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Abstract. While current military systems are functionally capable of adaptively 
aiding human operators, the effectiveness of this capability depends on the 
availability of timely, reliable assessments of operator states to determine when 
and how to augment effectively. This paper describes a response to the technic-
al challenges associated with establishing a foundation for reliable and effective 
adaptive aiding technologies. The central component of this approach is a real-
time, model-based classifier and predictor of operator state on a continuous 
high resolution (0-100) scale. Using operator workload as a test case, our ap-
proach incorporates novel methods of integrating physiological, behavioral, and 
contextual factors for added precision and reliability. Preliminary research con-
ducted in the Air Force Multi Attribute Task Battery (AF_MATB) illustrates 
the added value of contextual and behavioral data for physiological-derived 
workload estimates, as well as promising trends in the classification accuracy of 
our approach as the basis for employing adaptive aiding strategies.  
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1 Introduction 

To address the modern threat environment, military operations must overcome a va-
riety of demands and resource constraints, such as manpower limitations, information 
overload, sustained long-term missions, and an increasingly complex decision space. 
This reality leads to our military force being more vulnerable to performance decre-
ments related to increases in cognitive workload, stress, and fatigue. There are availa-
ble technological solutions that could help mitigate these types of performance 
decrements through adaptive aiding and, consequently, benefit the effectiveness of 
active operational systems. Traditional approaches to designing user interfaces (UI) 
typically result in a fixed presentation of information throughout the entirety of the 
operator interaction with a control station; however, human operator states (e.g., 
workload, engagement, and affect) are dynamic. For instance, if the system detects 
that the human operator is experiencing high workload, as when an remotely piloted 
aircraft (RPA) pilot must monitor a noisy video feed of a crowded marketplace while 
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simultaneously attending to frequent audio and chat communications for task-relevant 
information, the system could alter the interface to (1) eliminate all the irrelevant 
information that may clutter the display to reduce the workload demand, and (2) bring 
into focus central information that needs attention [1]. While different operator states 
often entail different ideal interface configurations, traditional approaches to UI can-
not accommodate this demand. 

The feasibility and overall effectiveness of adaptive performance augmentation is 
dependent on timely and reliable assessments of a human operator’s state. The ability 
to accurately and autonomously define an operator’s state, particularly in real-time, 
has been a much desired yet difficult to achieve capability that has hindered the abili-
ty to employ adaptive aiding technologies. One approach that has generated much 
interest in recent years focuses on the use of physiological data to classify an opera-
tor’s state. Previous research has shown that physiological measures can be used to 
detect operator state [2, 3]. Recent improvements in reliability, level of invasiveness, 
set-up time, and cost of physiological measurement makes it even more compelling. 
Physiological data also serves as an objective source of information and is theoretical-
ly available from any person working in any domain, in contrast to behavioral and 
situational data which are likely to vary greatly across different work environments.  

However, from the perspective of developing an operationally deployable capabili-
ty for estimating operator states, there have been limitations with regard to: (a) the 
ability to produce a model with high levels of accuracy across individuals, particularly 
when the operator state model has not been “trained” to a specific individual; (b) the 
ability to derive an accurate classification from available real-time data, as opposed to 
post-hoc analysis in which a much larger spectrum of data are available (e.g., future 
events, subjective responses, etc.); and (c) the ability to pinpoint the operator’s state 
with high resolution and update frequency. Some of the most successful operator state 
classification efforts to date have made progress in this endeavor by collecting large 
sums of data from a specific individual, and subsequently training a custom operator 
state model for that same individual with machine learning based methods [4]. While 
this work produced invaluable insights on the possibilities of operator state classifica-
tion, there are practical limitations to shaping specially trained models to each indi-
vidual operator using a particular system.  More recent work has started to explore 
cross-subject workload classification [5], however this body of research remains in 
the early stages. In addition, a prominent theme in the literature to date is the classifi-
cation of operator states according to very discrete categories, such as “low workload” 
and “high workload”, as well as outputting these categorical state estimates at infre-
quent intervals. When attempting to employ automated augmentation strategies, the 
lack of granularity allotted by a “low vs. high” classification and at infrequent update 
rates may prevent a system from tracking the necessary detailed trends and subtle 
fluctuations over time that can greatly affect the operator’s need for intervention. 

In addition, the ideal adaptive augmentation system would be able to incorporate 
predictions of operator state and its expected impact on human performance. Predic-
tive capabilities would provide an invaluable tool for proactively address problems 
before they occur. Unfortunately, operator state predictions have not been thoroughly 
explored, as much of the published research has been focused on historical and  
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real-time diagnosis of operator state. These predictive capabilities are also held back 
by the lack of a reliable, continuous, and frequently updated estimate of operator state 
that supplies the required level of granularity and volume of data necessary to make 
quality predictions. Collectively, these gaps illustrate the need for a forward-looking 
approach that can establish an extensible foundation for adaptive aiding strategies; 
one that is both practical for application and improves the likelihood that dynamic 
interventions will have a beneficial effect on operator state and job performance. 

