
 

R. Shumaker (Ed.): VAMR/HCII 2013, Part II, LNCS 8022, pp. 281–290, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Natural Feature Tracking Augmented Reality  
for On-Site Assembly Assistance Systems 

Rafael Radkowski and James Oliver 

Iowa State University, Virtual Reality Applications Center, 
1620 Howe Hall, Ames, IA, 50011, USA 
{rafael,oliver}@iastate.edu 

Abstract. We introduce a natural feature tracking approach that facilitates the 
tracking of rigid objects for an on-site assembly assistance system. The tracking 
system must track multiple circuit boards without added fiducial markers, and 
they are manipulated by the user. We use a common SIFT feature matching de-
tector enhanced with a probability search. This search estimates how likely a set 
of query descriptors belongs to a particular object. The method was realized and 
tested. The results show that the probability search enhanced the identification 
of different circuit boards.  

Keywords: Augmented Reality, Natural Feature Tracking, Assembly  
Assistance. 

1 Introduction 

An assembly assistance system is a computer terminal, which provides assembly 
work instructions such as the assembly sequence, the components needed for a prod-
uct, the handling of tools, etc. They are located at assembly stations on a factory floor 
and are commonly used in a variety of industries. These systems are critical for no-
vice assemblers who typically refer to them regularly. However, even experienced 
assemblers are required to use assembly assistance systems because product variants 
are difficult to memorize and these systems are also used to track production efficien-
cy. Most assembly assistance systems are comprised of simple alphanumeric lists of 
instructions with perhaps links to associated 2D schematic drawings. To enhance the 
effectiveness of such systems, we developed an Augmented Reality (AR) assembly 
assistance system for a major manufacturer of electrical components that superimpos-
es a live video image of a manual assembly station with 3D models, 2D texts, and 
annotations. It tracks the parts to assemble, shows the assembly sequence, and  
provides information about the assembly method.   

The assembly assistance system must track multiple rigid objects; in our case,  
planar printed circuit boards that are manipulated by the user (Figure 1). Therefore, 
we have developed a natural feature tracking (NFT) system. It relies on the so-called 
SIFT feature tracker [1]: feature maps are created that represent the objects to track. 
To identify and track an object, features need to be identified in a video stream and 
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compared with the stored feature database. This and similar techniques are well 
known for image tracking. For example, today they are employed in magazines and 
newspapers. 

 

 

Fig. 1. a) A prototype of the AR on-site assistance system. b) The application tracks multiple 
circuit boards and adds assembly instructions. 

Despite its ubiquity, the SIFT method presents several challenges when tracking 
multiple circuit boards. In general, circuit boards are difficult to track: they look  
similar to on another, provide only a limited number of good feature points, and they 
are 3D objects, even though they are flat.   

Our contribution is a method to distinguish multiple circuit boards and to identify 
the related feature map in real time as well as an optimized feature map structure for 
rigid object feature maps. We employ a probability search that estimates how likely a 
set of given query features belongs to a particular circuit board. The method utilizes 
statistical similarity of features and clustering methods to calculate a probability val-
ue. We use a tree data structure to compare all relevant feature maps on a different 
level of complexity.  

The next section reviews the relevant related work that drives our method. In  
section 3, we present our realization of the tracking system and explain the probability 
search. We present an application example in section 4 and close the paper with a 
summary and an outlook.  

2 Related Work 

In general, natural feature tracking (NFT) is a vision-based tracking approach. Ac-
cording to Zhou [2], vision-based tracking can be classified in model-based tracking 
techniques and feature-based techniques. This classification considers the amount of 
previous knowledge the tracking system needs to have about the scene. NFT belongs 
to the feature-based techniques, which relies on natural features. A large share of 
research is devoted to NFT for AR applications since AR relies on tracking and NFT 
facilitates the usage of physical objects in the environment. Thus, the review will only 
highlight some research that fosters our approach.  
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Lepetit et al. [3] introduced a keypoint-based tracking method that automatically 
builds different view sets of a training image in order to improve performance and 
robustness. Multiple keypoints are extracted from these images and stored as a classi-
fication database. They use a randomized kd-tree to classify the feature points of a 
sample image. The method works robustly, it facilitates tracking of a wide range of 
images, and also copes with cluttered and distorted objects. Nevertheless, it is trained 
for only one object. 

