obtained by a long series of intersections, a rare sight of this
operator.

In contrast, local variables create a complexity hurdle more easily. The upper bound
of [6] is achieved by constructing an alternating Büchi automaton of size proportional
to the size of the property and the size of the Cartesian product of the domains of the
local variables. Seeing local variables of large domain is very common, for instance
when asserting data consistency on bus protocols. Thus, a 64-bit bus results in a sin-
gle variable domain of size 264. Building an alternating automaton of more than 264

states as proposed in [6] may be possible, but for model checking we translate it to a
non-deterministic Büchi automaton of more than 22

64

states, represented by 264 state
variables, which is clearly infeasible.

In this paper we show that despite the theoretical lower bound shown by [6], there is
a significant subset of properties with local variables for which the verification problem
is in PSPACE. In particular, this subset subsumes the simple subset of PSL [10], which
is the subset supported by most dynamic/formal verification tools for PSL/SVA.

We refer to this subset as the practical subset, and denote it PSLpract. The precise
definition of the practical subset is given in Definition 6. Intuitively, any formula with
local variables limited to the monotone Boolean connectives, the temporal operators
next , until , releases and suffix implication belongs to the practical subset as long as
there are no assignments to local variables on either the right operand of until or the
left operand of releases . The formal definition allows negation to be applied only to
non-temporal expression. In order to deal with negation applied to temporal operators,
we can add a pre-processing step that given a PSL formula transform it to an equivalent
formula in positive normal form, by using duality rules (formally given in Definition 2).

We claim that the verification problem for the practical subset is in PSPACE, namely:

Theorem 1. The space complexity of the verification problem of any formula ϕ in
PSLpract is polynomial in |ϕ|.
The proof of Theorem 1 is done by constructing an alternating Büchi automaton A
whose size |A| is polynomial in |ϕ| and its language L(A) = L(ϕ). By that we reduce
the verification problem of formulae to the emptiness problem of alternating Büchi au-
tomata. Our key idea is to separate the part responsible for local variables updates from
the alternating automaton, and use a satellite that monitors the automaton to determine

SVA and PSL Local Variables - A Practical Approach 199

the local variables’ next state value. Then, in order to transform the alternating automa-
ton into a non-deterministic one, we apply the Miyano-Hayashi construction [13] on
an alternating automaton that is constructed for the property ϕ′ obtained from ϕ by
disregarding the local variables, thus avoiding the exponential penalty of the Miyano-
Hayashi construction on the local-variables-part of the formula. Such a manipulation is
valid conditioned in a run tree of the alternating automaton there are no two states at the
same depth that disagree on the value of a local variable. We call an automaton adhering
to this property conflict-free. Conflicts may arise because of updates after a universal
branch. If the universal branch is not involved in a loop we can solve the conflict by
introducing new local variables to the different branches; however, if it is involved in a
loop we simply cannot. The construction for formulae of the practical subset guarantees
that no local variable assignment occurs after a loop that contains a universal branch.

The idea of dealing with a subset of properties where there are no conflicts between
local variables assignments appears in [12]. There as well it is observed that the com-
plexity hurdle comes from the fact that overlapping instances, in general, may carry
different values for the same local variables. And that if local variables are confined
to certain positions in the property, then one can guarantee overlapping instances will
agree on the value of the local variables. However, it is hard to infer from [12] what is
the supported subset. Moreover, the implementation via alternating automata extended
to local variables, and the separation to satellite, as well as the PSPACE claim and proof
are novel to our paper.

We note that PSLpract subsumes PSLsimple, the simple subset of PSL [10], which
is the subset supported by most dynamic/formal verification tools for PSL/SVA. This
subset conforms to the notion of monotonic advancement of time, left to right through
the property. The syntactic restrictions of PSLpract actually relax those of PSLsimple:
whenever the latter requires an operand to be non-temporal, the former demands just
that it does not bear assignments to local variables. We are thus confident that most
commonly used properties fall into this subset.

We remark that the source of the subtle differences between the definition of local
variables in PSL and SVA lies in the definition of the semantics of intersection [9]
which is orthogonal to the discussion in this paper. In the absence of intersection, the
semantics of SVA with local variables is exactly the same as that of PSL, except for the
scope of the local variables. While PSL uses new and free to define the scope boundaries
of a local variable, SVA assumes a global scope for all local variables. Thus an SVA
formula of the practical subset is translatable to PSL by adding new for all variables at
the beginning of the formula.

2 Background

We provide the syntax and semantics for the core of PSL with local variables, which
we denote PSL+V. Throughout the paper we assume P is a non-empty set of atomic
propositions and V is a set of local variables with domain D. We further assume a
given set E of (not necessarily Boolean) expressions over P ∪ V , and a given set B ⊆
E of Boolean expressions. That is, a Boolean expression may refer to both atomic
propositions and local variables. For instance p ∧ x=7 is a Boolean expression stat-
ing that proposition p ∈ P holds and local variable x ∈ V has the value 7. In contrast,

200 R. Armoni, D. Fisman, and N. Jin

assignments to local variables are not part of a Boolean expression. They are given
separately as the second component of an assignment pair whose first component is
a Boolean expression. For instance, (b, x := 7) is an assignment pair that reads “the
boolean expression b holds and local variable x should be assigned 7”. Any expres-
sion e ∈ E can be assigned to a local variable. It is also allowed to have a sequence
of local variable assignments in an assignment pair. Given a sequence of local variable
X = x1, . . . , xn and a sequence of expressions E = e1, . . . , en of the same length we
write X := E to abbreviate x1 := e1, . . . , xn := en. Thus, (b,X := E) is a legal assign-
ment pair.

Formulae of PSL are defined with respect to regular expressions extended with lo-
cal variables (RE+Vs). The atoms of an RE+V are Boolean expressions or assignment
pairs. On top of these the regular operators of Concatenation, Kleene’s closure and Or
are applied.

We clarify that PSL/SVA with local variables are already a part of the respective
standards [10,11].

