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Abstract. Machine learning techniques have been used to classify patterns of 
neural data obtained from electroencephalography (EEG) to increase human-
system performance. This classification approach works well in controlled la-
boratory settings since many of the machine learning techniques used often rely 
on consistent neural responses and behavioral performance over time. Moving 
to more dynamic, unconstrained environments, however, introduces temporal 
variability in the neural response resulting in sub-optimal classification perfor-
mance. This study describes a novel classification method that accounts for 
temporal variability in the neural response to increase classification perfor-
mance. Specifically, using sliding windows in hierarchical discriminant compo-
nent analysis (HDCA), we demonstrate a decrease in classification error by 
over 50% when compared to other state-of-the-art classification methods. 
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1  Introduction 

Systems incorporating neural activity using EEG typically use machine learning tech-
niques to classify or predict the occurrence of an action or event. To be useful, these 
systems must be able to function outside of the controlled confines of a laboratory 
setting. Moving into more dynamic environments introduces changes in the 
processing demands of the user as well as uncontrolled variability into the system. 
Variability of the EEG signal is influenced by an interaction of endogenous processes 
related to a user’s state (e.g. fatigue), exogenous factors related to stimulus properties 
[1–4], and other system related factors. For example, it has been shown that the laten-
cy of the P300 event related potential (ERP) brain response is correlated with stimulus 
evaluation and reaction time [5, 6]. Stimuli that are easier to categorize produce faster 
reaction times and earlier P300 peak latencies than those that are more difficult to 
categorize. Thus, situations where the difficulty of stimulus categorization varies from 
trial to trial will produce a temporally variable neural response. Optimal performance 
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of systems interpreting neural data must account for the existence of trial by trial tem-
poral variability in the neural response.  

Existing methods for single-trial classification can be divided into several catego-
ries. Some algorithms operate directly on the multi-channel EEG signals [7–11], 
while others apply spatial filters to transform the multi-channel EEG signal into a new 
signal that contains more task-relevant information prior to applying a standard ma-
chine-learning classifier [12–21]. Each of these existing methods have been shown to 
perform well in a specific task; however none of the previous studies has focused on 
testing the effects of temporal variability on classification performance. In this study, 
participants performed a rapid serial visual presentation (RSVP) target detection task. 
ERP analysis shows that the neural data contains large amounts of temporal variabili-
ty. We show that a novel classification method that accounts for temporal variability 
can reduce classification error by over 50%.  

2 Methods 

2.1 Participants 

Fifteen participants (9 male, age range 18-57, average age 39.5) volunteered for the 
current study. Participants provided written informed consent, reported normal or 
corrected-to-normal vision and reported no history of neurological problems. Four-
teen of the fifteen participants were right-handed.  

The voluntary, fully informed consent of the persons used in this research was ob-
tained as required by Title 32, Part 219 of the Code of Federal Regulations and Army 
Regulations 70-25. The investigator has adhered to the policies for the protection of 
human subjects as prescribed in AR 70-25. 

2.2 Stimuli and Procedure 

Short video clips were used in a rapid serial visual presentation (RSVP) paradigm [22, 
23]. Video clips either contained people or vehicles on background scenes, or only 
background scenes. Observers were instructed to make a manual button press with 
their dominant hand when they detected a person or vehicle (targets), and to abstain 
from responding when a background scene (distractor) was presented.  Video clips 
consisted of five consecutive images each 100ms in duration; each video clip was 
presented for 500ms. There was no interval between videos such that the first frame 
was presented immediately after the last frame of the prior video. If a target appeared 
in the video clip, it was present on each 100ms image. The distracter to target ratio 
was 90/10. RSVP sequences were presented in two minute blocks after which time 
participants were given a short break. Participants completed a total of 25 blocks. 

2.3 EEG Recording and Analysis 

Electrophysiological recordings were digitally sampled at 512Hz from 64 scalp elec-
trodes arranged in a 10-10 montage using a BioSemi Active Two system (Amsterdam, 
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Netherlands). External leads were placed on the outer canthus and below the orbital 
fossa of both eyes to record electrooculography (EOG). Continuous EEG data were 
referenced offline to the average of the left and right earlobes and digitally filtered 
0.1-55Hz. To reduce muscle and ocular artifacts in the EEG signal and potential con-
tamination with brain-based signals, we removed EOG and EMG artifacts using inde-
pendent component analysis (ICA) [24]. 