Klein et al. [4] has developed a method that simultaneously estimates the pose of a 
camera and creates a feature map. The idea is to split tracking and mapping into two 
different threads. This enables the use of computationally expensive optimization 
methods in order to build an optimized feature map. The approach is robust and works 
with a large set of keypoints. Nevertheless, it is intended for navigation purposes and 
cannot identify particular objects. 

Chen et al. [5] have developed a keypoint tracking system that copes with different 
lighting conditions. The authors employ a FAST algorithm to extract keypoint fea-
tures and descriptors. The descriptors are organized in a kd-tree for fast keypoint re-
trieval. To improve the robustness, a Kanade-Lucas-Tomasi (KLT) tracker [6] has 
been added that delivers additional information for pose estimation. This enhances the 
probability of obtaining good features to track. The method utilizes an additional 
matching algorithm to improve the robustness. Nevertheless, their method does not 
distinguish different objects. 

Cagalaban et al. [7] introduce a tracking method that allows tracking of multiple 
3D objects in unprepared environments. The method incorporates a KLT tracking and 
color tracking to detect multiple moving objects. However, the authors' test objects 
were relatively simple (cars), object segmentation relies on background separation 
and the tracked objects cannot be identified. 

Uchiyama et al. [8] present a tracking method that relies on a method called locally 
likely arrangement hashing. The authors intend to track 2D maps, which are difficult 
to track because the arrangement of a map looks similar from different viewpoints. 
Their tracking approach utilizes the intersections on maps to retrieve a robust  
feature map. In addition, the authors use online learning to be able to cover a  
large map. 

The Fours Eyes Lab conducted research in keypoint optimization and keypoint  
selection in order to optimize the keypoint database in such a way that only the best, 
most robust, features maintain tracking (i.e., [9], [10]). For instance, they explore the 
effect of different texture characteristics on tracking. They also evaluate the influence 
of different tracking parameters using a large database of 2D images that show differ-
ent light conditions and geometric changes. Their research is aimed at developing a 
robust tracking system. Nevertheless, the research does not address circuit boards, 
particularly, nor in particular, the problems associated with tracking physical tracking 
targets with keypoints. 
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3 Natural Feature Tracking for Circuit Boards 

The objective of the tracking system is to determine the pose of a video camera to 
enable spatial registration for AR. Our tracking system relies, like many others, on 
matching keypoints from training images with keypoints obtained from a run-time 
video stream. Usually, all training keypoints are stored in one database, and the query 
set is matched against this database. The challenge, when tracking physical objects 
like circuit boards, is to receive a sufficient number of correctly matched feature 
points to enable pose estimation and tracking. Since circuit boards roughly look simi-
lar, the number of false matches increases with the overall number of features. In this 
section, we first explain the suggested tracking method. Afterwards, we introduce our 
feature map optimization strategy.  

3.1 Feature Point Tracking and Matching 

Figure 2 presents an overview of the natural feature tracking method. The method im-
plements the functions keypoint extractions, descriptor computation, descriptor match-
ing, and pose estimation. Our implementation is based on OpenCV [11], an open 
source computer vision library that provides the required core image processing func-
tionality. In addition, a rendering function generates the output image. However, since 
the rendering function is not part of part of the tracking system, it is not explained. 
 

