
Enhancing Metric Perception

with RGB-D Camera

Daiki Handa, Hirotake Ishii, and Hiroshi Shimoda

Kyoto University, Graduate School of Energy Science, Kyoto pref., Japan
{handa,hirotake,shimoda}@ei.energy.kyoto-u.ac.jp

Abstract. Metric measurement of environment has fundamental role in
tasks such as interior design and plant maintenance. Conventional meth-
ods for these tasks suffer from high development cost or unstability. We
propose a mobile metric perception enhancement system which focuses
on interactivity through user locomotion. The proposed system overlays
geometric annotations in real-time on a tablet device. The annotation is
generated from RGB-D camera in per-frame basis, alleviating the object
recognition problem by effectively utilizing processing power of human.
We show a few illustrative cases where the system is tested, and discuss
correctness of annotations.

Keywords: Augmented Reality, Augmented Human, Mobile Device,
RGB-D Camera, Geometric Annotation, Per-frame Processing.

1 Introduction

Real world tasks such as interior design and plant maintenance rely on knowledge
of geometric properties of surrounding objects. In these scenarios, measurement
of environment often forms the basis of higher level sub-tasks. We propose met-
ric perception enhancement through overlaying geometric annotation extracted
from RGB-D data in real-time.

Existing augmented reality solutions for these tasks mostly depend on the idea
of overlaying suitable pre-made virtual objects such as furniture or CAD model
[1]. While this approach can potentially provide tailored user experience, these
applications tend to add little benefit compared to required application develop-
ment and deployment cost. These costs may occur from employment of artists
to create virtual object, setup of markers to track the device, or maintainance
of up-to-date CAD data of the environment.

On the other hand, there are many methods to create 3D model of the en-
vironment on-the-fly, generally called Simultaneous Localization and Mapping
(SLAM) [2]. But these methods are either not robust enough, only able to pro-
vide sparse model, or computationally expensive. So dynamic content creation
through automatic modeling of environment is not feasible.

Recent introduction of consumer-grade RGB-D sensors such as Microsoft
kinect enable us to use it on mobile devices such as tablets, making it possi-
ble to robustly acquire local 3D point cloud in real-time.

R. Shumaker (Ed.): VAMR/HCII 2013, Part I, LNCS 8021, pp. 23–31, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

24 D. Handa, H. Ishii, and H. Shimoda

We propose geometric annotation application that can be used with little
constraint on the environment. We generate salient annotations from RGB-D
data, and overlay them on per-frame basis. The proposed system can annotate
straight line in sight with lengths, and surfaces with contour lines. While the
quality of output is lower than that of perfect CAD data, tight interaction loop
created by per-frame presentation of data can compensate the downside, and
can provide reasonably good user experience at very low cost. The key insight is
that human can easily associate flickering or duplicated annotations to real world
structure, while it is very difficult for computers to accurately create coherent
model of the environment from raw data.

We will illustrate a few cases where our system would be useful and discuss
correctness of generated annotations.

2 Generating Annotation

To visualize metric properties of environment, two complementary kinds of anno-
tations are generated. The length annotations enable the user to perceive lengths
of straight edges abundant in artificial objects. The height annotations are con-
tour lines to help understanding featureless or curved surfaces where straight
edges are absent and thus length annotation is unavailable.

Dataflow of the annotation process is shown in Fig. 1. The input of the system
is QVGA frames from a RGB-D camera and the gravity vector1 from a tablet.

2.1 Edge Detection and Refinement

The goals here are extraction of straight edges and calculation of their lengths.
Output of current depth sensors typically contains jagginess of several pixels
near object outline, while RGB image have effective angular resolution of nearly
one pixel. So, three-dimensional edges are estimated from line segments in RGB
image.

Line segments are extracted from RGB image by first converting it to grayscale,
and then applying LSD [3] detector. The detected line segments contain Number
of False Alarms (NFA) values, which are used as saliency in later optimization
phase.

Detected edges can be categorized to three classes as shown in Fig. 2; a tex-
tural edge lies on planar surface, and a structural edge corresponds a ridge or
a cliff of an object. Structural edges are further divided to continuous or dis-
continuous by whether two sides of the edge are on a same object (continuous)
or not (discontinuous). Discontinuous strucutral edges need special treatment
when calculating length, since depth is ill-defined on the discontinuous edge.