2.1 Syntax of PSL+V

Definition 1 (Regular expressions extended with local variables (RE+Vs)). Let
b ∈ B be a Boolean expression. Let X be a sequence of local variables and E a se-
quence of expressions of the same length as X. The grammar below defines regular
expressions r with local variables.

r ::= b | (b,X := E) | λ | r · r | r ∪ r | r+ | (new(X) r) | (free(X) r)

Where (b,X := E) stipulates that b holds and the variables in X are assigned with
expressions in E, (new(X) r) declares the local variables x ∈ X in parenthesis scope,
and (free(X) r) removes the local variables x ∈ X from parenthesis scope.

PSL formulae are built out of RE+Vs. The usual negation, disjunction and conjunction
can be applied to PSL formulae. The temporal operators consist of the next , until ,
releases and the suffix implication operator ⇒ aka triggers. Loosely speaking r ⇒ ϕ

holds on a word w if every prefix of w that matches r is followed by a suffix on which
ϕ holds.

Definition 2 (PSL+V formulae). Let r be an RE+V, X a sequence of local variables
and E a sequence of expressions of the same length as X. The grammar below defines
PSL+V formulae.

ϕ ::= r! | ¬ϕ | ϕ ∧ ϕ | next ϕ | ϕ until ϕ | r ⇒ ϕ | (new(X) ϕ) | (free(X) ϕ)

We use the following common syntactic sugaring operators: ϕ1 ∨ ϕ2
def
= ¬ϕ1 ∧ ¬ϕ2,

eventually ϕ
def
= true until ϕ, always ϕ

def
= ¬ eventually ¬ϕ, ϕ1 releases ϕ2

def
=

¬(¬ϕ1 until ¬ϕ2), r ◦=♦ ϕ
def
= ¬(r ⇒ ¬ϕ).

Example 1. Let {start, end, data in, data out} ⊆ P , and x ∈ V . Then, the formula
(new(x) ϕ1) where

SVA and PSL Local Variables - A Practical Approach 201

ϕ1 = always (((¬start)+ ·(start, x := data in)) ⇒ (¬end)+·end∧(data out = x))

states that if the value of data in is x when transaction starts (signal start rises) then
the value of data out should be x when the transaction ends (signal end rises). That
is, values are transferred correctly from data in to data out.

Example 2. Let {start, end, get, put} ⊆ P , and x ∈ V . Assume put, get and end are
mutually exclusive (that is, if one of them holds the others do not). Let not pge denote
the expression (¬put ∧ ¬get ∧ ¬end). Then the formula (new(x) ϕ2) where

ϕ2 = always (((start, x := 0) · (not pge∪ (put, x++)∪ (get, x--))+ · end) ⇒ x=0)

states that the number of puts and gets between start and end should be the same.
More accurately, since the domain of variables is bounded, the number should be the
same modulo the size of D assuming ++ and -- increment and decrement modulo |D|,
respectively.

Note that this formula is a safety formula and it does not demand seeing the end of a
transaction (signal end holds) once a transaction has started (signal start holds). One
thus might use instead the following liveness formula, which does demand that.

ϕ3 = always ((start, x := 0) ⇒ ((not pge∪ (put, x++)∪ (get, x--))+ · end · x=0))

2.2 Semantics of PSL+V

The semantics of PSL+V formulae is defined with respect to a word over the alphabet
Σ = 2P (the set of all possible valuations of the atomic propositions) and a letter from
the alphabet Γ = DV (the set of all possible valuations of the local variables). The
semantics of RE+V is defined with respect to words from the alphabetΛ = Σ × Γ × Γ .
We call words overΛ extended words. A letter 〈σ, γ, γ′〉 of an extended word provides a
valuation σ of the atomic propositions and two valuations γ and γ′ of the local variables.
The valuation γ corresponds to the value of the local variables before assignments have
taken place, the pre-value, and the valuation γ′ corresponds to the value of the local
variables after they have taken place, the post-value.

In the sequel we use σ to denote letters from the alphabetΣ, γ to denote letters from
Γ , and � to denote letters from Λ. We use u, v, w to denote words over Σ and �, �,�
to denote words over Λ.

We use i, j and k to denote non-negative integers. We denote the ith letter of v by
vi−1 (since counting of letters starts at zero). We denote by vi.. the suffix of v starting
at vi, and by vi..j the finite sequence of letters starting from vi and ending at vj . We use
|v| to denote the length of v. The empty word ε has length 0, a finite word σ0σ1 . . . σk
has length k+1, and an infinite word v has length∞. The notations for extended words
�
i, �i.., �i..j , |�| are defined in the same manner.

Let � = 〈σ0, γ0, γ′0〉〈σ1, γ1, γ′1〉 · · · be a word over Λ. We use �|σ ,�|γ ,�|γ′ to de-
note the projection of � onto the first, second or third component, respectively, of
each letter. That is, �|σ = σ0σ1 · · ·, �|γ = γ0γ1 · · ·, and �|γ′ = γ′0γ

′
1 · · ·. We use

�|σγ to denote the projection of � onto both the first and second components. That
is, �|σγ = 〈σ0, γ0〉〈σ1, γ1〉 · · ·. We say that an extended word � is good if for every

202 R. Armoni, D. Fisman, and N. Jin

i ∈ {0, 1, . . . , |�| − 2} we have (�|γ)i+1 = (�|γ′)i, i.e., the pre-value of the local
variables at letter i+ 1 is the post-value at letter i.

2.2.1 Semantics of Expressions
An expression e ∈ E over P ∪ V is identified with a mapping e : Σ × Γ �→ D where
D is the domain of variables in V . A Boolean expression b ∈ B is an expression whose
domain is {T, F}, and we define true and false to be the Boolean expressions whose
domains are {T} and {F}, respectively.

We assume that for an atomic proposition p we have that p(σ, γ) = T if p ∈ σ and
F otherwise, and that for a local variable v we have that v(σ, γ) returns the value of v
in γ. We sometimes abuse notation by writing simply p(σ) and v(γ). We assume that
operators are closed underD and behave in the usual manner, i.e. that for σ ∈ Σ, γ ∈ Γ ,
e, e1, e2 ∈ E , a binary operator⊗ and a unary operator�we have e1(σ, γ)⊗e2(σ, γ) =
(e1 ⊗ e2)(σ, γ) and �(e(σ, γ)) = (�e)(σ, γ). In particular, we assume that Boolean
disjunction, conjunction and negation behave in the usual manner.