 

Fig. 2. Overview about the entire natural feature tracking system 

Consider a feature map Fi = {k1, ..., kN | d0...dN}, with N keypoints ݇ א -௜ and N asܭ
sociated descriptors ݀ א  ௜. Each set Fi enables tracking of a physical object Oi, withܦ
i, the index of the object, also referred to as tracking targets. We use SIFT feature 
points and descriptors [1]. A keypoint describes the location of a feature. The descrip-
tor is a vector with 128 values that represent the magnitude and the orientation of 
gradient vectors that surrounding the keypoint. A training database DBref with ܤܦ௥௘௙ ൌ ሼܨ଴, … ,  ேሽ stores all feature keypoints KN and descriptors DN of all physicalܨ
objects to track.  

For object tracking, let I(x, y) be the input image fetched from a video camera. 
First, we identify a set of keypoints K* and extract keypoint descriptors D* in I.  
Initially, the keypoints and descriptors are unidentified; they may belong to one or to 
multiple tracking targets. To identify them, descriptors D* are matched against the 
reference descriptors ܦே א ௥௘௙ܤܦ . A k-nearest-neighbors method (KNN) is a  
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common way to match data. The descriptors in DBref are organized as a randomized 
kd-tree [12]. A kd-tree is a space-partitioning data structure [13]. It splits  
k-dimensional data into half-spaces considering the variance of each dimension.  
Randomized kd-trees use a limited number of dimensions to split the state-space  
of data. The kd-tree is trained in advance. The nearest neighbors are retrieved by  
traversing the kd-tree.  

We added a probability search in order to facilitate the tracking of circuit boards. 
During our work on the assembly assistance station, with increasing number of de-
scriptors in the database we encountered too many false-matches. The probability 
value is added in order to eliminate a set of descriptors. Thus, the number of descrip-
tors that need to be considered is reduced. Therefore, we use a limited number of 
descriptors with a limited complexity. Figure 3depicts an abstraction of the tree struc-
ture spaces utilized. The nodes carry the descriptors di,j, with i, the tracking target 
identifier, and j, the descriptor number. Each node splits the search space into half-
spaces. The upper nodes of the tree use the probability search. A probability value 
estimates how likely a descriptor belongs to a particular feature map. 

 

 

Fig. 3. kd-trees are used for a fast k-nearest neighbor search. An additional probability search 
allows determination of a subset of descriptors that likely belong to the searched feature map.  

Let ݀௧כ be the query descriptor that needs to be matched. First, a probability value is 
calculated. We compare the vectors of each descriptor with a feature map signature S 
= {r0', r1, ..., rN} and the signature centroid Sc0 and Sc1. The signature is a composed 
descriptor vector that contains the most robust gradient vector direction and magni-
tude ranges r = {rmin, rmax} of a feature map. The centroids are the center of the major-
ity of descriptor directions. The probability value is calculated using: 

 (1)

with ݏ߂, the distance value, and Sci, the centroid of the descriptor ݀௧כ, and var(S), the 
variance of the signature. The calculation is carried out for all feature maps in the 
database. Using this approach, one descriptor can be associated to more than one fea-
ture map. Thus, we consider all query descriptors to calculate the probability value by 
counting the possible assignment of a descriptor to a particular feature map: 

 (2)
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With P the probability value, N, the number of descriptors. This method facilitates the 
determination of outliers. All descriptors of the training database that belong to a 
feature map with a low probability value are not considered in the following step.  

The probability search is carried out only when the ratio between matched and un-
matched descriptors of a scene is below a threshold T. We empirically determined a T 
= 0.4 considering three circuit boards at once in the scene. If a major set of descriptors 
cannot be matched, this ratio indicates that a new circuit board is in the scene. As long 
as the tracking quality is acceptable we assume that only the identified subset is 
needed. The kd-tree was adapted to consider the probability value; we remove the 
nodes and retrain the sub-tree.   

