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Abstract. Individual differences in cognitive flexibility may underlie a variety 
of different user behaviors, but a lack of effective measurement tools has li-
mited the predictive and descriptive potential of cognitive flexibility in human-
computer interaction applications.  This study presents a new computerized 
measure of cognitive flexibility, and then provides evidence for convergent va-
lidity. Our findings indicate moderate to strong correlations with the Trail Mak-
ing Task, and in particular, those aspects of the task most closely associated 
with cognitive flexibility.  Results of this study provide support for the validity 
of a new measure of cognitive flexibility. We conclude by discussing the  
measure’s potential applicability in the field of HCI.  
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1 Introduction 

When a user interacts with a system, they bring along their unique skills, biases and 
abilities.  In the past, models of individual differences have been used to predict user 
behavior [1, 2], however, these models often lack a cognitive component.  Converse-
ly, cognitive modeling has been successful in designing, planning and evaluating 
systems for expert users [3, 4], but typically does not reflect the impact of individual 
differences in cognitive abilities [5].  Cognitive flexibility (CF), defined as an a per-
son’s ability to abandon one cognitive strategy in favor of another based on a change 
in task demands [6], represents one individual difference that may underlie a variety 
of different user behaviors. 

One way to understand the importance of CF is to examine the behaviors that are 
associated with its absence, namely, perseveration. Extreme perseveration is defined 
as a maladaptive repetition of a particular behavior, and is a well-studied phenomenon 
in clinical psychology and neuropsychology [7–9].  Outside of clinical populations, 
more mild perseverative tendencies also naturally occur, and these impact a wide 
range of everyday activities. Research suggests that CF predicts behaviors ranging 
from how likely a person is to notice changes in their environment [10] to how crea-
tive a poem they are likely to write [11].  Most importantly here, we believe that CF 
has potential applications towards improving human-computer interaction (HCI).  
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For example, a recent study [12] found that locating “hard-to-find” features was one 
of the major sources of frustration during a computer interaction task. Individual dif-
ferences in CF may explain why some users are more likely to find the sorts of hidden 
features that others miss because CF predicts an ability to disengage from a specific 
search or quickly abandon inefficient strategies. Finally, research has identified CF as 
one of the primary mechanisms of insight when solving problems [13, 14]. Some 
speculate this is because “it benefits from ‘cognitive restructuring’ of the problem, 
enabling the solver to pursue a new strategy or a new set of associations [15].” Over-
all, how users differ in their approach to problems, and their ability to change cogni-
tive strategies, is relevant to HCI; however, without an effective measure of CF, both 
its descriptive and predictive potential in HCI will remain limited.   

Currently, CF is often measured using two well-established tasks, the Wisconsin 
Card Sorting Task (WCST) and the Trail Making Task (TMT) [16–18]. In the WCST, 
the participant’s goal is to sort a series of cards according to one of three rules: shape, 
color, or number. Participants begin unaware of which rule is active, then must learn 
the sorting rule in response to experimenter feedback, and finally must reacquire a 
new sorting rule when the old one changes.  The WCST variable, ‘percent persevera-
tive errors’, is most often associated with CF [19].  This variable is a ratio of the 
number of number of errors attributed to perseveration over the total number of errors 
made. The TMT assesses flexibility slightly differently. First, a baseline score is ob-
tained in part A where, participants make a ‘trail’ by connecting an ascending series 
of numbers. Then, in part B, an additional series of letters is added and participants 
are required to connect the ascending series alternating between the two.  Scores on 
part B and the difference between part B and part A, are most often associated with 
CF [18]. In general, the WCST measures errors and the TMT measures increases in 
time both caused by a lack of CF. However, neither task is really ideal for measuring 
both: Time on trials when rule switches occur are typically not compared to non-
switch trials in the WCST and errors on the TMT are only reflected in increased  
completion time caused by fixing the error [16, 18].  In addition, both tasks have es-
tablished themselves as part of neuropsychological batteries used for diagnosing ex-
ecutive dysfunction, but have not seen as wide acceptance as measures of cognitive 
abilities among healthy populations.  By comparison, measures of constructs like 
working memory capacity, such as the operation span task [20, 21] have been used 
extensively in individual difference research in a variety of different populations in-
cluding HCI studies [22, 23].   