We use := for local variable assignments. Given a local variable x and an ex-
pression e we write [[x := e]](σ, γ) to denote the valuation γ̂ such that x(γ̂) = e(σ, γ)
and for every local variable v ∈ V \{x} we have that v(γ̂) = v(γ). Sequence of
assignments are evaluated left to right. Formally, given a sequence of local variable
X = x1, . . . , xn and a sequence of expressions E = e1, . . . , en of the same length,
we write [[x1 := e1, . . . , xn := en]](σ, γ) to denote the following recursive application:
[[x2 := e2, . . . , xn := en]](σ, [[x1 := e1]](σ, γ)). Recall that we write X := E to abbrevi-
ate x1 := e1, . . . , xn := en. More generally, we use U to denote the set of all possible
sequences of assignments to variables over V . We use U,U1,U2 to denote elements of
U and use ε to denote the empty assignment sequence. For U1,U2 ∈ U we use U1 · U2

to denote the application of assignments U2 after assignments in U1 took place.

2.2.2 Semantics of RE+Vs
The semantics of RE+V is defined with respect to a finite good word over Λ and a set
of local variables Z ⊆ V , and is given in Definition 3. The role of the set Z, which is
referred to as the set of controlled variables, is to support scoping. Any variable in Z
(i.e. a variables in scope) must keep its value if not assigned and take on the assigned
value otherwise, whereas any variable not in Z (i.e. a variables not in scope) is free to
take on any value.

Let Z ⊆ V . We use γ1
Z∼ γ2 (read “γ1 agrees with γ2 relative to Z”) to denote that

for every z ∈ Z we have that z(γ1) = z(γ2). We say that good word � preserves Z if
for every z ∈ Z and for every i < |�| we have z(�i|γ′) = z(�i|γ).
Definition 3 (Tight satisfaction). Let b be a Boolean expression, r, r1, r2 RE+Vs. Let
Z be a set of local variables, X be a sequence of local variables and E a sequence of
expression of same size. Let �, �1, . . . , �k be good extended words. The notation � |≡Z r
means that � tightly satisfies r with respect to the controlled variables Z.

• � |≡Z b ⇐⇒ |�| = 1 and b(�0|σγ) = T and �0|γ′
Z∼ �0|γ

• � |≡Z (b,X := E) ⇐⇒ |�| = 1 and b(�0|σγ) = T and �0|γ′
Z∼ [[X := E]](�0|σγ)

• � |≡Z λ ⇐⇒ � = ε

SVA and PSL Local Variables - A Practical Approach 203

• � |≡Z r1 · r2 ⇐⇒ ∃�1, �2 such that � = �1�2 and �1 |≡Z r1 and �2 |≡Z r2

• � |≡Z r1 ∪ r2 ⇐⇒ � |≡Z r1 or � |≡Z r2

• � |≡Z r
+ ⇐⇒ ∃k ≥ 1 and �1, �2, . . . , �k such that

� = �1�2 . . . �k and �i |≡Z r for every 1 ≤ j ≤ k
• � |≡Z (new(X) r) ⇐⇒ � |≡Z∪X r

• � |≡Z (free(X) r) ⇐⇒ � |≡Z\X r

2.2.3 Semantics of Formulae
The semantics of formulae is defined with respect to a finite/infinite word over Σ, a
valuation γ of the local variables and a set Z ⊆ V of local variables. The role of Z is
to support scoping, exactly as in tight satisfaction. The role of γ is to supply a current
valuation of the local variables.

To connect to the semantics of RE+Vs which uses extended words to those of for-
mulas which use only initial valuation of local variables, we make use of the notion of
enhancement. An extended word � enhancesw with respect to γ, denoted� � 〈w, γ〉,
if �|σ = w, � is good, and γ is the starting pre-value, i.e. �0|γ = γ. The semantic of
formulas using RE+Vs involves quantification over the enhanced words. The quantifi-
cation follows that of PSL without local variables.

Definition 4 (Satisfaction). The notation 〈w, γ〉 |=Z ϕ means that the word w satisfies
ϕ with respect to controlled variables Z ⊆ V and current valuation of variables γ.

• 〈w, γ〉 |=Z r! ⇐⇒ ∃� � 〈w, γ〉 and j < |w| such that �0..j |≡Z r

• 〈w, γ〉 |=Z ¬ϕ ⇐⇒ 〈w, γ〉 |=/Z ϕ

• 〈w, γ〉 |=Z ϕ ∧ ψ ⇐⇒ 〈w, γ〉 |=Z ϕ and 〈w, γ〉 |=Z ψ

• 〈w, γ〉 |=Z next ϕ ⇐⇒ |w| > 1 and 〈w1.., γ〉 |=Z ϕ

• 〈w, γ〉 |=Z ϕ until ψ ⇐⇒ ∃i < |w|, 〈wi.., γ〉 |=Z ψ and ∀j < i, 〈wj.., γ〉 |=Z ϕ

• 〈w, γ〉 |=Z r ⇒ ϕ ⇐⇒ ∀� � 〈w, γ〉 and j < |w| such that �0..j |≡Z r

it holds that 〈wj+1..,�j+1|γ〉 |=Z ϕ

• 〈w, γ〉 |=Z (new(X) ϕ) ⇐⇒ 〈w, γ〉 |=Z∪X ϕ
• 〈w, γ〉 |=Z (free(X) ϕ) ⇐⇒ 〈w, γ〉 |=Z\X ϕ

Definition 5 (The Verification Problem). Let M be a set of words over Σ and γ0
an initial context of local variables. Let ϕ be a PSL+V property and Z a set of local
variables. We say thatM satisfies ϕ with respect to γ0 and Z if for every word w ∈M,
we have that 〈w, γ0〉 |=Z ϕ. The verification problem is to check whetherM satisfies ϕ
with respect to γ0 and Z.