To match the feature ݀௧כ, we employ a k-nearest-neighbor (KNN) matching to find 
the best match in the training database [14]. The KNN method is a non-parametric 
method. It calculates k-distances for each vector of the input data to the reference 
data, where k represents the number of neighbors the method returns when calculating 
the output distance. We calculate the k=2 distances, thus, for each query descriptor we 
find the two best matches in the reference dataset Dref: ݀݅ݐݏ௜൫݀௜, ݀௥௘௙൯ ൌ  ට൫݀௜,ଵെ ݀௥௘௙,ଵ ൯ଶ ൅ ڮ ൅ ൫݀௜,ேെ ݀௥௘௙,ே ൯ଶ

  (3)

ݕ ൌ ଵݐݏ݅݀ ൅ ଶ2ݐݏ݅݀  (4)

with disti, the distance between each input descriptor and reference descriptor, and y, 
the final output calculated from the two best matches dist1 and dist2. The KNN me-
thod returns the two nearest neighbors for each query descriptor; the matching set is 
denoted as M. We utilize the OpenCV implementation of the Fast Library for Approx-
imate Nearest Neighbors for KNN matching [15].  

Next, a ratio test is employed to find the best matches of the entire output set M. 
The ratio test checks whether the matches found violate a threshold [6]: ݎ ൏ ݎ௧ (5)ݎ ൌ ଶ (6)ݐݏଵ݀݅ݐݏ݅݀

With r, the ratio, and rt, the threshold. Usually, the ratio ranges from 0.4 to 0.6. Only 
high quality matches pass this test. All other matches are deleted.  

Finally, we employ an epipolar search to find feature points that meet the funda-
mental epipolar constraint of a 3D projection: all keypoints of the query set must lie 
on the epipolar line of the reference keypoint set. We use an 8-point RANSAC algo-
rithm to calculate them. The RANSAC algorithm is an iterative technique to estimate 
the parameters of a model from a set of given input points [16]. The inliers of the 
RANSAC test comply with this constraint and are used to estimate the pose.  

To estimate the pose, we calculate the extrinsic camera parameters using a textbook 
technique, namely, Direct Linear Transformation (DLT), solved with Singular Value 
Decomposition [15]. The DLT uses corresponding keypoints of the tracking targets 
and the image to solve a camera model equation. Figure 4 presents a result. The left 
image shows the training image and its keypoints. The right image depicts the video 
stream and the matching keypoints. The lines indicate the corresponding keypoints.  
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Fig. 4. Tracking of a circuit board with SIFT feature tracking 

3.2 Feature Map Signature 

The feature map signature is a vector with the most robust descriptors. It facilitates 
fast recognition and classification of feature descriptors, which are determined by 
counting. A reference image is used and its feature points and descriptors are ex-
tracted. To get query images, multiple affine transformations are applied. Also noise 
is added to several images and the resolution is changed. The feature descriptors of 
these images are extracted and matched against the reference image descriptors. Each 
match in the reference image is counted. After N samples (N=400 for our tests) a 
matching count for each reference descriptor available. For the further processing, we 
select 20% of the most matching features when they occur in 50% of all frames. 
 

 

Fig. 5. Feature maps after optimization 

The idea of the probability search is to determine a probability value for each query 
descriptor considering the majority of all robust descriptors of a feature map and their 
variance. Therefore, we calculate a signature and the feature map centroids. Both are 
determined using a k-means clustering method. Let D = {D0, D1, D2, ...., DN} be the 
set of all robust descriptors with Di = {d0, d1, d2, ..., d127}. First we cluster the descrip-
tors with the k-mean clustering with k=2: 

 (8)

with ߤ, the mean of the descriptor values. The clustering results in a set of descriptors, 
which are most similar, and the cluster centroids. Figure 6 shows a result generated 
from three circuit boards1. 

                                                           
1  The circuit boards used for testing are computer graphics cards, network adapters, etc. The 

application has been developed for circuit boards of controllers. The board layout cannot be 
published due to a confidential declaration.  
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Fig. 6. Cluster of centroids of descriptor magnitudes 

This approach relies on different cluster centroids and different descriptor distribu-
tions that result in different variances. Thus, we can use a statistical approach to antic-
ipate a best match. As shown in Figure 6, the clusters are distinguishable. Each of the 
clusters poses one signature S. The centroids are used as mean values ߤ for each fea-
ture map. As presented before, Equation 1 and 2 are used to calculate the probability 
of new descriptors to belong to a particular feature map. 

