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Abstract. In this paper we investigate the effects of fusing feature
streams extracted from color and depth videos, aiming to monitor the
actions of people in an assistive environment. The output of fused time-
series classifiers is used to model and extract actions. To this end we
compare the Hidden Markov model classifier and fusion methods like
early, late or state fusion. Our experiments employ a public dataset,
which was acquired indoors.

1 Introduction

One of the key questions in creating pervasive systems for the care of the elderly
is the graceful integration with the human user [I]. Towards building such a
system a highly desired property that needs to be satisfied is "non-intrusiveness”.
Computer vision methods can satisfy this property and are typically used in
assistive environments. One of the main challenges is to transform the video
stream into a useful source of information. This can be further divided in several
sub-problems like how to track people in the captured video stream, how to
recognize their postures and how to analyze their short term actions and long
term behaviors.

Motion analysis in video, and particularly human behaviour understanding,
has attracted many researchers [2], mainly because of its fundamental applica-
tions in video surveillance, video indexing, virtual reality and computer-human
interfaces. The automatic modeling and recognition of human behaviour to
reduce human intervention in assistive or other environments is one of the most
challenging problems in computer vision. The related systems are envisaged to
automatically detect, categorize and recognize human behaviors, calling for hu-
man attention only when necessary. This is expected to increase the effective-
ness of 24/7 monitoring services for elderly or patients and make such services
financially viable [3].
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There are several works on human behavior recognition in assistive envi-
ronments using color cameras, e.g., [4], [5]. The color information captured by
conventional cameras is a very useful cue, which can be used for environment
modeling and object tracking. Problems which are associated to color video
tracking are the illumination changes as well as the occlusions [6]. Furthermore,
since human motion is essentially three-dimensional, the information loss in the
depth channel could cause degradation of the representation and discriminating
capability for these feature representations. The emergence of affordable depth
sensors (e.g., Microsoft Kinect) which are largely unaffected by illumination (at
least indoors) has facilitated capturing in real-time not only color videos, but
also depth videos with acceptable resolution (e.g., 640x480 in pixel) and accu-
racy (e.g., = lem). By employing appropriate methods we can extract three-
dimensional and motion information of the monitored subjects in the scene.
Therefore the depth ambiguity of the color camera could be bypassed. On the
other hand such depth sensors cannot differentiate between objects of the same
depth different color, which is trivial for color cameras.

Clearly the color and depth information are correlated but also complemen-
tary to a large extent, so it would be expected to have considerable benefits by
fusing them appropriately together aiming at more robust pervasive behavior
recognition systems. The contribution of this work is a study of the performance
of fusion techniques that combine color and depth videos for human activity
analysis. To this end we use the RGBD-HuDaAct dataset [7], which is publicly
available. We compare fusion methods at the decision level, the feature level and
the state level.

The rest of this paper is structured as follows. In the following section we
briefly survey the related work regarding systems employing color and depth
information. Section Bl describes the feature extraction and the fusion approaches
that we employed. Section[d describes the experimental results and finally section
concludes this paper.

2 Related Work

One of the earliest works on action recognition using a depth sensor was pre-
sented in [§]. In that paper the authors employ an action graph to model explic-
itly the dynamics of the actions and a bag of 3D points to characterize a set of
salient postures that correspond to the nodes in the action graph. That method
managed to halve the recognition errors comparing to the 2D silhouette based
recognition. However one of the main limitations was that it completely ignored
color information.

Ni et al.[7] proposed a method for human activity recognition that takes
into account such color information coupled with depth information. They pro-
posed two multimodality fusion schemes, which simply combine color and depth
streams by concatenation and are developed from two state-of-the-art feature
representation methods for action recognition, i.e., spatio-temporal in-terest
points (STIPs) and motion history images (MHIs).



44 D.I. Kosmopoulos et al.

Depth and color data can also provide higher lever and more meaningfull
features like skeletal joints of a person. Sung et al. [9] propose a supervised
learning approach in which they collected ground-truth labeled data for training
their model. Their input was color and depth images from a Kinect sensor, from
which they extracted certain features (like skeletal joints) that were fed as input
to a learning algorithm. They trained a two-layered maximum-entropy Markov
model which captured different properties of human activities, including their
hierarchical nature and the transitions between sub-activities over time.