More recently, self-report methods of CF have been developed. The cognitive flex-
ibility scale (CFS) created by Martin and Rubin [24, 25] measures flexibility in the 
context of effective communication.  However, the CFS approaches the concept of CF 
differently than behavioral measures by dividing the construct into three areas: 
awareness of alternatives, willingness to be flexible and self-efficacy in being flexi-
ble. The CFS was validated with other measures of communication effectiveness and 
found to be internally reliable with high test-retest reliability (r = .83).  A more recent 
self-report measure, the cognitive flexibility inventory (CFI), builds upon the CFS and 
extends its utility [26]. The CFI applies to more general life situations and was  
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intended for clinical populations to support cognitive behavioral therapy (CBT) for 
patients with depression.  The authors found that cognitive inflexibility, as measured 
by the CFI, was associated with more depressive symptoms measured by the Beck 
Depressive Inventory (BDI-II; r = -.39 time 1 and -.37 time 2). The CFS and CFI 
were also found to be highly correlated (r = .73 time 1 and r = .75 time 2).  Overall, 
the self-report measures of CF suggest that there is a conscious aspect of flexibility 
related to recognizing alternatives and choosing to act on them.  However, there is 
currently little research comparing results of self-report measures and behavioral 
measures of CF like the WCST and TMT.   

2 A New Measure of Cognitive Flexibility 

The goal of this research is to develop a measure of CF that draws from both the 
WCST and the TMT in order to reliably measure individual differences in flexible 
thinking in normal populations.  By establishing a comprehensive measure of CF, we 
hope that fields like HCI will be able to assess and incorporate individual differences 
in CF into predictive and descriptive models of user behavior. Furthermore, in an 
effort to find consensus between behavioral and self-report measures of CF, we the 
TMT and the CFS with our measure. The measure presented here is a computerized 
version of a paper-and-pencil puzzle task developed by the second and last author 
[27].  In their study, Figueroa and Youmans found that the WCST variable, ‘Trials to 
Complete First Category,’ was a significant predictor of puzzle completion time such 
that fewer trials to complete first category (negatively related to CF) was associated 
with faster puzzle completion times.   

However, as previous work has described [28], the paper puzzle was limited in 
many ways. The only dependent variable produced was a single puzzle completion 
time, allowing only for indirect inferences about the specific impact of rule switching 
on that variable.  Unlike the paper-based puzzle, the computerized version presented 
here (Figure 1) allows for multiple puzzles, manipulation the number of switches per 
puzzle and measurement of switch and non-switch move times. By administering 
multiple puzzle trials we were able to assess how the amount of switching per trial 
impacted each individual.  In addition, the possibility of ‘dead-ends’, a concern with 
the paper puzzle, was eliminated in the computerized version.  Some additional aes-
thetic differences between paper and computerized versions include: different shapes 
and colors, a fog-of-war that occludes all tiles except current and previous moves and 
a nineteen-move path compared to the paper puzzle’s twenty-two move path.    

In this study, we attempt to further validate our measure of CF by correlating per-
formance with the TMT as well the CFS.  We hypothesized that performance on the 
puzzle task would indicate an individual’s cognitive flexibility because participants 
must maintain an active rule to move quickly through the puzzle on non-switch 
moves, but must also quickly abandon previous rules in order to make progress on 
switch moves. As a consequence, perseveration on the previous rule should lead to 
increased switch move times.  Furthermore, we reasoned that if switch costs, the time 
differences between switch and non-switch moves, were robust [29–31], then puzzle  
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completion times would increase with the number of switches in a given puzzle. Thus, 
a simple bivariate regression with number of switches predicting completion time 
would allow us summarize the average effect increasing switches had on each partici-
pant’s performance. We expected that scores on the TMT B and derived scores would 
be positively correlated with puzzle performance in terms of both faster puzzle trial 
completion times and reduced switch cost, and that CFS scores would be negatively 
correlated with performance.  

 

 

Fig. 1. Screenshot of computerized CF measure 

3 Method 

3.1 Participants 

Twenty-four participants (7 men and 18 women, between 18 and 30 years old, median 
19) from George Mason University’s undergraduate research pool voluntarily partici-
pated for class credit.   

3.2 Materials and Procedure 

These data were collected as part of a larger study investigating how CF affects inter-
net search.  The TMT, CFS and Puzzle were all administered in this order immediate-
ly after participants had completed a series of Internet search tasks.  

