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Abstract. This paper presents a new approach for the design and realization of 
a Virtual Reality (VR) based engineering front end that enables engineers to 
combine post processing tasks and finite element methods for linear static 
analyses at interactive rates. “What-if-scenarios” have become a widespread 
methodology in the CAE domain. Here, designers and engineers interact with 
the virtual mock-up, change boundary conditions (BC), variate geometry or 
BCs and simulate and analyze its impact on the CAE mock-up. The potential of 
VR for post-processing engineering data enlightened ideas to deploy it for 
interactive investigations at conceptual stage. While it is a valid hypothesis, still 
many challenges and problems remain due to the nature of the “change’n play” 
paradigm imposed by conceptual simulations as well as the non-availability of 
accurate, interactive FEM procedures. Interactive conceptual simulations (ICS) 
require new FEM approaches in order to expose the benefit of VR based front 
ends. 

Keywords: Computer Aided Engineering, Interactive Conceptual Simulations, 
VR environments for engineering. 

1 Introduction 

“What-if-scenarios” (conceptual simulations) have become a widespread methodology 
within the computer aided engineering (CAE) domain. Here, designers and engineers 
interact with the virtual mock-up, change boundary conditions (BC), variate geometry 
or BCs and simulate and analyze its impact on the CAE mock-up. The potential of VR 
for post-processing engineering data enlightened ideas to deploy it for interactive 
investigations at conceptual stage (interactive conceptual simulations - ICS). It is still a 
valid hypothesis, while many challenges and problems remain. The conceptual stage 
during a design is inherently driven by the nature of the “change’n play” paradigm. 
Coupling these with Finite Element Methods (FEM) imply new solutions and 
optimizations in view of the current non-availability of accurate, interactive FEM 
procedures for interactive processing. VR is predominately used for data visualization 
of scientific raw data. Therefore, classical solutions still use scientific visualization 
techniques for large data visualization [1] or use interpolated pre-computed result data 
sets, e.g. [2,3] for interactive investigations. Both approaches imply a bottleneck of 
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data set processing, filtering and mapping and impose restrictions to the processing 
capability of the underlying system thus influence the turn-around loop of simulation 
and visualization. Thus, conducting a CAE analysis, steered from a VR environment is 
a different story and only few research work exist, e.g. [4,5,6]. Classical CG methods 
are too limited due to the simplified, underlying mathematical models for real-time 
analysis [7]. In fact several approaches are driven by visual appearance rather than 
physical accuracy needed within engineering environments. Major attention has been 
given to the area of deformable object simulations in the past [8]. Here, the challenge is 
to solve the underlying system of differential equations imposed by the physical 
phenomena modeled by Newton’s second law of motion. The approaches make 
typically use of explicit time integration schemes, fast in evaluation and small in 
computational overhead, e.g. [9]. Implicit time integration schemes which usually lead 
to a more stable calculation of the results for solid deformation are based on complete 
assemblies into large systems of algebraic equations, which might be solved using pre-
processing techniques (such as matrix pre-inversion) [10,11], or the conjugate gradient 
method eliminating corotational artifacts, e.g. [12,13]. A combination of several “best” 
practices for physical simulations has been published recently in [14] with a dedicated 
focus on fast solutions being robust to inconsistent input, amenable to parallelization, 
and capable of producing the dynamic visual appearance of deformation and fracture in 
gaming environments. However, the scope of all mentioned methods cannot handle 
more than very few thousand elements or are too imprecise for engineering analyses. 
So the main question to be answered remains: how can interactive FEM methods be 
designed and realized at conceptual stage that are efficient with respect to time 
consumption, computer resources and algorithmic complexity but at the same time 
result in an accurate and robust simulation?   

2 Concept 

Aim of our approach is to provide the possibility to couple post processing tasks with 
a simulation engine, that allows for any interaction performed by the end user to 
update the simulation results in real-time at the same time to perform an analysis. 
Here, we are focussing on a direct link of typical post-processing metaphors such as 
cross sectioning which should provide an insight into the object while simulating the 
model.  

Typically the user wants to move a load case from one node position to another 
one yet being unrestricted to the number of nodes within the load case. For cross 
sectioning the plane that cuts through the object will be orthogonal to the device of 
the end user: In our case a flying pen. Moving the device results in an update of the 
position of the cross section. A re-simulation of the mock-up should then be 
performed instantly. However, the use of VR environments implies an intervention 
with the simulation engine at update rates for (re-)simulation-visualization loops at 
20-30 fps, i.e. 0.05 secs. This in turn requires direct access to the underlying 
mathematical procedures respectively finite element methods.  
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We headed for a concept based on a classical CAE/VR process chain using a 
distributed software architecture [15]. Typically, we hold model presentation in a VR 
client as a surface model being pre-processed by scientific visualization techniques 
(i.e. extracting the outer domain for visualization, filtering and mapping of results to 
color scales, etc.). The overall volumetric CAE mock-up is kept on a dedicated 
simulation service that accounts for linear static analysis. 