However skeletal joint data aren’t always available, especialy in scenarios,
where the camera is mounted on the ceiling. Zhao et al. [10] addressed that issue
and in their work they investigated performances of different ways of extracting
interest points, since interest point based approaches can handle cluttered back-
ground and partial occlusions. Additionaly they proposed a local depth pattern
to represent each local video volume at each interest point. They used LibSVM
[11] to classify human activities in a multi-class fashion.

While Zhao et al. investigated performances of different ways of extracting in-
terest points for activity recognition, in this paper we investigate performances
of fusion techniques that fuse color and depth. In contrast to other methods we
investigate fusion schemes at the state level of the popular HMM framework,
which can give better results than the simple fusion schemes that rely on con-
catenation of the input feature streams. In this paper only region descriptors are
used, however the fusion approach has no constraints regarding the type of the
employed features.

3 Methodology

The proposed methodology performs initially a feature extraction step, combin-
ing the two different sources: depth videos and color videos. From the depth
videos we extract two different types of feature vectors (forward and backward),
as will be described next, while from the color video we calculate features de-
scribing the human blob. The features from the whole sequence are combined
and given as input to a classifier, which in turn decides on the performed activity.
The method is applicable on segmented actions, but can also be used for online
classification, by integration with a particle filter that makes hypotheses about
sequences of actions (see, e.g., [12]).

3.1 The Features

Features from Color Images. The image features that were extracted from
color images were based on a variation of Motion History Images (MHIs). MHIs
are among the first holistic representation methods for behavior recognition [13].
In an MHI H,, pixel intensity is a function of the temporal history of motion
at that point. In [I4], it was shown that pixel change history (PCH) images
are able to capture relevant duration information with better discrimination
performance.
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The PCH of a pixel is defined as:
min(P, - (z,y,t — 1) + 2°°,255)

_J iftD(x,y,t) =1
Por(@y,t) = max(P; - (z,y,t — 1) — 2i‘r’,O) (1)
otherwise

where P, -(x,y,t) is the PCH for a pixel at (z,y), D(x,y,t) is the binary image
indicating the foreground region, ¢ is an accumulation factor and 7 is a decay
factor. By setting appropriate values to ¢ and 7 we are able to capture pixel-
level changes over time. The result is a scalar-valued image where more recently
moving pixels are brighter.

Assuming that the human blob shapes during specific actions have discrim-
inative capabilities we use the complex Zernike moments to capture the PCH
images, which provide scale invariant representations and are relatively robust
to noise. The moments of order p are defined on an grayscale image f as:

1 1 ™ .
="t /0 [ Ryn(r)e 9 10, 0)rdrds (2)

where r = /22432, and § =tan"!(y/x) and —1 < z,y < 1 (z,y are the
image coordinates, with respect to the center, around which the integration is
calculated) and:

p—q

Rpq(r) = (*1)Ss|(p+q
s=0 N2

( 78)! p—2s
fps)!(p;q _ s)!r ? (3)

where p — ¢ = even and 0 < ¢ < p. Moments of low order hold the coarse
information while the ones of higher order hold the fine details. However, the
more detailed the region representation is, the more processing power will be
demanded, and thus a trade-off has to be reached considering the specific appli-
cation requirements.

The MHI images are represented by means of the complex Zernike coefficients
Ago, A11, Azo, Az2, Az1, Aszz, Aso, As2, Asa, As1, As3, Ass, Aso, As2, Asa,
Agg, for each of which the norm and the angle were included in the provided
descriptors. We used a total of 31 parameters (constant elements were removed),
thus providing an acceptable scene reconstruction without a computationally
prohibitive dimension.

Features from Depth Images. Ni et al. [7] proposed the use of a depth sensor
and they introduced the motion history along the depth changing directions. To
encode the backward motion history (decrease of depth), they introduced the
backward-DMHI (bDMHI):

7,if D(z,y,t) — D(z,y,t — 1) < =01z,
max(0, H®P (z,y,t — 1) — 1), otherwise.