2 Approach 

The objective of our research is to expand upon this existing foundation of research to 
identify the most relevant and sensitive multi-modal measures of operator states (i.e., 
neural, physiological, behavioral) and develop algorithms that can assess these states 
in real time for the purpose of enabling various performance augmentation strategies. 
In response to this technical challenge, we have designed and implemented an ap-
proach that intends to lay a foundation for adaptive aiding technologies to be transi-
tioned to operational system usage.  

Our approach relies on innovative physiological-based operator state modeling and 
classification techniques being formulated and tested within the Air Force Research 
Laboratory’s (AFRL) “Sense, Assess, Augment” taxonomy [6]. To fulfill the “Sense” 
component of this framework, we have developed a flexible architecture (Figure 1) 
for collecting and processing physiological, behavioral, and situational data from 
disparate sources in real-time into a centralized location. The “Assess” component of 
this framework employs a machine learning based modeling approach that is trained 
from data sets spanning four categories: Physiological, Self-reported factors, Perfor-
mance, and Situational. As our test case, the current focus of the assessment compo-
nent is on operator workload classification as a function of these four categories,  
given that workload has a demonstrated relationship to task performance and thus is 
an “augmentable” construct. Lastly, the “Augment” component seeks to “close the 
loop” on sustained human performance by leveraging the accessibility of real-time 
continuous workload estimates as the basis for when and how to aid performance. For 
the purpose of this paper, we focus primarily on the “Sense and Assess” portions of 
this framework as a stepping stone to achieving the end goal of effective real-time 
adaptive augmentation strategies.  

Our modeling approach is unique on several fronts. First, the inclusion of expan-
sive contextual information to support the model’s ability to interpret noisy physio-
logical data has not been substantially explored by other published approaches. We 
theorize that data characterizing an individual’s antecedent health and lifestyle fac-
tors, real-time task performance, and situational data from the task environment pro-
vide beneficial insight into why physiological patterns occur, thus supporting the 
ability to “sift through the noise” and ultimately obtain the most meaningful data for 
operator state classification.  

Second, this approach supplies a real-time output with a continuous high-resolution 
(0-100) scale. We accomplish this by applying machine learning methods to train a 
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model that identifies the best fit between these available real-time data sources and 
subjective operator state measurements collected from our experimental paradigm 
(described in the next section). With respect to our model training approach, we inject 
noise into each subjective measurement for each corresponding trial to generate an 
operator state estimate along a continuous scale for model training, under the assump-
tion that few, if any, meaningful operator states are perfectly static over time. Because 
it is impractical, if not impossible, to obtain operator responses at very frequent inter-
vals (e.g., once per five seconds), it is important to rely on a theoretically-grounded 
relationship between an available, measurable factor (or set of factors) and the mod-
eled construct of interest as the basis for incorporating noise. The complexity of this 
component of our approach can range from simple to highly complex depending on 
the modeled construct and tolerance to error. As an example, for our test case of mod-
eling operator workload, we add noise to self-reported workload ratings based on 
specially designed algorithms that process contextual data about the situation at each 
point in time to produce the direction and magnitude of noise. 

 
Fig. 1. Data aggregation and modeling architecture for operator state assessment as a founda-
tion for automated adaptive aiding strategies 

Third, this approach employs on-line model training capable of improving the pre-
cision of the operator state estimation across different individuals over time. The on-
line training process is triggered by a scalable set of operator-driven inputs dependent 
on the state being modeled. Ideally, the scale of these inputs is set to consume the 
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lowest possible time, effort, attention, and frequency of input from the operator (e.g., 
5-second response per every 30 minutes). Using this trigger, a set of sub-components 
within our architecture dynamically updates the model weights using the operator 
input data in conjunction with recent physiological, behavioral, and situational data 
that has occurred during a corresponding timeframe, resulting in more accurate and 
individualized estimate of operator state that improves over time without the need for 
a priori custom-built classifiers for each human operator.  

Lastly, the predictive layer of this approach utilizes memory of historical data to 
help facilitate informed, and proactive, augmentation decisions based on expected 
operator state and performance. The predictive accuracy is, as one would expect, de-
pendent on the level of granularity and update frequency of the real-time operator 
state classifier. For example, workload estimates on a 0-100 scale and updated once 
per every five seconds allows a trained model to monitor subtle trends and changes 
not otherwise possible with highly discrete classifiers (e.g., high versus low); this may 
potentially be the difference between knowing when, and when not, to intervene with 
an augmentation strategy. In addition, forecasted knowledge of the situation – such as 
when a highly tactical and attention-demanding phase of a mission is known to occur 
– is valuable, if not essential, context that adds to the accuracy of workload and  
performance predictions. 

