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Abstract. Innovations in neuro-technology have created a potential gap in our 
ability to measure human performance and decision making in dynamic envi-
ronments. Therefore, a need exists to create more reliable testing methodologies 
and data analytic solutions. The primary aim of this paper is to describe work to 
integrate subject matter expertise with algorithms designed to measure human 
brain activity in real time. Specifically, Guided Learning using constrained 
spectral partitioning to increase the reliability and interpretability of fMRI data 
is explicated and applied as a test case to the Default Mode Network in the el-
derly population. How Guided Learning can be further applied to other neuro-
imaging technologies that may be more conducing to furthering the field of 
augmented cognition is discussed. 
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1 Introduction 

Since its inception as a scientific field at the turn of this century, augmented cognition 
has been one of the fastest growing research areas influencing several different aca-
demic disciplines including engineering, psychology, and human factors [1]. The 
excitement surrounding this field of research has allowed for an explosion of innova-
tion in the ability to capture human performance and decision making through innova-
tions in neuro-technology. However, a gap may soon develop as researchers attempt 
to develop research methodologies to integrate these innovations into the laboratory 
environment. The primary aim of this paper is to describe progress integrating subject 
matter expertise (SME) with algorithms designed to measure human brain activity in 
real time. We term this work Guided Learning to reflect the pursuit to develop a  
general class of algorithms that incorporate SMEs to help identify meaningful and 
insightful patterns within dense datasets. 
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consideration, there is auxiliary information available in the form of a second graph, 
which shares the same set of nodes with the first graph, but has a different set of 
edges. A number of alternatives exist under which a second graph might meet these 
assumptions, including 1) the edges of the second graph are constructed based on a 
different set of features; 2) the edge weights of the second graph are computed using 
different similarity functions; and/or 3) the two graphs represent the evolution of a 
graph over time. Intuitively, the extra knowledge from a second graph may help to 
identify a better partition than the best one that can be identified using the first graph 
only [5]. As will be explained later, for optimal utilization, this information must be 
partially theoretically driven, using qualitative input from a SME, rather than derived 
solely through algorithm application. 

A direction already explored by the community is to consider any two such graphs 
as two independent views and combine them into one graph, to which the traditional 
spectral clustering algorithm is then applied [6]. However, this approach relies on the 
assumption that the two views are complementary and thus helpful to each other, 
which is not always the case in practice. The approach outlined in this paper attempts 
to transfer “knowledge” from more stable fMRI images to those scans where a partic-
ular activation function may not be as readily apparent. To accomplish this, a form of 
spectral clustering to two separate groups of fMRI scans was applied. Unlike tradi-
tional clustering algorithms, such as spectral clustering that attempt to segment a 
graph based on a single image, our approach incorporates knowledge from multiple 
graphs that might share the same set of nodes with the first graph, but have a different 
set of edges.  

2 Limitations of Spectral Clustering 

Clustering analytic approaches remain one of the most widely used techniques for 
exploratory data analysis and have been used extensively in areas ranging from image 
processing to functional connectivity analysis [7,8,9]. Furthermore, some forms of 
clustering may be more applicable to particular problem sets over others. For example, 
spectral clustering has been argued to be superior to traditional clustering algorithms 
like K-means because it yields a deterministic polynomial-time solution, provides re-
searchers the ability to model arbitrary shaped clusters, and affords equivalence to 
certain graph cut problems.  

However, as mentioned previously, traditional clustering like spectral clustering 
can only be applied to a single graph. In a wide range of applications, such as the 
analysis of several distinct fMRI scans, it would be more beneficial to combine prop-
erties from different graphs to form a single cut from the data comprising the set. This 
approach, which has only been recently introduced by the clustering community, has 
come to be known as constrained spectral clustering. 