ERP Analysis  
ERP analysis was used to evaluate the trial by trial temporal variability of the neural 
response. Analyses for these data were previously reported [22] and are briefly de-
scribed here. EEG data were processed and analyzed using EEGLAB [25] and ER-
PLab [26]. Continuous, artifact free data were epoched -1500 to 1500ms around target 
onset. Target epochs followed by a button press within 200 to1000ms and non-target 
epochs not followed by a response were included in the analysis. Averaging across all 
trials in a given condition may mask meaningful brain dynamics associated with per-
formance; especially in perceptually difficult tasks in which the variance in ERP la-
tency and reaction time (RT) increases [27]. Therefore, to assess the brain dynamics 
associated with varying levels of RT performance, target epochs were sorted into bins 
corresponding to an individual participant’s reaction time quartile [28]. Grand aver-
ages across all subjects were then calculated for each quartile. 

Single Trial Classification 
The novel classification approach presented here is a modification of hierarchical 
discriminant component analysis (HDCA). Because of this, HDCA served as an ideal 
baseline measure of classification performance for this study. Details of the HDCA 
algorithm can be found in [7, 9–11] and it is briefly described below.  

For classification purposes, EEG data were epoched -500 to 1600 ms around sti-
mulus onset. Epoched EEG data were baseline corrected by removing the average of 
activity occurring between -500 and stimulus onset. Target epochs followed by a but-
ton press within 200 to 1000ms and all non-target epochs were included in the classi-
fication analysis.  

Hierarchical Discriminant Components Analysis 
HDCA transforms multi-channel EEG data collected over a temporal window relative 
to image onset into a single interest-score.  Ideally, the interest score is generated so 
that the range of scores for each class are distinct, thereby allowing for simple dis-
crimination of the two classes.  

Generating interest scores from HDCA involves a two stage classification. In the 
first stage, our implementation uses a set of 15 discriminators applied to 15 non-
overlapping 100 ms time windows that span 100 ms to 1600 ms after image onset. 
Each of the 15 discriminators is trained independently. Each discriminator combines 
the information contained in all 64 EEG signals collected over the course of the  
corresponding time window into a single value for discriminating target versus non-
target. Thus, stage 1 of HDCA produces 15 interest scores that independently discri-
minate target from non targets. In the second stage, a separate discriminator is applied 
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to the output of the stage 1 discriminators to create a single interest score that can 
efficiently discriminate between target and non-target trials.  

Sliding Hierarchical Discriminant Components Analysis  
Sliding HDCA (sHDCA) builds upon the standard HDCA algorithm in an attempt to 
extract more information from temporally scattered events. sHDCA starts by using a 
standard HDCA classifier trained to discriminate targets versus non targets based on 
500 ms of data between 300 ms and 800 ms after stimulus onset using 50 ms time 
slices. Rather than simply statically applying this classifier to each epoch, in sHDCA 
this initial classifier slides in time such that it is applied at each sample ranging from 
200 ms prior to stimulus onset to 800 ms after stimulus onset.  This sliding step means 
that the classifier is using epoch data from 100 ms post stimulus to 1600 ms post sti-
mulus, which matches the data used by the standard HDCA algorithm.  

Because each application of the standard HDCA algorithm produces a single score, 
sliding the HDCA classifier in time produces a single score per application (per time 
point). When the sliding process is complete, we are left with a score signal that is 
1000 ms in duration. From this score signal, a second HDCA classifier is trained to 
discriminate targets versus non-targets based on the score signal. This second level 
classifier uses ten 100 ms time slices. The result of this HDCA classifier is the final 
score assigned to the epoch which is used to decide whether the current epoch is a 
target or non-target. 

Cross Validation  
A 10-fold cross validation was used to determine the accuracy for both classification 
methods. Data from each subject were divided into 10 equal sized blocks of trials. 
Classifiers were trained on 9 of the 10 blocks, and then tested on the block left out. 
This process was repeated 10 times such that each of the 10 blocks of trials was used 
as the independent testing set once. Performance was evaluated based on the area 
under the ROC curve (AUC). Each participant’s performance was calculated as the 
average AUC calculated across all 10 cross validation sets. Statistical analyses for 
each classification method were performed on the average AUC for each participant. 