Trail Making Task. Paper-and-pencil-based versions using Reitan’s (1955) arrange-
ment of the TMT parts A and B were administered.   In part A, participants connected 
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a series of circles numbered 1-25 in order.  In part B, participants connected an alter-
nating series of numbers and letters (e.g. 1 to A, 2 to B, 3 to C etc.).  Scores on the 
TMT were in the form of completion times as measured by the experimenter using a 
stopwatch. Errors were accounted for in terms of time required to correct.  Direct 
scores and derived scores (i.e. B-A and B/A) were used for analysis.  Participants 
always completed part A before part B.  

Cognitive Flexibility Scale. Participants completed the 12-item CFS.  Items (e.g. “I 
am willing to work at creative solutions to problems”) were scored on a 6-point scale 
of agreement (“strongly agree” to “strongly disagree”). Higher scores indicated great-
er levels of flexibility (maximum of 72).   

Puzzle. The computerized puzzle was completed in Adobe® Flash®.  Participants used 
a mouse to navigate a 10 x 10 grid of tiles (60x60 pixels each).  Each tile had a specif-
ic shape, shape color and background color.  A “fog-of-war” occluded all moves ex-
cept those immediately available and participants’ previously traveled path, limiting 
the amount of planning (Figure 1). Of immediately available moves (either two or 
three depending on the location in the puzzle) there was ever only one correct, legal 
move, eliminating the possibility of dead ends.  In order to make a legal move, partic-
ipants needed to match their current tile to the desired tile by three different rules: 
shape, shape color and background color. As participants completed the task, the ac-
tive matching rule changed and the participant was required to adopt the new rule in 
order to continue. For example, a participant might make three successive moves by 
matching by background color, then on the fourth move, no tiles match the back-
ground color of the current tile, forcing the participant to abandon the background 
color matching rule and adopt a new rule based on the tiles available i.e. matching by 
either shape or shape color.  Participants completed the nineteen-move path by always 
starting from the top-left corner and ending in the bottom-right corner.  Each puzzle 
was randomly generated, with switch moves and order of presentation randomized to 
mitigate any order effects. Participants completed seven puzzle trials, each containing 
between two and fourteen switches.  

Participants viewed a training PowerPoint and completed three practice puzzles 
with the experimenter to ensure they fully understood how to navigate the puzzle 
properly.  Before continuing with the experiment, all participants were trained to the 
criterion that they were able to complete a two-switch, eight-move practice puzzle 
within thirty seconds. The task and training were run using a Macintosh iMac with a 
21.5-inch screen.  

The computerized puzzle allowed for the measurement of several different va-
riables. We measured the completion times for each puzzle in seconds, average switch 
and non-switch move times, and the additive, linear effect of amount of switching on 
completion times (b). Each participant completed 56 switch and 77 non-switch moves 
across all seven puzzle trials. Switch moves occurred when the participant switched to 
a new rule in order to advance. Non-switch moves occurred when they advanced  
according to the rule in the previous move. Logically, any move that was not a  
switch move would be non-switch move and vice versa. Switch cost was derived by 
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calculating the difference between average switch and non-switch move times for 
each puzzle then averaged across trials for each participant. This variable indicates the 
additional time required to switch rules over and above just making a move. We ex-
pected all raw and derived scores to be positively correlated with TMT B, B-A and 
B/A and negatively correlated with scores on the CFS. 

4 Results 

After data were screened one outlier, two standard deviations above the mean, was 
removed.  The following analysis was conducted on the remaining twenty-three par-
ticipants.  However, since a participant could have a small b value when fitting a line 
through a set of highly varied data points, we also accounted for the adjusted R2 ( ) 
of the line of best fit.  For this reason, only b values corresponding to an  value of 
.30 or higher were used for analysis.  We acknowledge that fitting a linear model over 
seven data points violates regression assumptions necessary for obtaining linear un-
biased estimates, so the reader is encouraged to interpret b values as summary statis-
tics rather than inferential or predictive in any way.  After applying the  cutoff, 
eight participants were excluded, leaving only fifteen participants analyzable b values.  
Correlations for this variable are specific to those fifteen participants, but all other 
variables will refer to the full sample of 23.   

Five variables, TMT B, B-A, B/A, Switch Cost and Switch move time violated the 
assumption of normality (Shapiro-Wilk p < .05) required for calculating Pearson 
product-moment correlations.  After performing natural log transforms, all five va-
riables, except TMT B were approximately normal (Shapiro-Wilk p > .05). Pearson 
product-moment correlations were computed between TMT, CF, puzzle dependent 
variables (DVs) and are shown in Table 1.    