HYP (z,y,t) = { (4)
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Fig. 1. Various fusion schemes using the HMM framework for two streams. The s, o
stand for the states and the observations respectively. The first index marks the stream
and the second the time.
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Fig. 2. Tllustration of MHI and PCH images for the put on jacket action

Here, H?P denotes the backward motion history image and D(z,y,t) denotes
the depth sequence. 61y, is the threshold value for generating the mask for the
region of backward motion.

Similarly, the forward history image, is defined as:

()

HfD(x,y,t) _ {7, if D(z,y,t) — D(z,y,t —1) > 5Ith.

maz(0, H{P(z,y,t — 1) — 1), otherwise.
In order to calculate the depth change induced motion history images, according
to the above equations, we use depth maps captured by a Kinect device. To
tackle the problem of noise, we used a median filtering at the spatial domain.
In the temporal domain each pixel value was replaced by the minimum of its
neighbors. Similarly to the color images, each frame was represented by the 6-th
order Zernike moments.
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3.2 Fusion

As mentioned earlier, the depth and color images are highly complementary.
Therefore, we can infer that by applying an appropriate fusion method we could
achieve behavior recognition results better than the results that we could attain
by using the information obtained by the individual data streams independently
of each other. In the following, we shall survey the most popular fusion methods
within the HMM framework and examine their applicability. The observations
from this analysis will form the criterion for our selection of the most suitable
HMM-based information fusion scheme to be used in the context of our system.
Existing approaches can be grouped into feature (or early) fusion and late
fusion approaches. Feature fusion is the simplest approach; it assumes that the
observation streams (sequences of feature vectors as defined in section B.J]) are
synchronous. This synchronicity is a valid assumption for cameras that have
overlapping fields of view and support synchronization. The related architecture
FHMM is displayed in Fig. Let us denote as s; the FHMM state emitting
the tth observation. Let us consider data deriving from a number of C' observation
streams, and denote as {01y, ..., 0ct} the observations at time ¢ deriving from
the available streams. Then, the full observation vector, o;, considered by the
feature fusion approach at time ¢, is a simple concatenation of the available

individual observations: ,
o= (OCt>C:1MC (6)

This way, the observation emission probability of the state s; = i of the fused
model, when modeled as a k-component mixture model, yields:

K
P(ot|sy =1) = ZwikP(ot\Hik) (7)
k=1
where w;; denotes the weights of the mixture components, and 6;; are the
parameters of the kth component density of the ith model state (e.g., mean
and covariance matrix of a Gaussian pdf).

The major limitations of the feature fusion approach lie in the fact that the
simple concatenation of observations from different streams leads to high dimen-
sionality and often fails to capture significant statistical dependencies between
the different sources of information.

An alternative that assumes that the observation streams are independent of
each other is the parallel HMM - PHMM [15] (see Fig. . This HMM-type
model can be applied to cameras (or other sensors) that may not be synchronized
and may operate at different acquisition rates. A PHMM does also comprise a
number of component streamwise HMMs, independently trained of one another.
Similar to the synchronous case, each stream ¢ may have its own weight r,.
depending on the reliability of the source. As a consequence of this construc-
tion, the PHMM suffers from the major disadvantage of tending to neglect any
dependencies on the state level between the observation streams.
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The multistream fused HMM - MFHMM is another method recently proposed
for multistream data modeling [16] (see Fig. [L(c)). The connections between the
component streamwise HMMs of this model are chosen based on a probabilistic
fusion model, which is optimal according to the maximum entropy principle
and a maximum mutual information criterion for selecting dimension-reduction
transforms [16]. Specifically, if we consider a set of multistream observations
O = {o,}L |, with 0; = {0}, and 0° = {0 }1_,, the MEFHMM models this
data based on the fundamental assumption

C
PO)= .Y P [] Pl s (®)

c=1 r#c

where §, is the estimated hidden sequence of emitting states that corresponds to
the cth stream observations, obtained by means of the Viterbi algorithm, P (o)
is the observation probability of the cth stream observed sequence, and P(o0"|3.)
is the coupling density of the observations from the rth stream with respect to
the states of the cth stream model

T

P(0|3:) = [ [ P(oril3ct) 9)

t=1

The probabilities P(0,¢|5.:) of the MEFHMM can be modeled by means of mix-
tures of Gaussian densities, similar to the state-conditional likelihoods of the
streamwise HMMs.