3 A Practical Subset of PSL+V

We define the following subset of PSL formulas with local variables, for which we will
show that the complexity of the verification problem does not increase, i.e. remains in
PSPACE, despite the presence of local variables.

204 R. Armoni, D. Fisman, and N. Jin

Definition 6 (The Practical Subset, PSLpract). Let b ∈ B be a Boolean expression. Let
X be a sequence of local variables and E a sequence of expressions of the same length
as X. The grammar below defines the formulae ϕ that compose the practical subset,
denoted PSLpract:

r ::= b | r · r | r ∪ r | r+

R ::= b | (b,X := E) | R ·R | R ∪R | R+ | (new(X) R) | (free(X) R)

ψ ::= r! | ¬r! | ψ ∨ ψ | ψ ∧ ψ | next ψ | ψ until ψ | ψ releases ψ | r ⇒ ψ

ϕ ::= ¬R! | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | next ϕ | ϕ until ψ | ψ releases ϕ | R ⇒ ψ |
(new(X) ϕ) | (free(X) ϕ)

To prove our main claim, we first need to enhance the notion of alternating automaton,
with local variables. We start with a few words about (standard) alternating automata. A
deterministic automaton has a single run on a give word. A non-deterministic automaton
may have several runs on a given word. The automaton accepts a word if one of the
runs is accepting (i.e. meets the acceptance condition). The dual of a non-deterministic
automaton is a universal automaton. A universal automaton may also have several runs
on a given word, but for it to accept the word all runs should be accepting. An alternating
automaton combines existential and universal transitions. If Q is the set of states, a
deterministic automaton maps a state and a letter to a state q ∈ Q. A non-deterministic
automaton maps those to a disjunctive formula onQ e.g. q1∨q5. A universal automaton
maps those to a conjunctive formula e.g. q2 ∧ q4 ∧ q5. Finally, an alternating automaton
maps those to a monotone formula on Q, e.g. (q1 ∧ (q2 ∨ q7)).2 This would mean that
either the runs from both q1 and q2 are accepting or the runs from both q1 and q7 are
accepting.

A local variable enhanced alternating automaton maps a state and an extended let-
ter to a pair whose first component is a monotone formula over Q as in a standard
alternating automaton, and whose second component is sequence of local variables as-
signments. The intuition is that when this transition takes place, the local variables
should be updated as indicated by the given assignments. For instance, if ρ(q1,�) =
〈(q1 ∧ (q2 ∨ q7), (x1 := 2, x2 :=x1 + 2, x1 := 3)〉 then in addition to the above 3 is
assigned to x1, and 4 to x2.

Definition 7. A Local Variable Enhanced Alternating Automaton over finite/infinite
words defined with respect to atomic propositions P , local variables V is a tuple A =
〈Z, Λ,Q, I, ρ, F,A〉, where

– Z is the set of local variables under control,
– Λ is the extended alphabet as defined in Section 2.2,
– Q is a finite and non-empty set of states,
– I ∈ B+(Q) describes the initial configuration of active states,
– ρ : Q× Λ→ B+(Q)× U gives the transition relation,

2 Given a set Q we use B+(Q) to denote the set of monotone Boolean expressions over Q.

SVA and PSL Local Variables - A Practical Approach 205

– F ⊆ Q is a subset of states for accepting finite words.
– A ⊆ Q is a subset of states for accepting infinite words (the Büchi condition).

A run of a non-deterministic automaton N over a word is a sequence of states. A run
on a finite word is accepting if it ends in a state in F . A run on an infinite word is
accepting if a state in A is visited infinitely often. A word � is accepted provided there
is an accepting run on it. A run of an alternating automaton A on � ∈ Λ is a labelled
tree 〈T, τ〉 where T is a prefix closed subset of N∗ and τ a mapping from a node t ∈ T
to a state in Q. We use |t| to denote the depth of node t in the tree T . The root of a tree
is ε. The depth of the root |ε| is 0. We use succ(t) to denote the successors of node t,
namely the nodes t′ ∈ T such that t′ = t ·n for some n ∈ N. By abuse of notations, if
succ(t) = {t1, . . . , tm} we say that {τ(t1), . . . , τ(tm)} are the successors of state τ(t).

A labelled tree 〈T, τ〉 is a consistent run of A on a good extended word � ∈ Λ and
initial context γ0 ∈ Γ if the following three conditions hold: (a) the initial states satisfy
the automaton initial condition and the initial word pre-value is γ0, formally, τ(succ(ε))
satisfies I and �

0|γ = γ0 and (b) the successors of a state t satisfy the transition
relation with respect to τ(t) and�|t| and (c) the post-valuation of local variables agrees
with the transition’s update. Formally, let t �= ε be a node in T such that τ(t) = q and
ρ(q,�|t|−1) = 〈b,U〉, then for the tree to be a consistent run we should have τ(succ(t))
satisfies b and �|t|−1|γ′

Z∼ [[U]](�|t|−1|σγ).
The universal branches (conjunction) in the transition relation are reflected in the

successor relation of 〈T, τ〉. The existential branches (disjunction) are reflected in the
fact that one may have multiple runs of A on �. After a universal branch, all active
successors, namely succ(t), further propagate the activeness to their successors. A run
〈T, τ〉 is accepting provided all paths satisfy the acceptance condition (i.e. terminate
in a state in F if the path is finite, and visit infinitely often a state in A if the path is
infinite). A word� is accepted byA if there exists an accepting run on it. The language
of A, denoted by L(A) is the set of words accepted by A.

The method to prove that a property ϕ is valid in a model M by the automata-
theoretic approach is to build an alternating automaton A¬ϕ that accepts the same
language as ¬ϕ, namely L(¬ϕ), then build the product (a.k.a. parallel composition)
M ‖ A¬ϕ and prove the language of the product automaton is empty.