Constrained spectral clustering attempts to incorporate auxiliary information from 
separate graphs to help improve clustering on both graphs. In general, constrained 
clustering is a category of techniques that tries to incorporate Must-Link (ML) and 
Cannot-Link (CL) constraints into existing clustering algorithms. It has been well 
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studied on algorithms such as K-means clustering, mixture modeling, hierarchical 
clustering and density-based clustering.  

Multi-view Spectral Clustering 

In contrast to constrained spectral clustering, traditional multi-view spectral clustering 
algorithms attempt to consider a set of two graphs as two independent views and 
combine information from both graphs into one graph. However, in its basic form, 
this relies on the assumption that the two graphs are complementary to one another. 
That is, it is assumed that both graphs are noise-free. In the work presented in this 
paper, we no longer assume the two graphs are complimentary. Rather, our approach, 
which we term Constrained Spectral Partitioning (hereafter, CSP) attempts to discov-
er an alternative direction of finding a cut whose edge weight is minimized based on 
information about both graphs [10, 11, 12].  

We contend that CSP fits into a general category of algorithms, i.e., Guided Learn-
ing. This term is appropriate because, in addition to algorithm application, we allow 
for SME input to maximize the identification of appropriate cut(s) for a series of 
scans. Assume we have two graphs, an exemplar graph and a target graph, that share 
the same set of nodes but have different sets of edges or edge weights. The goal of 
applying SME input, is the utilization of information from the exemplar graph to 
identify a more representative and replicable cut on the target graph. 

Further, we believe this work represents a hitherto unattempted technique to “close 
the loop” with respect to Augmented Cognition. Previous work in algorithm devel-
opment for Augmented Cognition was focused on utilizing machine learning to max-
imize human performance. However, our work here attempts to close the loop by 
allowing for SME input to further maximize the efficiency of the learning algorithm.  

3 Background and Graph Theory Notation 

Formally, the set of points in a network may be represented as a weighted undirected 
graph G = (V, E), where the nodes are the set of points in a feature space and an edge 
is formed between each pair of nodes. The weight (similarity) on each edge ,  is 
a function of the similarity between nodes i and j.  

To more effectively interpret the graph, grouping or clustering techniques may be 
applied that attempt to segment the graph into more similar sub graphs containing 
similar features. This may be accomplished by partitioning the graph into multiple 
disparate sets V1, V2,…,Vm, where some measure of similarity is high among vertices 
within set Vi but very low across different sets of vertices between sets Vi and Vj. 

However, as was discussed previously, the traditional approaches do not take into 
account those cases where we may only wish to extract certain features from some of 
the graphs. In this section, we describe how we adapted the classical spectral cluster-
ing to increase reliability when segmenting across one or several graphs.  

To accomplish this, CSP was applied such that one or several source graphs were 
identified and used to segment several target graphs. The knowledge to transfer  
was derived from the source graph in the form of what we termed, degree-of-belief 
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constraints. Specifically, let GS (V, ES) be the source graph and GT (V, ET ) the target 
graph. AS and AT are their respective affinity matrices. Then, AS can be considered a 
constraint matrix with only ML constraints. It carries the complete knowledge from 
the source graph, and we can transfer it to the target graph using our constrained  
spectral clustering formulation: 

v v , . . TA α, T vol G , DT/  

α is now the lower bound of how well the knowledge from the source graph must be 
enforced on the target graph. The solution to this is similar: λ AS βvol GT I  

Note that since the largest eigenvalue of AS corresponds to a trivial cut, in practice we 
should set the threshold such that β < λ1vol(G), λ1 is the second largest eigenvalue of AS. This will guarantee a feasible eigenvector that is not the trivial cut. 

4 Application of CSP to fMRI Analyses 

In this paper, we apply CSP to the analysis of the Default Mode Network [13]. The 
DMN is an interconnected brain system that activates simultaneously and periodically 
while in rest state. It has been hypothesized that the DMN is only active when  
individuals are focused on internal tasks such as daydreaming, memory retrieval, or  
introspection. The DMN is composed of several subsystems including part of the 
medial temporal lobe, medial prefrontal cortex, the posterior cingulated cortex, and 
the lateral and inferior parietal cortex. 