The signature S of a feature map is a 2xN vector that keeps the range of the majori-
ty of all descriptor values per descriptor element:  

 (9)

with dmax and dmin, the min and max values for every descriptor element di. 

4 Results 

We compared the tracking performance with a regular natural feature tracking that 
works without a probability search. The same SIFT feature tracker was applied and 
the k-nearest neighbor method was used for feature matching. For repeatability, the 
tests have been carried out with testing software and images of circuit boards and not 
with a live video and manual operated camera. We used eight computer-related circuit 
boards (graphics card, network adapter etc.) as reference data. The query dataset used 
eight images of the same boards plus eight additional colored advertisements from 
journals. All query images have been automatically transformed (size, rotation, pers-
pective, shear) in order to get five query images for each sample. All sample images 
have been matched against the training database.  The tests have been carried out on a 
Dell Precision T3500 computer, with an Intel Xeon 3.47 GHz processor, NVidia Qu-
adro 5000 GPU, and 6GB RAM.  

Table 1 shows the results. The first column shows the number of tracking targets in 
the database, the second the overall number of descriptors in the database. The next 
three columns, the percentage of matched features and the percentage of false 
matched features for the standard KNN algorithm. The ratio is the quotient of false to 
all matches. The last three rows show the same for suggested method.   
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Table 1. Results from feature matching experiments 

No. 

DB 

Overall 

descriptors 

KNN ratio KNN 

false  

KNN 

+ P 

KNN + 

p false 

ratio 

1 145 95% 0% 0% 94% 0% 0% 

2 538 94% 5% 5% 90% 4% 4% 

4 2211 75% 59% 44% 80% 13% 16% 

6 3689 72% 76% 55% 79% 10% 13% 

8 4946 82% 60% 49% 82% 7% 9% 

 
The results show that the optimized descriptor matching algorithm yields a higher 

matching ratio when the number of tracking targets, i.e., the number of descriptors in 
the database, is increased. The usual matching algorithm provides too many false 
matches, matches that belong to different tracking targets. The subsequent applied 
data tests cannot remove all of these false matches. Thus, the pose estimation does not 
work correctly. The probability method helps to remove data from the database before 
the KNN matching is applied. Thus, the number of wrong matches were reduced.  

However, we also used both methods to track regular 2D color images. In this case 
that the suggested algorithm does not yield significant advantage. Regular color im-
ages produce many more feature descriptors than circuit boards do. The feature de-
scriptors are also more distributed; a major descriptor direction often does not exist. 
Thus, the k-means clustering cannot identify descriptor clusters because the variance 
of descriptors is similar. In general, circuit boards provide fewer good feature descrip-
tors than color images do. Thus we assume that cluster centroids and a majority of 
descriptor directions and magnitudes can be identified.  

5 Summary and Outlook 

This paper introduces an augmented reality on-site assembly assistance system that 
helps assemblers during the assembly process. The system identifies and tracks the 
objects to assemble and provides assistance if necessary. For our purpose, the assem-
bly assistance system needs to track and to identify physical planar circuit boards. We 
encountered problems with regular approaches when more than two circuit boards 
must be tracked. Circuit boards do not provide a sufficient number of distinguishable 
features points. Thus, we enhanced the identification probability by introducing a 
probability value. It relies on the sparse descriptor set of circuit boards: it is possible 
to identify clusters and to distinguish boards using the cluster centroids. It can be used 
to enhance the probability of identifying the correct feature keypoints and, finally, the 
correct tracking target. 

However, the method is limited to tracking targets with a sparse descriptor set. We 
conducted a limited set of experiments. We know, the approach works for our system 
and the product we need to track. In the future, we seek to analyze the overall capabil-
ity of the approach presented. Therefore, we will work on a larger dataset for training 
and query.  
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