Thus, the coupling of post processing tasks with the simulation engine requires 
operations/interactions being performed in the VR client (e.g. moving a load 
vector/user force) being mirrored to the simulation services. Ideally the simulation 
engine might be based on optimized FE-methods that could comply with the 
requirements of the post-processing tasks. I.e., if an engineer uses cross sectioning 
through the model, the simulation engine would only need to calculate for the 
“visible” elements (this means the element in the current view frustum). This leads 
conceptually to a reduction of the solution space, thus a reduction of the system of 
linear equations that needs to be solved. Another challenge will be imposed by aiming 
at changing geometrical features in the mock-up (e.g. through holes). Moving features 
provide an insight to Any changes done at surface level need to be reflected within the 
volumetrical mock-up in the simulation service.   

3 Realisation 

3.1 ICS at Boundary Condition Level 

The realisation for conceptual simulations at BC level is based on a methodology 
introduced in earlier work using a pre-processing step [11]. This method uses an 
inversion of the underlying stiffness matrix A via a preconditioned minimal residual 

method for the overall linear static equation -1= ⋅u A l , with u being displacement 

and l load vector.  
The iterative scheme is given by minimizing a Frobenius norm, i.e. it minimizes 

the functional ( ) 2

F
F B I BA= −  with B being the sought inverse to A. Splitting the 

functional into components, the scheme seeks a solution ( ) 2

2j j j j
j
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

, 

j=1,…,n  deploying a CG-iterative method [16]. Completing the inversion of the 
matrix for a given error threshold, a dedicated stop criterion provides the envisaged 
precision. This can be adjusted by the engineer himself. Due to the nature of iterative 
schemes, the precision significantly influences the computation time of the matrix 
inversion, thus the availability of the model to be inspected. Therefore, this step is 
done within an offline preparation mode. However, once the model is available, the 
engineer has several degrees of freedom to investigate conceptual changes at 
boundary condition level. Here, we have managed to reduce the solution to a simple 
matrix-vector multiplication.  

During the real-time calculation step within the VR client by interactively moving 
the load case, l is dynamically filled with values according to force and direction by  
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the position/orientation of the user’s interaction device (fig. 2). The simulation filters 
all unnecessary elements and related rows in the matrix ሺܽ௜௝ሻ ൌ׷ 0 , ݆ ׊ א ሼݏ|݈௦ ൌ 0ሽ 

(marked black – fig. 1, left), thus, takes only those elements into account that 
contribute to the results. A second optimisation uses a view dependent element 
masking technique by neglecting the affected rows within the inverted matrix. As a 
consequence, a further acceleration and turn-around loop speed-up of the matrix-
vector multiplication is feasible. In order to include only those elements visible to the 
user into the computation, an additional occlusion evaluation step as to which 
elements are within the view direction of the viewer and which are occluded has to be 
performed (marked grey – fig. 1, right). 

 

Fig. 1. The used simulation scheme for solving the system of linear equations: throwing away 
useless values and reducing the matrix-vector calculation load (left); Results of element masking 
using an occlusion evaluation and taking into account only visible elements (right) [11] 

The major advantage of the viewdependent masking due to an occlusion evaluation 
results in a direct exploitation for post processing tasks.  

3.2 Implementation 

With respect to the UI concept of a direct interaction method within the VR client 
(VSC::VR::SG := pVRservice1) simple user interactions based on selection boxes 
provide a mechanism to assign loads on a surface or a group of elements. The system 
supports different kinds of loads (BCs) that can be attached or might even be deleted 
to/from nodes. In order to reflect the changes of the VR client within the instance of the 
simulation service (VSC::RT := pCAEService), the methods can be accessed by 
asynchronous calls to the remote service instance in order not to block the current 
visualization process. Adequate methods are provided by each service instance through 
their interface.  

                                                           
1  Within the implementation the different services are represented by a service instance 

(p{X}Service, ܺא{VR;CAE})  providing adequate interfaces to other services of the 
distributed system.  VSC::VR::SG itself is the client service, pVRService an instance of it.  
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As mentioned above, the user interactions performed on the mock-up are not restricted 
to a pure visualisation of the results. The user is able during post processing tasks to 
define cross sections in which the user is able to newly mask the volume taking into 
account only the visible elements on the surface. Therefore, the pCAEService instance 
allows extracting the outer surface of the mock-up taking into account the position of the 
pen and the plane being orthogonal to the pen (pPosition, pNormal). Having fixed the 
cross section position, the user is able to trigger instantly a re-simulation through a 
change of magnitude and direction of the user force vector (pUser_Force_Vector), 
allowing a view insight the volume’s newly simulated stress field. The magnitude of the 
user defined force can still be varying.  

