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Abstract. Next generation brain computer interfaces (BCI) are expected to pro-
vide robust and continuous control mechanism. In this study, we assessed inte-
gration of optical brain imaging (fNIR: functional near infrared spectroscopy) 
to a P300-BCI for improving BCI usability by monitoring cognitive workload 
and performance. fNIR is a safe and wearable neuroimaging modality that 
tracks cortical hemodynamics in response to sensory, motor, or cognitive acti-
vation. Eight volunteers participated in the study where simultaneous EEG and 
16 optode fNIR from anterior prefrontal cortex were recorded while participants 
engaged with the P300-BCI for spatial navigation. The results showed a signifi-
cant response in fNIR signals during high, medium and low performance indi-
cating a positive correlation between prefrontal oxygenation changes and BCI 
performance. This preliminary study provided evidence that the performance  
of P300-BCI can be monitored by fNIR which in turn can help improve the  
robustness of the BCI classification.  
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1 Introduction 

A brain-computer interface (BCI) decodes neurophysiological signals from the brain 
for direct controlling an external device without the brain’s normal communication 
pathway of peripheral nerves and muscles. Electroencephalography (EEG) is by far 
the most studied technology for non-invasive BCI signal acquisition [1-3]. Apart from 
EEG, variant types of signal acquisition methods such as Magnetoencephalography 
(MEG) [4], functional near-infrared spectroscopy (fNIR) [5-9] and functional magnet-
ic resonance imaging (fMRI) [10, 11] has been proposed to be applied in BCI. More 
recently, several studies showed that utilizing multimodal neuroimaging has the po-
tential to enhance BCI performance [12-16]. These BCIs were generally referred to as 
hybrid BCIs in the literature.  
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In this pilot study, our aim was to investigate combining fNIR and EEG for en-
hancing a P300 based BCI. P300 is an event-related potential usually elicited by the 
oddball paradigm. A typical P300-BCI show to the user sequences of stimulus and the 
user’s task is to identify the infrequent occurrence of the target stimulus. Since early 
works of Farwell and Donchin in the 1980s [2],  substantional progress has been 
made for enhancing the capability of the P300-BCI  [See Mak and McFarland [17] 
for a detail review]. Despite the volume and depth of work conducted in this area, to 
our best knowledge, to date no study has been done to investigate the possible benefit 
of combining fNIR and EEG in a P300-BCI.  

fNIR is an optical brain imaging technology for monitoring the changes in the con-
centration of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) in 
the cortex. Typically, neuronal activities in the active area of the cortex would even-
tually cause an overabundance of local blood oxygenation result from a mechanism 
known as neurovascular coupling [18]. Coyle et al in 2004 proposed using a single 
channel NIR for  developing a mind-switch [5]. Sitaram et al [6] demonstrated multi-
channel optical BCI for hemodynamic pattern classification for motor imagery.  
Ayaz et al in 2007 proposed using fNIR  cognitive tasks for on/off switch [7] while 
Fazli et al in 2012 showed that combining EEG and NIR can significantly improve 
motor imagery BCI [19]. The same group also showed that fNIR can serve as a pre-
dictor for the performance of EEG-based motor imagery BCI [20].  

Recently, several studies investigated predicting the between-subject performance 
(or aptitude) of P300-BCI [21, 22] based on EEG predictors. In [21], the within-
subject effects were also investigated but no significant predictors were found. Pre-
dicting the within-subject performance is of particular interest because it may provide 
information for generating more robust BCI classifiers. In [20], fNIR predicted motor 
imagery BCI performance was used for generating a meta-classifier which enhanced 
classification accuracy. In this study, we propose using a prefrontal cortex based fNIR 
for monitoring within-subject performance of a P300-BCI. It has been established in 
fMRI studies that the BOLD signal is associated with varies event-related tasks [23-
25]. Previous work also suggested that the prefrontal cortex is associated with the 
level of alertness and attention [26-28] which can affect BCI performance. A fNIR 
study by our group showed that prefrontal activations were correlated with the per-
formance of an n-back task [29]. The aforementioned evidence suggests a possible 
correlation between prefrontal activation and P300-BCI performance. For testing the 
hypothesis, prefrontal fNIR was recorded while subjects were using a spatial naviga-
tion P300-BCI that we proposed previously  [30, 31]. Our preliminary results show 
that the subject-wise performance of P300-BCI may be monitored by prefrontal fNIR 
recording.  

2 Materials and Methods 

2.1 Participants 

Eight right-handed healthy students from local universities participated in this study. 
The participants included 5 males, 3 females and ages between 22 to 26 years. All 
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presentation screen. After that, the 10 sequences of stimulus for generating P300 re-
sponse would be shown at the end of which a keyboard (see Fig. 2. right) was dis-
played on the same screen for the subjects to record their intended actions in this run. 
Finally, a cue would show to let the subjects turn their attention back to the maze 
screen in order to see the maze action animation such as moving forward correspond-
ing to the command output by the BCI. 