Intuitively, the increase in complexity of the verification problem from PSPACE to
EXPSPACE in the presence of local variables stems from the fact that the automaton
needs to track all possible values a local variable may obtain. If a formula has k local
variables over domainD, the automaton should, in general, track all possibleDk values
they may obtain. The practical subset tries to detect formulas for which the worst case
will not be met. For instance, consider formula ϕ1 from Example 1, intuitively the
automaton should track just one value of the local variable x per each run — the value
of data in when start rises.

The situation with ϕ2 and ϕ3 from Example 2 is more intricate. Here x may change
unboundedly many times throughout the evaluation of the formula. But that in itself
is not a problem – different automaton states may “record” different value of x. The
problem is that transactions may overlap, i.e. start may hold at cycles k1 < k2 where
end does not hold in any cycle k1 ≤ j ≤ k2. Thus the automaton should track several
possibilities for x on the same position of the same word! Think, for example, on the

206 R. Armoni, D. Fisman, and N. Jin

word 〈start〉〈put〉〈〉〈put〉〈put〉〈start〉〈put〉〈〉 . . .3. The value of x on the 8-th letter
should be 4 for the first transaction but 1 for the second. However, there is an important
difference between ϕ2 and ϕ3. To refute ϕ2 it suffices to track the change on just one
transaction whereas to refute ϕ3 one needs to track all transaction.

Tracking different values for same position of the word means that a run tree of the
automaton may have a node with two descendants that disagree on the value of the local
variables. We call an automaton in which such a situation cannot occur conflict free. The
automaton for ϕ2 will be conflict-free but the one for ϕ3 will not be.

Definition 8 (Conflict Free Automata). We say that a run 〈T, τ〉 on � is conflict-free
if there exists no pair of distinct nodes t1, t2 ∈ T having a common ancestor such that
ρ(τ(t1),�

i) = 〈b1,X1 := E1〉 and ρ(τ(t2),�i) = 〈b2,X2 := E2〉 where exists a local
variable z ∈ X1 ∩ X2. We say that A is conflict-free if every run of it is conflict-free.4

Lemma 2 (Automata Construction for RE+V). Let r be an RE+V, and Z ⊆ V . There
exists a conflict-free non-deterministic finite automaton N (r) with O(|r|) states that
accept exactly the set of words � such that � |≡Z r.

Lemma 3 (Automata Construction for the Practical Subset). Let ϕ be a formula in
PSLpract, Z ⊆ V a set of controlled variables, and γ ∈ Γ an initial value for local vari-
ables. There exists a conflict-free local variable enhanced alternating word automaton
Aγ,Z(¬ϕ) with number of states O(|ϕ|) and of size |Aγ,Z(¬ϕ)| = O(|ϕ|) that accept
exactly the set of words w such that 〈w, γ〉 |=Z ¬ϕ
Proof Sketch. In Section 4, we provide a construction for properties whose negation is
in PSLpract. Since the subset does not support the negation operator we need to propa-
gate it down to RE+Vs using the duality between operators, as provided at the end of
Definition 2. Note that for next , free() and new() negation just propagates as is (that is,
they are dual to themselves). Hence we end up with a property ϕ in the following set

r ::= b | r · r | r ∪ r | r+

R ::= b | (b,X := E) | R ·R | R ∪R | R+ | (new(X) R) | (free(X) R)

ψ ::= ¬r! | r! | ψ ∨ ψ | ψ ∧ ψ | next ψ | ψ until ψ | ψ releases ψ | r ◦=♦ ψ

ϕ ::= R! | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | next ϕ | ϕ releases ψ | ψ until ϕ | R ◦=♦ ψ |
(new(X) ϕ) | (free(X) ϕ)

Following the construction in Section 4 we see that the only universal branches intro-
duced are the ones dealing with ∧, until and releases . For ∧ we create distinct copies
of the local variables, and for until and releases , since ψ does not contain assign-
ments, the automaton is conflict-free. �

3 We assume here each 〈·〉 corresponds to a letter, and the content of 〈·〉 specifies the propositions
holding in that letter.

4 We say that a node t′ is an ancestor of node t if there exists a sequence t′′ ∈ N
∗ such that

t = t′ · t′′. Note that in particular t is an ancestor of itself.

SVA and PSL Local Variables - A Practical Approach 207

We now show that given a conflict-free alternating automaton we can extract the part
dealing with local variables to a satellite — a machine determining the value of local
variables by observing the states of the automaton and the values of atomic propositions
and local variables.

Definition 9 (A Satellite). Let B be an alternating automaton with state set Q, an
initial value of local variables γ0 ∈ Γ and a set of local variables Z ⊆ V . A satellite S
with respect to B, Z and γ0 is a set of pairs of the form (g,U) whose first element g is a
Boolean expression over P , V andQ; and its second element U ∈ U is a local variable
update.

Intuitively, g is a condition (guard) upon which the assignments in U take place. For-
mally, let B be an alternating automaton over extended words, S a satellite as above,
and � be an extended good word. We say that a run tree 〈T, τ〉 of B on � is consistent
with S if the following two conditions hold. First, the initial context agrees with γ0, that
is �0|γ = γ0. Second, for every node t ∈ T with |t| = i and τ(t) = q, and every local
variable z ∈ Z if there is no pair (g,X := E) ∈ S such that z ∈ X and g(�i|σγ , q) = T

then z(�i|γ′) = z(�i|γ), otherwise (a) there exists no other pair (g′,X′ := E′) ∈ S with
z ∈ E′ and g′(�i|σγ , q) = T and (b) the word is consistent with respect to the update of
z, that is, z(�i|γ′) = z([[X := E]](�i|σγ)).5

Lemma 4 (Satellite Extraction). Given a conflict-free local variable-enhanced alter-
nating word automatonAγ,Z, there exist an alternating Büchi automatonBZ and a satel-
lite Sγ,Z with respect to BZ such that |BZ|+ |Sγ,Z| = O(|Aγ,Z|) and L(Aγ,Z) = L(BZ ‖
Sγ,Z).

Proofs of Lemmas 2 and 4 are given in section 4. The proof of our main theorem fol-
lows from the above three lemmas.