// Operations during the second operational phase (online simulation) 
// Within the VR client capture position, orientation and normal of the  
// interaction device during post processing as well as the magnitude of 
// device movement and establish pUser_Force_Vector 
// Extract the cutting plane and mask the resulting elements (BC_MASK) 
// for updating the simulation and visualisation (updateRTCalculation) 

while(pPosition, pNormal) //– moving the interaction device 
{  
  pCuttingPlane = pVRService -> updateCrossSection  
     (pCAEService, pFlag, pPosition, pNormal) 
  pVRService -> updateElementMasks(pCAEService, ELEMENTS, pCutting   
      Plane->getNodes()); 
  pVRService -> updateElementMasks(pCAEService, BC_MASK pCutting  
      Plane->getNodes()); 
  pMesh = pVRService -> updateRTCalculation(pCAEService, pFlag,  
      pUser_Force_Vector); 
  pVrService -> visualise(pMesh); 
} 

3.3 ICS at Geometrical Level 

This section covers interactive modifications of the engineering domain, i.e. geometrical 
respectively topological level. The implemented techniques for mesh manipulation of the 
surface/volume mesh are classified as feature dragging or surface/volume re-meshing 
techniques. The process consists in moving vertices of selected simplicial elements 
causing mesh collapse/split operations in a way that allows the consistency of the mesh 
being kept using local topological operations. Those operations deal with adapting ill-
shaped areas of the given simplicial mesh to a well-shaped area of it.  

Of course adequate metrics for quality evaluation of the affected elements during a 
user defined movement of a group of vertices have to be used in order to perform 
topological operations for those elements with a low quality (i.e., a quality lower than a 
given threshold), e.g.  [17]. The ill-shaped simplexes are then modified by operations 
such as edge collapse, edge split, tetrahedron collapse-face swap which are applied 
appropriately, depending on the damage or degeneracy of the elements in question. The 
smallest and biggest edges (as well as sliver tetrahedron, i.e. flat tetrahedrons) are 
adapted to maintain a mesh with a good quality and preserving the consistency for the 
newly triggered simulation run. This is necessary due to the fact that slight changes of the 
underlying mesh and thus the associated interpolation schemes might have significant 
impact on the results and the quality of the simulation. 
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Fig. 2. Interactive feature dragging of through holes (according to pen movement) 

In order to be able to move selected features within a mesh, an update mechanism of 
the manipulations performed on VR client side and its propagation back into CAE 
service has to be established. As our VR environment processes surface meshes, e.g. the 
outer surfaces of a CAE mock-up, we need to be consistent with the different object 
instantiations in the system, several interactions and manipulations done within the client 
have to be propagated to the pVRService and/or pCAEservice. The methodology used 
for the conceptual simulation process with respect to feature movement is shown in fig 3. 
This mechanism allows the feature movement being extended for real conceptual 
simulations. The feature history propagation is dived into different routines which are 
synchronised using the asynchronous method updateHistory(). 

 

Fig. 3. Feature synchronisation between VR client (pVRService) and simulation service 
(pCAEService) 
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On client side a monitoring mechanism, collecting the modifications done on entity 
level controls the surface mesh manipulations and records user interactions, i.e. 
change of entities, displacements of nodes, edges, connectivity information, etc. On 
service side the monitoring mechanism is responsible for a volume mesh instantiation 
of the performed actions recorded on client side. As the instantiation does not need to 
be performed in real-time, it is done after the interaction terminates triggering the 
updateHistory() method.  

3.4 Implementation 

In general, a typical dragging operation is performed based on a change of selected 
vertice positions belonging to a feature. The displacements of those vertices entering a 
new position within the higher level compound of elements (face) trigger a remeshing 
according to the decisions taken by the quality measure. Several vertices can be 
classified and marked as those belonging to a feature (“SELECTED”) and those 
belonging to a fixed part of an area (“FIXED”). As the positions of feature vertices 
change during dragging operations the vertices undergo a penalty criteria as to which 
a further collapse, swap or insert operation will be conducted. A special area of 
interest around the feature is the one containing vertices or edges of the feature as 
well as vertices or edges that belong to a fixed part of the compound face. Therefore, 
a further flag for element vertices and edges as “SHARED” indicate that several 
dragging operations are only performed on those (“SHARED”, “SELECTED”) and lead 
to the envisaged remeshing. After a principle topological modification of elements 
their vertices are marked as “KILLED”, “SELECTED”, “SHARED” or “FIXED” 
depending on whether vertices are deleted (i.e. during a collapse operation) or further 
used for operation (i.e. during a split process). The realization sequence in pseudo 
code looks like: 