The DMN provides a relevant test-bed for measuring the reliability/stability of the 
technique presented herein, as it has been reliably shown that the DMN is more pro-
nounced and observable in young healthy patients than individuals suffering from 
various mental pathologies [14]. In this case, we compared DMN signatures across 
fMRI scans for young healthy patients with those suffering from early and late Alz-
heimer’s disease. If CSP is able to reduce the impact of noise within fMRI scans 
across different abnormal groups, then it is hypothesized that CSP might increase the 
sensitivity to allow for the detection of specific phenomena – in this case, degree of 
similarity to an exemplar DMN among a set of Alzheimer’s patients.  

 

 

Fig. 2a and 2b. Figure 2a (left) displays segmentation results from a normal healthy partici-
pant. Figure 2b (right) displays segmentation results from a participant diagnosed with  
Alzheimer’s disease. DMN activation appears as lighter colored pixels. 
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As shown in Figure 2a above, segmentation of a graph from a normal participant 
(P1) captures the DMN (the light pixels). However, if we apply spectral clustering to 
another graph constructed from an Alzheimer’s patient’s (P2) fMRI scan, the norma-
lized mincut shows an entirely different pattern (Figure 2b). 

Here, CSP was applied as a new approach for assessing inter-individual clustering 
commonalities at a population level. The principal benefit yielded by the reliance of 
an exemplar scan as the basis for partitioning decisions among target group members 
is an improvement in the reliability of intra-individual fMRI clustering in the target 
group. CSP incorporates user-provided guidance about which voxels should and 
should not cluster together. Our approach is to use the clustering of an exemplar scan 
to generate guidance (constraints), and use them in CSP to cluster a target scan. The 
exemplar scan is explicitly assumed to exhibit desirable or representative clustering 
behavior. If multiple diverse clusterings of the target scan all yield similar cut costs, 
CSP identifies the one most similar to that of the exemplar at each timepoint, yielding 
improved intra-individual clustering reliability across different scans.  

We used real resting-state fMRI scans of young and elderly (Normal, Mild Cogni-
tive Impairment, and Demented) individuals to demonstrate the advantages of CSP 
over spectral partitioning. In comparing the two groups, we applied segmentation 
algorithms so as to identify the DMN for each group of scans. As has been previously 
shown, we expected that the tightness of this clustering would be decreased in elderly 
individuals, especially those with Alzheimer’s disease. Therefore, we identified an 
exemplar scan of a young individual whose spectral partitioning clearly indicated the 
DMN as one of its clusters. We then applied CSP to partition target scans including 
young and elderly individuals based on constraints derived from this exemplar.  

In order to assess whether CSP increased reliability over and above the use of spec-
tral partitioning alone, we first compared the test-retest reliability of the spectral parti-
tioning with that of CSP on a group of individuals who received a pair of fMRI scans 
at two different time intervals. For each pair of fMRI scans, we calculated the percent 
difference in spectral partitioning and CSP costs between scans (i.e., the absolute 
difference in partition costs divided by average partition cost). The data from this 
study supported the claim that CSP increases reliability over and above what is found 
from spectral partitioning alone.  

Our next analysis focused on assessing the biological validity of CSP. To assess 
the biological validity of CSP, we compared partition costs for each of three groups of 
participants: Elderly, Mild Cognitive Impairment, and Demented. Figure 3 below 
plots the measure of reliability within different groups of participants. As can be seen 
from the figure below, the average CSP cut cost was greater in MCI compared to 
healthy elders, and greater in dementia compared to MCI. The MCI partition costs 
were more variable, spanning most of the range of normal and demented values. The 
difference between normal elderly and demented cut costs was statistically significant 
(p = .046). This finding is consistent with previous findings that suggest that the 
DMN is less pronounced (therefore exhibiting higher cut costs) in individuals with 
Alzheimer’s disease. 
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