3 Current Study 

3.1 Overview 

To develop a prototype operator state model based on this approach, we conducted a 
model training study at AFRL’s Human Universal Measurement and Assessment 
Network (HUMAN) Laboratory. Our primary objective was to generate data sets that 
would allow an operator state model of workload to be trained within our defined 
technical approach. For the scope of this paper, our reporting focuses primarily on 
model classification accuracy in relation to related published work. Secondary objec-
tives of this study were to validate that subjective workload ratings to be used for 
training the workload model indeed correspond to the intended task difficulty, and 
conduct exploratory analysis on the degree to which workload fluctuations correspond 
to performance fluctuations. These latter objectives are important as a preface to our 
future research on developing effective augmentation strategies.  

3.2 Task Environment 

The task environment for this study was based upon a modified version of the Air 
Force Multi-Attribute Task Battery (AF_MATB) [7]. This PC-based aviation simula-
tion requires an operator to perform an unstable tracking task while simultaneously 
monitoring warning lights and dials, responding to simulation-generated auditory 
requests to adjust radio frequencies, and managing simulated fuel flow rates using 
various key presses. Our rationale for using this task environment was threefold.  
First, MATB has been used as a testbed to train and develop other models of operator 
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workload [5], which provides our approach with a benchmark for comparison. 
Second, MATB allows for linear titration of workload on a high-resolution scale, 
which provides the necessary task conditions to model beyond “low versus high 
workload” prior to injecting noise. Third, MATB has long and rich history of research 
findings that provide a deep understanding of how each task module affects operator 
workload, as well as the interactions between these factors. 

 

Fig. 2. The operator interface for the AF_MATB task 

3.3 Participants 

Ten participants served as operators of the AF_MATB system for this study. The only 
requirement for participation was a familiarity with computer-based systems. Seven 
participants were male and three participants were female. The age of participants 
ranged from 23 to 47 years old, with a mean age of 32 years old.  

3.4 Experimental Design 

Task difficulty was the only independent variable (IV) for this study. We selected task 
difficulty because this manipulation has been an effective method for inducing vary-
ing levels of operator workload [8]. In our attempt to obtain the highest possible level 
of model granularity, we relied upon 15 levels of task difficulty that intend to linearly 
span the full range of workload (i.e., low to high). Accordingly, this study employed a 
one-way experimental design in which a single IV (task difficulty) was manipulated 
across 15 conditions in order to assess its effects on each dependent variable (DV). 
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All participants experienced the same 15 conditions; however, the sequence of condi-
tions was counterbalanced to mitigate order effects. 

3.5 Dependent Variables 

The dependent variables (DVs) were physiological, self-reported, and performance 
measures collected from participants. Physiological measures included EEG, ECG, 
and eye-tracking activity (e.g., pupil diameter, fixations, blinks, etc.). Self-reported 
measures included antecedent lifestyle factors (e.g., demographics, level of exercise, 
video game experience), recent behavioral factors that can affect physiological state 
(e.g., sleep quality, current sleepiness, caffeine and food intake), and subjective work-
load assessments of each condition as measured via the NASA Task Load Index 
(TLX) scale [9]. Performance measures included primary task performance on the 
AF_MATB tracking task (distance from centerpoint) and secondary task performance 
on the lights/gauges task (response time and accuracy).  

3.6 Procedures 

Each participant went through two sessions: training and data collection. During the 
training session, participants acquired hands-on training by operating the system dur-
ing practice scenarios ranging across easy, medium, and hard difficulty conditions. 
Our goal was to eliminate learning effects during the data collection phase to the ex-
tent possible. For the data collection session, participants operated the AF_MATB 
environment through 15 five-minute scenarios while being monitored with physiolog-
ical sensors and behavioral data capture software. Each of the 15 scenarios varied by 
task difficulty and was presented in a quasi-randomized order with five blocks of 
three scenarios per block. The three blocks in each scenario consisted of a low, me-
dium, and high difficulty block. Physiological sensors collected data on eye move-
ments, blinks, pupil diameter, EEG, and ECG. At the end of each trial, participants 
completed the NASA TLX questionnaire provided electronically on the AF_MATB. 