Computational Requirements  
Timing measures were also employed to evaluate the computational costs of training 
and testing each algorithm. For this evaluation, the MATLAB functions ‘tic’ and ‘toc’ 
were used to measure the total time needed for classifier training and testing. The time 
needed for testing was divided by the total number of trials in the test set to calculate 
an approximation of the total time needed to apply the classifier to a single epoch as 
would be required in a real-time application.  

3 Results 

3.1 Existence of Temporal Variability 

Reaction time quartiles were used as binning parameters for the ERP analysis[28]. P3 
latency exhibited a large amount of temporal variability relative to the stimulus onset 
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(Figure 1). P3 latency data were submitted to a one-way ANOVA with the main fac-
tor of Quartile containing four levels. Analysis showed a significant main effect of 
Quartile, F(3,42) = 69.37, p < .001. Subsequent t-tests revealed each quartile was 
significantly different (α = .05) from each other after correction for multiple compari-
sons using Tukey’s method indicating that P3 latency increased as RT became slower. 
(Figure 1).  

 

Fig. 1. Temporal variability in EEG of a single participant (S10). Upper plot shows single trial 
EEG response at Pz when activity is aligned to the target onset and sorted by response time. 
Lower plot shows average ERPs when reaction time is used as a binning parameter for ERP 
analysis.  

3.2 Classification in the Face of Temporal Variability 

Figure 1 clearly establishes the presence of temporal variability in the neural re-
sponse. Figure 2 shows the accuracy of single-trial classification on these data. 
HDCA achieves a classification accuracy of 0.8691 ± 0.0359 (Mean AUC ± Std), 
while the classification accuracy of Sliding HDCA was 0.9365 ± 0.0223 (mean ± std 
AUC). This represents a 51.5% reduction of classification error and the overall differ-
ence is statistically different (Wilcoxon Sign Rank Test p<0.001). 
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Fig. 2. Classification results across 15 subjects. Horizontal lines in each box represent the me-
dian and the dot represents the mean. The maroon box shows the classification accuracy when 
using the standard HDCA algorithm. The blue box shows the classification accuracy when using 
sliding HDCA. The difference is significant using the Wilcoxon Sign Rank Test (p < 0.001). 

3.3 Execution Time 

Sliding HDCA represents a potential improvement upon the standard HDCA classifi-
cation scheme but comes at the cost of increased computing time. Training a standard 
HDCA classifier on the data set described here takes approximately 10 to 15 seconds. 
Training a sliding HDCA classifier on the same data set using the parameters  
described above takes 354 ± 33 seconds – a 20 to 35 fold increase in training time. 
Applying a standard HDCA classifier to this data set typically takes less than a milli-
second per epoch, while applying sliding HDCA takes 383 ± 4 ms. While these  
relative time comparisons are important, in most RSVP applications, requiring  
approximately 6 minutes to train a classifier and 383 ms to apply the classifier is  
perfectly reasonable.  

4 Discussion 

The current study employed a dynamic RSVP task using short-duration videos. ERP 
analyses showed a high degree of temporal variability in the neural response. This 
study developed a novel classification scheme that overcame the temporal variability 
in the data without needing to use information from the behavioral response.  

Sliding HDCA classification is a novel classification method described here that 
reduced classification error by over 50% over a standard HDCA classifier using  
the same amount of data. The increased accuracy of sHDCA classification comes at 
the expense of computation time. The increase in computation time is significant; 
however for most applications the increased accuracy seen with sHDCA will far out-
weigh the increase in computation time. 
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This study demonstrates that algorithms that account for temporal variability can 
dramatically improve classification accuracy. The novel method described here is one 
such method. This method enables further development of applications that either 
replace or augment behavioral responses for tasks where variable reaction times are 
expected. 

5 Conclusion 

The Sliding HDCA method described here provides a means to overcome the tempor-
al variability in the neural response that is likely to occur in more complex environ-
ments. By transforming the raw EEG signal into a score signal, the sliding step of 
sHDCA produces a new signal that emphasizes the discriminating features of the 
EEG input and consequently improves single trial classification. The efficacy of this 
approach was demonstrated in an RSVP target detection task; however this approach 
may also prove to be useful for other types of BCI technologies in which temporal 
variability causes a drop in performance.  
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