Internal consistency of the puzzle trials was assed via Cronbach’s alpha (α = .89; 
bootstrap 95% CI [.80, .93]).  Three of the five derived puzzle DVs had moderate to 
strong, significant positive correlations with TMT B and B-A scores providing evi-
dence for convergent construct validity of the puzzle.  In addition, five of the seven 
raw puzzle completion times were significantly correlated with TMT B and B-A. 
Switch cost was significantly correlated with TMT B scores but not B-A.  Interesting-
ly, switch move time was the only DV not significantly correlated with TMT or other 
puzzle DVs.  Average puzzle completion time as well as the six and twelve switch 
puzzle completion times were significantly positively correlated with TMT A.  B/A 
scores were not significantly correlated with any puzzle DVs.  Though generally in 
the expected direction, correlations between the CFS and TMT and puzzle DVs did 
not reach significance.   

5 Discussion 

The goal of this study was to validate a new measure of cognitive flexibility. The high 
Cronbach’s alpha suggests good internal consistency across trials and the strong posi-
tive correlations with the TMT provide evidence for convergent validity. Our results  
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yielded three major findings. First, the puzzle correlated with those TMT dependent 
variables most closely associated with CF and executive function, TMT B and B-A, 
but did not correlate as strongly with TMT A, which has been found to reflect more 
basic motor and perceptual abilities [18].  Furthermore, the fact that the b values, were 
positively correlated with TMT B and B-A scores is a critical finding.  This allows us 
to better disentangle flexibility from confounding aspects of CF like visual motor 
abilities (a common criticism of the TMT [18, 32, 33]).  

Second, we did not find a correlation between the behavioral measures and the 
CFS. This suggests that perhaps these measures tap separate aspects of CF1.  Howev-
er, this study was too limited in scope to draw defensible conclusions about the over-
all relationship between behavioral and self-report measures of CF. As Dennis and 
Vander Wal [26] suggest, more research is needed in this area.  A more comprehen-
sive study with a larger sample and a wider range of measures would be better suited 
to answering this research question.   

Third, this study attempted to characterize flexibility in terms of the linear effect of 
switching on completion time.  However, approximately 30% of our sample had an 
unacceptably low linear fit (  below .3).  This finding may suggest that a segment of 
the population does not experience a linear additive effect of switching.  Perhaps there 
is a majority of individuals that demonstrate a good linear fit and a range of possible b 
values corresponding to high and low flexibility, and a separate group of individuals 
that may be distracted, de-focusing their attention or adapting to the task in an unfore-
seen way. This presents challenges for measurement, but allows for interesting specu-
lation about what sets the ‘poor-fit’ individuals apart.   

Better measures of individual differences like CF allow for the inclusion of cogni-
tive abilities during interaction. Accounting for the flexibility of users with the meas-
ure presented here may allow for better prediction of which users are most susceptible 
to perseverative and ultimately potentially frustrating behaviors, which is a major a 
concern for designers [12].  Furthermore, cognitive models used in simulations may 
be able to use data from our measure to predict behaviors of average, high and low 
flexibility users, identifying what aspects of an interface or task require flexible think-
ing and how individual differences in flexible thinking may impact performance.   

The study presented here highlights only the first step in an effort to bring the 
study of individual differences in cognitive ability to the field of HCI.  The limitations 
of the human attentional system play a vital role in crafting technologies that are func-
tional and easy to use [36].  Numerous studies have demonstrated that expertise, per-
sonality, age and gender may all impact user interactions [34, 35].  However, though 
the role of cognition in HCI is readily apparent, the role of individual differences in 
cognitive ability is not.  Perhaps the most important principle of design, well-known 
to many in the field of HCI is ‘know the user.’ This simple aphorism presents an ex-
ceedingly difficult task. Understanding users’ cognition and how that may vary across 
individuals will play a critical role in designing interfaces and experiences for a grow-
ing population of users in years to come. We hope that better tools and additional 
research will lead to a more complete understanding of user behavior and interaction 
with technology.    

                                                           
1 Anecdotally, Dennis and Vander Wal have unpublished data documenting a similarly null 

relationship between behavioral and self-report measures of CF.   
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