// Selection of entities 
defineFeatureBoundary(in pPosition, in pOrientation, in   
 p{element_heuristics}, out Q p{entitiy_selection}); 

// label the boundary elements  
labelBoundary(in Q p{entitiy_selection}, out Q p{marked_entities}); 

// inquire for “SHARED” and “SELECTED” elements and define buffer of 
// elements that listen to modifications triggered by VSC::EVT events  

getSharedBoundaries(in Q p{marked_entities}, out  
 Q p{buffer_entities}); 

// translate pPosition and pOrientation of the pen into displacements of 
// the vertices for the buffer_entities and record movements 

while(pPosition, pOrientation) // -- Start movement of the pen 
{  

calculateMovement(in pPosition, in pOrientation, out pDirection,  
  out pStart, out pDistance); 

// Topological operations are applied to every boundary resp. buffer 
// vertex.  

 applyMovementsToSurface(in Q p{buffer_entities}, in pDirection , 
  in pDistance) 
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 {  

  " pEntities Î p{buffer_entities} 

  { 

  // edge_collapse, edge_swap, edge_split process 
   adaptiveRemesh(in pEntities, in pDirection, in    
    pDistance); 
   labelEntities(in pEntities, out Q  
    p{new_buffer_entities}); 
  } 
} 

} 
// Update the remote service with modified entities and instantiate  
// changes on the surface into the volume mesh 

pVRService::SG -> sendc_updateHistory(pCAEService, pDirection,  

  pDistance, pStart, Q p{new_buffer_entities}); 

4 Results 

The presented system enables us to link typical post-processing tasks (e.g. cross 
sectioning, etc.) directly to the simulation engine evaluating the viewpoint and current 
force vector of the engineer. He is then able to define cross sections enabling to newly 
mask the volume taking into account only the visible elements on the surface (see fig. 
4). A re-simulation due to a change of the magnitude and direction of the user force 
vector allows a view insight the volume’s stress field. The magnitude of the user 
defined force can still be varying. 

 
Fig. 4. Integrated post-processing and simulation; left: resulting deformations (scalable post-
processing of displacement field); right: results of a cross-section simulation with an update of 
element masks 

The integration of a conceptual change of a feature position within a given design 
domain into the framework follows the mechanism described in above using the 
feature history propagation. As a result, it enables the user to mark and select certain 
features in the domain on client side and “drag” them in 3D space to another position. 
As the manipulations within the VSC::SG client are performed on the surface 
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representation, the volume mesh kept in the VSC::RT service backbone has to be 
updated accordingly. The selection of mesh entities is based on face identification. 
Several compound elements belonging to a compound of faces with heuristically 
similar characteristics or a CAD face can be selected (see fig. 5). During a spatial 
change of selected features, i.e. through holes, on client side (VSC::SG) a monitoring 
mechanism collecting the modifications done at entity level controls the surface mesh 
manipulations and records user interactions, i.e. change of entities, displacements of 
nodes, edges, connectivity information, etc. They are then propagated back to the 
VSC::RT service.  

 

Fig. 5. Interactive feature dragging: two through holes (marked as red) and resulting mesh 
operations at surface level being propagated to the volume simulation engine 

5 Conclusion 

This paper presents a new approach for the design and realization of a Virtual Reality 
(VR) based engineering front end that enables engineers to combine post processing 
tasks and finite element methods for linear static analyses at interactive rates. The 
engineer is able to steer post-processing analysis and re-simulation “at his fingertip”. 
The implementation has been done within a distributed set-up in order to comply with 
the limitations of CAE simulations and their mock-ups. Several operations can be 
performed in real-time for selected domains. However, the model size cannot be 
arbitrary as shown in [11]. This might impose a critical limitation to the use of the 
system for larger models. We therefore are working on subdomaining mechanism that 
might reduce the overall domain in order to provide also a certain scalability of the 
system. Yet, we are optimistic that the presented ICS might enable engineers to use 
this paradigm for “what-if-analysis” in order to be capable of answering the question: 
“where do I have to spend my analysis time?”. As further future work we head 
towards a closer interlink between mesh and simulation. Thus, exploiting the 
neighborhood relationships between nodes might lead to an optimization of the 
stiffness matrix entries that might eventually lead to a significant reduction in 
computational time.  

 
Pen Movement 
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