Note also that for each possible value, say i, of S, i.e. for each different state
of the streamwise HMMs, a different coupling density model P(0.+|$.c = ) has
to be postulated. Hence, if we consider K-state streamwise HMMs, there is a
total of K different finite mixture models that must be trained to model the
coupling densities P(0yt|8ct), Vr,c.

4 Experiments and Results

The employed dataset is the RGBD-HuDaAct [7], which includes twelve
categories of human daily activities, motivated by the definitions provided
by health-care professionals. Namely these are: (1)make a phone call, (2)mop
the floor, (3)enter the room, (4)exit the room, (5)go to bed, (6)get up, (7)eat
meal,(8)drink water, (9)sit down, (10)stand up, (11)take off the jacket and
(12)put on the jacket. There is also a category named as background activity
that contains different types of random activities. Thirty actors were involved in
capturing. The actors were student volunteers, and were asked to perform each
activity 2 - 4 times. Finally, approximately 46 hours of video were acquired for
a total of 1189 labeled video samples. Each video sample spans about 30 - 150
seconds.

The resolutions of both color image and depth map are 640x480 pixels. The
color image is of 24-bit RGB values; each depth pixel is an 16-bit integer. Both
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Fig. 3. Confusion matrices for the twelve tasks in the RGBD-HuDaAct dataset. The
results are normalized based on the total number of actions, considering all cross-
validation runs. The actions are: (1)make a phone call, (2)mop the floor, (3)enter the
room, (4)ezit the room, (5)go to bed, (6)get up, (7)eat meal,(8)drink water, (9)sit down,
(10)stand up, (11)take off the jacket and (12)put on the jacket.

sequences are synchronized and the frame rates are 30 frames per second. The
color and depth frames are stereo-calibrated. The horizontal and vertical dis-
tances from the camera to the scene center under capture are about two meters
each and the average depth of the human subject in the scene is about three
meters (i.e., which is the optimal operation range of the depth camera). This
geometric setting is appropriate for home or hospital ward monitoring.

The basic observations about the dataset have to do with the complementarity
of the two sources of information: color images and depth. The latter is able to
differentiate between actions that take place within the human blob, e.g., make
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a phone call and drink water may look similar in color videos, however the depth
motion is different. On the contrary depth sensors have problems when viewing
objects with large discontinuities (e.g., actions sit down, get up, where furnitures
are present); such depth maps have a significant amount of noise. After frame
differencing and thresholding motion can be falsely detected even in areas where
there are only still objects, while color cameras are much more robust concerning
this aspect.

We have performed cross validation testing for one user after training for the
rest ones. In all cases we used six-state continuous HMMs with two components
for each state, which was gave reasonable results. The results are displayed in fig
Bl Clearly the multi - stream approach outperforms the other methods, followed
by the parallel HMM fusion. The feature fusion is clearly inferior and this is a
result that agrees with the observations in [I7], where a similar comparison was
performed. The overall accuracies are close to the ones reported in [7], however
the results are not directly comparable due to differences in the cross validation
procedures. In [7] random sampling was performed to separate the training set
from the test set, which was not replicated here. However, by establishing a fair
comparison between the three fusion methods we were able to assess the early
fusion scheme, which was the sole method tested in [7], in comparison to the
other two fusion methods (parallel and multistream).

5 Conclusions

This paper investigated the effects of fusing color and depth videos, aiming
to monitor the behavior of people in an assistive environment. The output of
fused time-series classifiers was used to model and extract behaviors. To this end
we employed the Hidden Markov model general framework. Fusion methods like
early, late or state fusion were compared. The results from early fusion were weak
compared to the other approaches. The late fusion gave better results, however
the state fusion scheme outperformed all other methods. Our results are inline
with the study in [I7] for some different scenarios (industrial workflows). We
expect that they can be generalized to other feature streams (e.g., spatiotemporal
interest points) and we aim to investigate this hypothesis in the future.
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