2.4 Data Processing and Analysis  

P300 BCI Classification. Raw EEGs were band pass filtered from 0.5 to 12 Hz and 
downsampled to 36 Hz. A stepwise linear discriminant analysis (SWLDA) was ap-
plied to distinguish target from non-target stimulus based on the EEG amplitudes 
from 0 to 800ms after the onset of a stimuli. The data collected in Part 1 was used to 
determine the weights for the classifiers which were then applied to predict the data 
collected in Part 2. 

Performance Criterion for P300 BCI. The performance criterion adopted was the 
single sequence prediction accuracy (SeqAcc) for each run. Target icons were first 
predicted using the EEG data of each single sequence (note that for a single sequence, 
each row and column intensified only once). The prediction accuracies for each run 
were then calculated. Since each run included 10 sequences, this is an ordinal variable 
with 11 levels of measurement (i.e. from 0 to 1 with 0.1 increments).  This criterion 
gives a finer resolution of the performance and reduced the ceiling effect compared to 
a simple dichotomous variable indicating whether or not the target of the run has been 
correctly predicted. Table 1 shows the average and standard deviation of SeqAcc for 
each subject. It can be seen that for subject 4 and 7, their target icon prediction accu-
racy was the same 100% but SeqAcc revealed that the signal quality for subject 7 
(SeqAcc=0.88±0.12) was much better then subject 4 (SeqAcc=0.48±0.19). 

fNIR Processing. fNIR signals were first low-pass filtered at 0.1Hz. An automatic 
artifact detection algorithm, sliding window motion artifact rejection (smar) was em-
ployed for eliminating saturation and motion artifact containing segments [35, 36]. 
Oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) changes were 
calculated for each P300-BCI run from 0-15s using a local rest period as baseline. To 
further reduce noise, spatial averaging was performed for both left and right hemis-
phere separately by averaging the channels located at the left and right hemisphere 
respectively.  

3 Results 

P300-BCI Classification. Table 1 listed the sample sizes, target icon prediction accu-
racy and SeqAcc in Part 2 for each subject. Raw sample sizes are different for each 
subject due to possibly different paths taken during maze navigation, the additional 
number of runs required for correcting the BCI mistakes and the ratio of rejected run.  
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Table 1. Sample sizes, target icon prediction accuracy and the Avg. and Std. of SeqAcc for each 
participant 

Subject 4 5 6 7 8 

Run #  34 81 49 16 58 

Accuracy 1.00 0.89 0.78 1.00 0.86 

SeqAcc Mean+SD% 0.48±0.19 0.44±0.18 0.38±0.16 0.88±0.12 0.42±0.20 

fNIR Results. Fig. 4 shows the grand average fNIR responses for low performance 
runs and high performance runs during P300 matrix stimulus presentation periods. 
Each P300 BCI run was categorized into either the low performance group or high 
performance group subject-wise according to the following criterion: 

௜௝ܩ ൌ ቊ݄݃݅ܪ, ݂݅ ௜ܵ௝ ൐ ሚܵ௜ݓ݋ܮ, ݂݅ ܵ௜௝ ൑ ሚܵ௜  
݅ ൌ 4,5,6,7,8 ݆ ൌ 1,2, … , ௝݊ 

Where ௜ܵ௝is the SeqAcc for run ݆ of subject ݅. ሚܵ௜ is the median SeqAcc for subject ݅. ௝݊ is the number of run for subject ݅. 

 

Fig. 4. Grand average fNIR for high performance and low performance runs. The left and right 
figures show HbO and HbR for left and right hemisphere, respectively. Dash lines stand for 
standard error of the mean (SEM). 

It can be seen that for both left and right hemispheres, HbO was increasing and 
HbR was decreasing relative to the baseline, consistent with higher activation for 
prefrontal cortex during the BCI task period. However, for high performance runs, 
HbO increased (and HbR decreased) at a greater rate compared to low performance 
runs. Additionally, this phenomenon was more significant for left hemisphere.  
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areas, specifically the dorsolateral prefrontal cortex, are associated with attention [38, 
39]. Hence, the differences in prefrontal activation across performance levels may be 
partly due to the different concentration levels during the task periods consistent with 
our previous results [35, 40].   

Despite the encouraging results, more subjects and larger sample sizes are needed 
for validation. In addition, future studies would benefit from identification of low 
performance P300-BCI runs to inform a classifier which can help improve the robust-
ness and usability of the BCI.  An interesting question is whether some key P300-
BCI features such as the amplitude and latency of the P3 and N2 components are 
correlated with the prefrontal activations. Being able to partially observe the change 
of these components across time may help adapting the covariate shift due to factors 
such as alertness and fatigue. 
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