1 Mobile platform such as Android provides gravity sensor based on low-pass filtering
of accelerometer data.

Enhancing Metric Perception with RGB-D Camera 25

Gravity

1. Edge Detection
2. Layout Optimization

Fig. 1. Upper Middle: Lengths from line segments, Lower Middle: contours from per-
pixel depth coloring

Textural Continuous Structural Discontinuous Structural

true
true false

true false
don't care

Fig. 2. Edges can be classified by comparing positions and normals near midpoints. In
reality, occulusions, shadows and noise make distinction unclear.

To check discontinuity of an edge, p1 � p2 condition (in Fig. 2) is used. When
depth is continuous at an edge, 3D distance d between two symmetric points
near the midpoint is linear to that of screen space. Pair-distance d(s) for points
2s apart in screen space is defined as follows:

d(s) = |T (pmid + sn)− T (pmid − sn)| (1)

where pmid is the midpoint of the edge, T (p) is 3D position of the pixel, and
n is the normal of the segment. By using d(s), the discontinuity conidition is

approximated by d(5px)
d(2px) <

5
2α, where α � 1 is a sensitivity constant.

After edge classification, discontinuous edges are refined by moving toward
the nearer (i.e. foreground) side to avoid jagged region. After edge refinement,

26 D. Handa, H. Ishii, and H. Shimoda

length is calculated respectively from two endpoints of the segments. If depth at
an endpoints is unavailable due to depth camera limitation, the edge is discarded
as false one.

2.2 Layout Optimization

In complex scenes, edge annotations may become unreadable due to overlap. To
mitigate this problem, annotation density distribution on screen is represented
by a lattice, and edges are picked sequentially in order of decreasing saliency.
The greedy selection process is depicted in the following pseudocode:

def select edges(edges):

bool[][] density = {{false,...},...}
edges to show = []

for edge in sort(edges, order by=NFA, decreasing):

if not any(density[x,y] for (x,y) in cells on(edge)):

for (x,y) in cells on(edge):

density[x,y] = true

edges to show.add(edge)

return edges to show

Here we use 20 px for cell and lattice size where frame size is 320 px× 240 px.
To allow edges with a shared vertex like a corner of a box, cells corresponding
to endpoints are excluded when computing cells on(edge).

2.3 Height Annotation

Normalized gravity vector ngravity is used to show contour lines. To draw a single
contour line with camera-relative height h, intensity I(p) at pixel p in screen
coordinates is determined by Eq. 2.

Ih(p) =
1

1 + (T (p) · ngravity − h)2w2
(2)

where T (p) is 3D position of p in camera coordinates, and w is a constant
controlling the line width. In this paper, height annotations are drawn with
20 cm interval.

The decision to draw height annotations relative to device position instead
of automatically detected floor, ensures smooth temporal behavior of lines by
avoiding non-robust floor detection step. It is up to the user to hold the device
at appropriate height to get meaningful readings.

3 Implementation

In this section, implementation details which can affect performance and mobility
are described.

Enhancing Metric Perception with RGB-D Camera 27

3.1 Hardware

The device consists of an Android tablet and a RGB-D camera as shown in Fig.
3. Since the camera is powered by USB from the tablet, there is no need for an
external power supply. Mobility of the system is further increased by modifying
the camera shell and cable. This results in a device with total weight of under
450 g, which can be used portably with a single hand.

Xtion

Nexus 7

Fig. 3. Nexus 7 tablet and modified ASUS Xtion PRO LIVE RGB-D camera connected
via USB

Note that a Nexus 7 contains an accelerometer, so the only external compo-
nent is the RGB-D camera.

3.2 Software

The system is implemented on Android 4.2.1, and most part is coded in Java.
A screenshot in Fig. 4 shows the UI and a typical result of annotation.

To maximize performance, the line segment detector [3] is compiled for ARM
NEON instructions and called via Java Native Interface. Rendering of annota-
tions is performed on GPU, and particularly, height annotation is implemented
as a fragment shader.

The UI allows respective switching of length and height annotations to in-
crease framerate by turning off unnecessary annotations. To limit the mode of
interaction to moving in the real world, controls for parameters such as detection
threshold are intentionally excluded.

28 D. Handa, H. Ishii, and H. Shimoda

Fig. 4. A screenshot of the system

4 Experimental Evaluation

We illustrate several use cases by showing example of operation and evaluate
accuracy of annotations. All examples were run at real-time frame rate.

4.1 Interactive Usage

Figure 5 shows the change in display when the user moved toward an object.
Initially invisible small features (e.g. lattice-like object in 4) become visible with
a closer look. In this example, natural user movement cause scale to change and
show what the user would want to see. In general, it is often possible to read the
length of an arbitrary edge by viewing from an appropriate angle and position.
It can be argued that this kind of minimal-guessing (on the computer side)
approach is more effective and feasible than trying to acquire detailed model of
the environment and construct a GUI to choose what to see in the model.