Proof Sketch of Theorem 1. Given a modelM of words (typically described as a hard-
ware design), and a formula ϕ of PSLpract, we check whetherM satisfies ϕ as follows.
Assume γ ∈ Γ is an initial value for the local variables and Z are the variables assigned
in ϕ. By Lemma 3 there exists a conflict-free local variable-enhanced alternating word
automatonAγ,Z of size O(|ϕ|) such that L(Aγ,Z) = L(¬ϕ).

By Lemma 4 we can construct a traditional alternating Büchi automaton BZ with
O(|ϕ|) states, and a satellite Sγ,Z over BZ of sizeO(|ϕ|× |Z|) such that L(Sγ,Z ‖ BZ) =
L(¬ϕ).

Since BZ is a traditional automaton we can apply the Miyano-Hayashi construc-
tion [13] to it to get a non-deterministic automatonN whose number of states is expo-
nential in |ϕ|, and is representable in O(|ϕ|) space, and accepts the same language as
BZ. Thus, L(Sγ,∅ ‖ N) = L(¬ϕ).

It follows then that L(M ‖ Sγ,∅ ‖ N) = M ∩ L(¬ϕ). Thus the complexity of
checking whetherM |= ϕ reduces to the non-emptiness of non-deterministic automata

5 For those familiar with Verilog — note that this makes the implementation of a satellite pos-
sible using a Verilog code that uses an always block with if statement for every g such that
(g,U) ∈ S and the body of the if statement is the sequential updates U that take place one
after one at the same clock.

208 R. Armoni, D. Fisman, and N. Jin

with number of states polynomial in |M| and exponential |ϕ|. Non-emptiness of non-
deterministic automata is NLOGSPACE-Complete with respect to their size. Thus our
problem can be solved in space polynomial in |ϕ| and logarithmic in |M|.

�
We can check the satisfiability of PSLpract formulas, similarly — by checking the empti-
ness of Sγ,∅ ‖ N . Thus, similar arguments show that the satisfiability of PSLpract can
as well be checked in space polynomial in |ϕ|.

4 Automata Construction and Proofs

4.1 Proof of Construction for RE+Vs

Proof of Lemma 2. We provide a construction of N (r) and then claim its correctness.
For the inductive steps we assumeN (ri) = 〈Zi, Λ,Qi, Ii, ρi, Fi, ∅〉 satisfy the lemma.

– N (b) = 〈∅, Λ, {q0, qACC}, q0, ρ, qACC , ∅〉, where

ρ(q0,�) =

{ 〈qACC , ε〉 if b(�) = true
〈false, ε〉 otherwise

– N (b,X := E) = 〈X, Λ, {q0, qACC}, q0, ρ, qACC , ∅〉, where

ρ(q0,�) =

{ 〈qACC ,X := E〉 if b(�) = true
〈false, ε〉 otherwise

– N (λ) = 〈∅, Λ, {qACC}, qACC , ∅, qACC , ∅〉

– N (r1 ∪ r2) = 〈Z1 ∪ Z2, Λ,Q1 ∪Q2, I1 ∨ I2, ρ′1 ∪ ρ′2, F1 ∪ F2, ∅〉 where

ρ′1(q,�) =
{
ρ1(q,�) if � preserves Z2 \ Z1

〈false, ε〉 otherwise

ρ′2(q,�) =
{
ρ2(q,�) if � preserves Z1 \ Z2

〈false, ε〉 otherwise

– N (r1 · r2) = 〈Z1 ∪ Z2, Λ,Q1 ∪Q2, I1, ρ
′
1 ∪ ρ′2, F2, ∅〉, where

ρ′2(q,�) =
{
ρ2(q,�) if � preserves Z1 \ Z2

〈false, ε〉 otherwise

ρ′1(q,�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈S1 ∨ I2,U〉 if ρ1(q,�) = 〈S1,U〉 and F1 ∩ S1 �= ∅ and
� preserves Z2 \ Z1

〈S1,U〉 if ρ1(q,�) = 〈S1,U〉 and F1 ∩ S1 = ∅ and
� preserves Z2 \ Z1

〈false, ε〉 otherwise

– N (r+1) = 〈Z1, Λ,Q1, I1, ρ
′
1, F1, ∅〉, where

ρ′1(q,�) =
{ 〈S1 ∨ I1,U〉 if ρ1(q,�) = 〈S1,U〉 and F1 ∩ S1 �= ∅
〈S1,U〉 if ρ1(q,�) = 〈S1,U〉 and F1 ∩ S1 = ∅

– N (new(X) r1) = 〈Z1 ∪ X, Λ,Q1, I1, ρ1, F1, ∅〉

– N (free(X) r1) = 〈Z1 \ X, Λ,Q1, I1, ρ1, F1, ∅〉

SVA and PSL Local Variables - A Practical Approach 209

The conflict-freeness of N follows trivially from the absence of universal branches in
the transitions. For language acceptance, the cases λ, b, r1 · r2, r+1 and r1 ∪ r2 follow
the traditional construction [3] with the desired adjustment for the set of local variables.
In the cases (new(X) r1) and (free(X) r1), there are changes to Z, but no changes in
the transition and the acceptance condition.

4.2 Proof of Construction for Properties of the Practical Subset

Proof of Lemma 3. For the inductive steps we assume for the operands ϕ1, ϕ2, ψ1, ψ2,
r1, R1, the automata Aγ(φi) = 〈Zi, Λ,Qi, Ii, ρi, Fi, Ai〉 satisfy the inductive hypoth-
esis (with φ ∈ {r, R, ϕ, ψ} and i ∈ {1, 2}). Let U be a sequence of assignments to
local variables in Z. Let X ⊆ Z and let X′ be a set of fresh variables of same size as
|X|. We use U [X←X′] to denote the sequence of assignments X ′ :=X · U ′ where U ′

is obtained from U by replacing all occurrences of variables in X with the respective
variable in X′. For a tuple 〈b, U〉, we use 〈b, U〉[X←X′] to denote 〈b, U [X←X′]〉.