4 Results and Discussion 

4.1 Model Training Results 

Within the scope of this study, there are several ways to evaluate the utility of trained 
model results. First, we evaluated the absolute error (expressed as mean absolute dif-
ference percent) between the model’s output and the reference continuous workload 
estimator values upon which the model was trained, which came to an average of 35% 
for all participants across all trials. For some participants, the average error across 
trials reached as low as 15%, although other participants produced greater than 50% 
error. We concluded that while we may have collected many valuable inputs that 
account for the majority of workload variance for specific individuals, there could be 
individual differences that were not sufficiently measured.  
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Second, we analyzed classification accuracy of the trained model when applied re-
troactively to participant data without providing the model with any direct workload-
related input. While categorization is not the ultimate goal of this approach, it is useful 
as a means for comparing this work to known benchmarks in the literature. Using clas-
sification accuracy for low versus high workload, the prototype model produced mean 
82.7% accuracy when averaged for entire trials, and 75.7% accuracy on a per five-
second basis. We also went a step further by randomly removing two participants from 
the training set and applying the adjusted model to these removed participants. When 
averaged for entire trials, the adjusted model produced a mean 87.5% accuracy for low 
versus high classification for these two participants, and 77.8% on a per five-second 
basis. When considering our use of continuous high-resolution output as the basis of 
these classifications – as well as the small sample size and our inclusion of outliers – 
these results appear to compare favorably to similar work [4, 5]. In addition, our pre-
liminary analysis on the benefits of on-line model training techniques (which are not 
reported here due to intended scope) has revealed promising trends with regard to addi-
tional accuracy generated due to dynamic model weight adjustments over time based 
on the individual performer.  

While the per five-second classification accuracy of our workload model is diffi-
cult to empirically validate at this time (i.e., it is not feasible to obtain self-report data 
every five seconds for comparison), these results provide a quality baseline standard 
from which to expand our forthcoming work. Our future research will: (a) quantify 
the benefit of a larger sample size and on-line model training; and (b) identify  
methods to validate high-resolution output of our approach beyond categorical levels.  

4.2 Secondary Analyses 

Secondary objectives of this study were to validate that subjective workload ratings to 
be used for training the workload model indeed correspond to the intended task diffi-
culty, and conduct exploratory analysis on the degree to which workload fluctuations 
correspond to performance fluctuations. While these findings are not directly related 
to the formulation of our operator state modeling approach, they can be used as a 
preface to our future research on developing effective augmentation strategies. 

Correlation between participants’ self-reported NASA TLX ratings and intended 
experimental difficulty (1-15) was approximately 0.67, demonstrating that workload 
was indeed reasonably well connected to the intended task difficulties of scenarios. 
We further validated this assumption by grouping continuous workload measures 
used for model training based on intended task difficulty/workload: Low (difficulties 
1-5), Medium (difficulties 6-10), and High (difficulties 11-15). Based on these group-
ings, there was a statistically significant difference between mean continuous work-
load measures used for model training across each of three groups (p<0.0001).  
Furthermore, we analyzed the addition of our noise injection algorithm to the NASA 
TLX responses to generate the continuous workload estimates for model training. 
When averaging the resulting continuous workload estimates across trials, we ob-
tained a correlation of r = 0.99 with the actual reported NASA TLX values, which 
demonstrated the noise injection algorithm did not overly skew workload responses. 
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Lastly, at an exploratory level we investigated the degree to which the model’s  
estimates of workload provided identifiable clues to when performance decrements 
might occur. This was an informal analysis done to obtain a realistic expectation as to 
how frequently performance decrements could be identified proactively, using work-
load as the “leading indicator” and/or “trailing indicator” of their occurrence. The 
example illustration in Figure 3 demonstrates one recurring trend in which a perfor-
mance decrement can serve as a leading indicator of workload spikes, followed by 
subsequent behavioral changes in reaction to these effects. Currently, we are quantita-
tively formalizing the complex relationships between workload and performance as a 
precursor to intelligent augmentation strategy selection in real-time mission settings. 

 

Fig. 3. Example of a workload spike as a leading indicator for a performance decrement 

5 Conclusions 

This paper described a novel technical approach for establishing real-time estimates 
of operator states on a continuous, high-resolution scale for the purpose of improving 
the ability to employ effective adaptive aiding strategies for performance augmenta-
tion. Using operator workload as a test case, our research to date has served as a key 
stepping stone with regard to establishing a level of accuracy in line with the pub-
lished state of the art. Future research will focus on improving model accuracy 
through additional data collection, optimizing components of the model architecture 
(e.g., on-line training), and additional measures that may account for a larger percen-
tage of workload variance. A critical next step is also the design of a model validation 
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paradigm that enables empirical investigation of workload estimation accuracy on a 
continuous 0-100 scale. Finally, we will quantitatively represent the complex relation-
ships between workload and performance, which may provide substantial benefit to 
the employment of automated aiding strategies to mitigate performance decrements.  
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