Figure 6 illustrates how height annotation can complement length annotation
for a curved object.

In these cases, two kind of annotations are used separately to see the effect
respectively. Using both annotations simultaneously as in Fig. 4 does not cause
a clutter, so we can omit GUI switches and make real world locomotion a sole,
yet complete mode of interaction. This property would be useful when using the
proposed technique with a HMD or a mobile projector like [4].

Enhancing Metric Perception with RGB-D Camera 29

1 2

3 4

Fig. 5. 1-4: Scale of length annotation changes as the user moves toward the Android
mascot

4.2 Latency

Important to interactivity is the latency. Typical latency to process a single
frame is shown in table 1. Note that actual framerate is somewhat higher than
determined by the total latency, since the code is multi-threaded.

Table 1. Typical Latency

Section Time[ms]

Line Segment Detection (QVGA) 481
Edge Analysis & Refinement 8
Layout Optimization 4
Rendering & CPU-GPU Transfer 25

Total 518

Line segment detection is taking significant time and clearly needs a faster
implementation, possibly on GPU. However, the system runs at nearly 30 fps
when only height annotation is used.

30 D. Handa, H. Ishii, and H. Shimoda

Fig. 6. Left: Length annotation cannot display height of the round-end cylinder Right:
Height annotation reveals height of 1.5 units, which corresponds to 30 cm

4.3 Discussions on Correctness

Ultimately, precision would be limited by depth camera error, for which a de-
tailed analysis exists [5]. However, incorrect lengths from false edges are far more
noticeable in the current implementation.

In Fig. 5, there are roughly two kinds of false edges; edges corresponding to
no structure nor texture, and fragmented or incomplete edges along long lines.
An example for each kind is shown in Fig. 7.

Illumination Incomplete

Fig. 7. Left: false edge along shadow Right: edge is structural, but too short

The former is caused by shadow or gradation due to illumination, but human is
so good at distinguishing illumination and texture (i.e. lightness constancy effect
[6]) that difference between human and machine perception becomes noticeable.
This kind of false edges are relatively harmless since they appear where other
real edges are absent.

The latter is more problematic, since shorter edges can hide original long edge
in layout optimization. Solution to this would be giving long edges higher scores
in optimization, or using depth-guided line segment detection.

5 Conclusion

In this paper, we have shown that the conveying geometric information directly
to the user is useful in various settings and relatively simple to implement com-

Enhancing Metric Perception with RGB-D Camera 31

pared to conventional approaches like in [1]. We proposed a method to annotate
lengths and contours and implemented in a truly mobile way.

The experiment shows the ability of the system to explore edges by real world
locomotion of the user. It also shows that per-frame processing can augment
perception more cost-effectively than conventional methods by creating tighter
interaction loop. Also, this kind of real world interaction would be beneficial to
hands-free implementations in the future.

Inaccuracy and slowness of line segment detection is found to be a limiting
factor in the current implementation. This could be remedied by depth-guided
segment detection or a fast GPU-accelerated implementation in conjunction with
more sophisticated layout optimization.

Acknowledgements. This work was supported by JSPS KAKENHI Grant
Number 23240016.

References

1. Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., Ivkovic, M.:
Augmented reality technologies, systems and applications. Multimedia Tools and
Applications 51, 341–377 (2011)

2. Aulinas, J., Petillot, Y.R., Salvi, J., Lladó, X.: The SLAM problem: a survey. In:
Catalonian Conference on AI, pp. 363–371 (2008)

3. von Gioi, R.G., Jakubowicz, J., Morel, J.-M., Randall, G.: LSD: a Line Segment
Detector. Image Processing On Line (2012)

4. Mistry, P., Maes, P.: Sixthsense: a wearable gestural interface. In: ACM SIGGRAPH
ASIA 2009 Sketches. SIGGRAPH ASIA 2009, pp. 11:1–11:1. ACM, New York (2009)

5. Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for
indoor mapping applications. Sensors 12(2), 1437–1454 (2012)

6. Adelson, E.H.: Lightness perception and lightness illusion (1999)

	Enhancing Metric Perception with RGB-D Camera

	1 Introduction
	2 Generating Annotation
	2.1 Edge Detection and Refinement
	2.2 Layout Optimization
	2.3 Height Annotation

	3 Implementation
	3.1 Hardware
	3.2 Software

	4 Experimental Evaluation
	4.1 Interactive Usage
	4.2 Latency
	4.3 Discussions on Correctness

	5 Conclusion
	References