– A(R1!) = 〈Z1, Λ,Q1 ∪ {qACC}, I1, ρ′1, F1, {qACC}〉, where

ρ′1(q,�) =

⎧⎨
⎩
〈qACC , ε〉 if q = qACC

〈S1,U〉 else if ρ1(q,�) = 〈S1,U〉 and F1 ∩ S1 = ∅
〈S1 ∨ qACC ,U〉 else if ρ1(q,�) = 〈S1,U〉 and F1 ∩ S1 �= ∅

– A(¬r1!) = 〈Z1, Λ,Q1 ∪ {qREJ}, I1, ρ′1, {qREJ}, {qREJ}〉
Let b be a monotone Boolean expression. We use b to denote the Boolean expres-
sion obtained from b by replacing ∨ with ∧ and vice versa. Let Q be a finite set
{q1, . . . , qn}. We use Q to denote q1 ∧ · · · ∧ qn.

ρ′1(q,�) =

⎧⎨
⎩
〈qREJ , ε〉 if q = qREJ

〈qREJ , ε〉 else if ρ1(q,�) = 〈false, ε〉
〈S1,U〉 otherwise if ρ1(q,�) = 〈S1,U〉

– A(ϕ1 ∨ ϕ2) = 〈Z1 ∪ Z2, Λ,Q1 ∪Q2, I1 ∨ I2, ρ′, F1 ∪ F2, A1 ∪ A2〉 where

ρ′(q,�) =
{
ρ1(q,�) if q ∈ Q1 and � preserves Z2 \ Z1

ρ2(q,�) if q ∈ Q2 and � preserves Z1 \ Z2

– A(ϕ1 ∧ ϕ2) = 〈Z′, Λ,Q1 ∪Q2, I1 ∧ I2, ρ′, F1 ∪ F2, A1 ∪ A2〉
Let X = Z1 ∩ Z2, Y1 = Z1 \ Z2, Y2 = Z2 \ Z1. Let X1,X2 be fresh vectors of
variables of same size as X.
− Z′ = X1 ∪ Y1 ∪ X2 ∪ Y2.

− ρ′(q,�) =
{
ρ1(q,�)[X←X1] if q ∈ Q1 and � preserves Z2 \ Z1

ρ2(q,�)[X←X2] if q ∈ Q2 and � preserves Z1 \ Z2

– A(next ϕ1) = 〈Z1, Λ,Q1 ∪ {q0}, q0, ρ1 ∪ ρ′, F1, A1〉, where
ρ′(q0,�) = 〈I1, ε〉 for every � ∈ Λ

– A(ψ1 until ϕ2) = 〈Z′, Λ,Q1 ∪Q2 ∪ {q0}, I2 ∨ (I1 ∧ q0), ρ, F1 ∪ F2, A1 ∪A2〉
Let X = Z1 ∩ Z2, Y1 = Z1 \ Z2, Y2 = Z2 \ Z1. Let X1,X2 be fresh vectors of
variables of same size as X.

210 R. Armoni, D. Fisman, and N. Jin

− Z′ = X1 ∪ Y1 ∪ X2 ∪ Y2.

− ρ(q,�) =
⎧⎨
⎩
〈I2 ∨ (I1 ∧ q0), ε〉 if q is q0
ρ1(q,�)[X←X1] if q ∈ Q1 and � preserves Z2 \ Z1

ρ2(q,�)[X←X2] if q ∈ Q2 and � preserves Z1 \ Z2

– A(ϕ1 releases ψ2) = 〈Z′, Λ,Q1 ∪Q2 ∪ {q0}, I2 ∧ (I1 ∨ q0), ρ, F1 ∪F2, A1 ∪A2〉
Let X = Z1 ∩ Z2, Y1 = Z1 \ Z2, Y2 = Z2 \ Z1. Let X1,X2 be fresh vectors of
variables of same size as X.
− Z′ = X1 ∪ Y1 ∪ X2 ∪ Y2.

− ρ(q,�) =
⎧⎨
⎩
〈I2 ∧ (I1 ∨ q0), ε〉 if q is q0
ρ1(q,�)[X←X1] if q ∈ Q1 and � preserves Z2 \ Z1

ρ2(q,�)[X←X2] if q ∈ Q2 and � preserves Z1 \ Z2

– A(r1 ◦=♦ ϕ2) = 〈Z1 ∪ Z2, Λ,Q1 ∪Q2, I1, ρ
′, F2, A2〉, where

ρ′(q,�) =

⎧⎪⎪⎨
⎪⎪⎩

〈b ∨ I2,U〉 if q ∈ Q1 and � preserves Z2 \ Z1 and
ρ1(q,�) = 〈b,U〉 and F1 ∩ supp(b) �= ∅

ρ1(q,�) otherwise if q ∈ Q1 and � preserves Z2 \ Z1

ρ2(q,�) if q ∈ Q2 and � preserves Z1 \ Z2

– A(new(X) ϕ1) = 〈Z1 ∪ X, Λ,Q1, I1, ρ1, F1, A1〉

– A(free(X) ϕ1) = 〈Z1 \ X, Λ,Q1, I1, ρ1, F1, A1〉
We now have to show that A(ϕ) as constructed satisfies the premises of the lemma.
It is easy to see that A(ϕ) is polynomial in |ϕ|. The proof that it accepts the same
language as ϕ follows the one for traditional constructions [5,3]. It is left to show that
it is conflict-free.

To see that it is conflict free we observe that a universal quantification is introduced in
the following cases ¬r!, ∧, until , releases . For the case of ¬r! the syntax restrictions
on r guarantees that r has no assignments, thus there are no updates in the generated au-
tomaton. For the case of ∧ the construction introduces fresh variables for the operands,
thus no conflict is met. For the constructions of the until and releases operators, the
introduction of fresh variables guarantees no conflict between the updates done by the
two operands. It is left to see that no conflict can arise by the several instances cor-
responding to the operand ϕ where updates of local variables are allowed. To see this
note that in any run tree there will be only one layer where the successors of state q0
(introduced in the construction for the cases of until and releases) are the initial states
of A(ϕ). Hence, updates to the variables in ϕ will be done at most once in every tree.
For instance, for releases we have that q0 transits to I2 ∧ (I1 ∨ q0). That is, q0 transits
to either both q0 and I2 or to both I2 and I1. So once it has chosen to transit to both I2
and I1 there will be no further such transitions to I1. Since local variables updates of
ϕ1 will occur at the sub-tree emerging from I1 we get that there will be only one such
updates per tree.

Thus in any run of A if there is a local variable update to a node t at depth i then
any node t′ of same depth which is not a descendent of t may not have a local variable

SVA and PSL Local Variables - A Practical Approach 211

assignment to the same variable. This is since t and t′ emerge from different branches
of a universal quantification, and as mentioned above, in all such cases variables of the
different branches where renamed. Hence the automaton is conflict-free. �

Example 3. Back to Example 2, formula ϕ2 is in PSLpract while ϕ3 is not. The figure
below shows the construction for both. See that inA(¬ϕ3) we have assignments taking
place in a loop involving universal quantification.

0 OR 1 2 OR 3 4 5

0 OR 1 2 AND 3 4 5

〈true, ε〉 〈start, x:=0〉 〈not pge, ε〉
〈put, x++〉
〈get, x--〉

〈end, ε〉 〈x �= 0, ε〉
〈true, ε〉

〈true, ε〉 〈start, x:=0〉 〈not pge, ε〉
〈put, x++〉
〈get, x--〉

〈end, ε〉

〈end, ε〉

〈¬end, ε〉

〈x �= 0, ε〉
〈true, ε〉

Fig. 1. Local variable enhanced alternating automata for ¬ϕ2 (upper) and ¬ϕ3 (lower) from
Example 2

Proof of Lemma 4. Let Aγ0 = 〈Z, Λ,Q, I, ρ, F,A〉 be a conflict-free alternating Büchi
automaton. We define a traditional alternating Büchi automaton BZ and a satellite Sγ0,Z

that satisfy the theorem as follows. The automaton BZ is a traditional alternating au-
tomaton in the sense that his transitions maps to B+(Q) but there are no updates of
local variables associated with transitions. The automaton, does however, read the cur-
rent value of local variables in its letters. It simply ignores the updates annotations of
Aγ0 . Formally, BZ = 〈Σ × Γ,Q, I, ρ′, F, A〉 where

ρ′(q,�) = b iff ρ(q,�) = 〈b,U〉 for some U ∈ U

The satellite Sγ0,Z is in-charge of making the correct updates of local variables. The def-
inition of Sγ0,Z follows the transition of Aγ0 as follows. For every transition ρ(q,�) =
〈b,U〉 a pair (g,U) is added to Sγ0,Z where g is defined as q ∧ b.

To prove that BZ and Sγ0,Z satisfy the theorem, we show that every run of Aγ0 is a
consistent run of BZ with respect to Sγ0,Z. Let 〈T, τ〉 be a run tree ofAγ0 on an extended
word � with initial context γ0. We know that the initial pre-value of � satisfy γ0 and
that the successors of the root satisfy the initial condition I since these requirements are
the same for runs of Aγ0 and BZ.

To see that the second condition for a consistent run is met we note that sinceAγ0,Z is
context free we are guaranteed that on every run, if there is an update to a local variable

212 R. Armoni, D. Fisman, and N. Jin

z at node t and there is another node t′ of the same depth as t then there are no updates to
z from t′ and any of its descendants. Thus, it cannot be that there are two pairs (g1,U1)
and (g2,U2) such that both hold on a state q and they update a common variable z.
Therefore the update of a local variable z will be done by the unique guard that holds
at that node, if such a guard exits, and will remain the same otherwise. Therefore the
second condition of a consistent run holds and 〈T, τ〉 is a consistent run of BZ with
respect to Sγ0,Z.

The reasoning for the reversed direction is similar. �

References

1. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-
Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The forSpec temporal logic:
A new temporal property-specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS
2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidelberg (2002)

2. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The temporal logic
sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 363–367.
Springer, Heidelberg (2001)

3. Ben-David, S., Bloem, R., Fisman, D., Griesmayer, A., Pill, I., Ruah, S.: Automata construc-
tion algorithm optimized for PSL. Technical Report Delivery 3.2/4, PROSYD (July 2005)

4. Ben-David, S., Fisman, D., Ruah, S.: Embedding finite automata within regular expressions.
Theor. Comput. Sci. 404(3), 202–218 (2008)

5. Bustan, D., Fisman, D., Havlicek, J.: Automata construction for PSL. Technical report, Weiz-
mann Institute of Science (May 2005)

6. Bustan, D., Havlicek, J.: Some complexity results for systemVerilog assertions. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 205–218. Springer, Heidelberg (2006)

7. Havlicek, J., Korchemny, D., Cerny, E., Dudani, S.: Havlicek Korchemny Cerny and Dudani.
Springer (2009)

8. Eisner, C., Fisman, D.: Eisner and Fisman. Springer (2006)
9. Eisner, C., Fisman, D.: Augmenting a regular expression-based temporal logic with local

variables. In: Cimatti, A., Jones, R.B. (eds.) FMCAD, pp. 1–8. IEEE (2008)
10. IEEE Standard for Property Specification Language (PSL). IEEE Std 1850TM-2010 (2010)
11. IEEE Standard for SystemVerilog ? Unified Hardware Design, Specification, and Verification

Language. IEEE Std 1800TM-2009 (2009)
12. Martensson, J.: US patent US8225249: Static formal verification of a circuit design using

properties defined with local variables. Jasper Design Automation, Inc. (June 2008)
13. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor. Comput.

Sci. 32, 321–330 (1984)
14. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer Society

(1977)

	SVA and PSL Local Variables - A Practical Approach
	1 Introduction
	2 Background
	2.1 Syntax of PSL+
	2.2 Semantics of PSL+

	3 A Practical Subset of PSL+
	4 Automata Construction and Proofs
	4.1 Proof of Construction for RE+
	4.2 Proof of Construction for Properties of the Practical Subset

	References

