A Prototyping and Evaluation Framework
for Interactive Ubiquitous Systems

Christine Keller, Romina Kiihn, Anton Engelbrecht,
Mandy Korzetz, and Thomas Schlegel

TU Dresden - Junior Professorship in Software Engineering of Ubiquitous Systems
{christine .keller, romina.kuehn,mandy.korzetz,
thomas. schlegel}@tu—dresden .de,
anton.engelbrecht@mailbox.tu-dresden.de

Abstract. Ubiquitous systems often come with innovative design ideas and in-
teraction concepts. To enhance and ensure the user’s acceptance, it is necessary
to test and evaluate those ideas in early design stages. In addition, early tests also
validate the feasibility of those concepts. Rapid prototyping of ubiquitous systems
enables researchers and practitioners to quickly test and implement new ideas, but
is also necessary in iterative system development. We introduce a framework that
supports rapid prototyping and evaluation of ubiquitous interactive systems using
a modular approach, incorporating different interaction modes.

Keywords: Rapid Prototyping, Framework, Ubiquitous Systems, Interaction.

1 Introduction and Motivation

Ubiquitous computing aims at building intelligent environments, where computing de-
vices of all sorts are pervasive but unobtrusive, as first envisioned by Mark Weiser
[12]. A ubiquitous environment is supposed to support its users by providing easy in-
formation and computing access as well as usable interfaces. The key is “Getting the
computer out of the way” [13]. Weiser’s vision turned 20 in 2011 and although our
computers are not out of the way yet, computing devices of all shapes and sizes become
increasingly pervasive. However, most computing devices are standalone systems, lack-
ing intelligent mechanisms to exchange data or incorporate context information, but
also missing interaction concepts that ease the user’s access to the system. Research for
ubiquitous systems involves the design of innovative interaction concepts. It is neces-
sary to test and evaluate those ideas in early design stages to avoid design errors. Pro-
totypes are essential for developing and evaluating interaction concepts for ubiquitous
environments. As Mark Weiser already stated 1993, “the research method for ubiqui-
tous computing is [...] the construction of working prototypes [...]” [13]. Prototyping
interactive ubiquitous systems facilitates the user-centered design process in ubiquitous
computing and supports the development of systems that “get out of the way”.

We developed a prototyping and evaluation framework for ubiquitous interactive sys-
tems, named ProtUbique. Our framework was designed and implemented to support
rapid prototyping of interaction concepts for ubiquitous environments. It provides sev-
eral components that implement different interaction channels to support a variety of

N. Streitz and C. Stephanidis (Eds.): DAPI/HCII 2013, LNCS 8028, pp. 215-224] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

216 C. Keller et al.

modalities. Our goal is to enable a prototyping engineer to rapidly assemble different
interaction channels, to provide any level of background code and then to evaluate this
prototype with user tests using the same framework. In the following paragraph, we will
take a look on related work in the field of prototyping for ubiquitous systems. We will
then present our prototyping tool for interactive systems and describe our realization.
After that, we give an example of a prototype that was developed using ProtUbique
and show, how the framework can be used. We conclude with the discussion of our
framework and future work.

2 Related Work

A prototype is a partially realized system that serves as example of a planned system. It
can be used to test implemented functionality, to assess design decisions or to evaluate
system concepts. Rapid prototyping tools and frameworks allow software engineers and
system designers to quickly assemble prototypes and are often used in iterative software
development processes [7]]. In order to design usable systems it is important to involve
potential users in early stages of the development process, to evaluate design ideas and
to improve the system concept [4], [2]. In the user-centered design process, prototyping
is a key technique to evaluate and improve an interactive system [8]]. Paper prototypes
and the like can serve as a starting point for the requirements analysis [Sl]. However, it
is also important to build technically mature prototypes, in order to evaluate and test
ubiquitous interaction [6].

Several research efforts aim at supporting rapid prototyping for ubiquitous systems.
The Context-Toolkit from Dey, Abowd and Salber is a distributed context-aquiring and
handling toolkit [3]]. The Context-Toolkit provides context-widgets, interpreters and ag-
gregators to abstract, hide and reassemble sensor-data for context-aware applications.
Because of its service-oriented architecture the different components can be imple-
mented in various programming languages. The Toolkit supports rapid prototyping of
context-aware ubiquitous systems, and although they focus on providing context-aware
interaction, the implementation of the interaction itself is not supported, in contrast to
our framework. More focused on prototyping interaction is the iStuff toolkit developed
by Ballagas et al. [1]. It supports interaction on displays via physical tangible devices.
The toolkit allows any physical object or device that has a wireless interface to be an
input or output device by defining it as an iStuff component. An iStuff component then
is connected to a central system. The toolkit supports multiple users, devices and appli-
cations and is therefore very adaptable to different scenarios and fields of application.
The authors write, that ”event communication takes only a few lines of code” in order
to utilize iStuff [1l]. They also provide some output devices, for example a vibrating
device for haptic output, they call iVibe. However, the toolkit does not support other
interaction techniques but tangible devices, whereas we focus on facilitating different
interaction modalities.

The Distributed Wearable Augmented Reality Framework (DWARF) by Christian
Sandor and Gudrun Klinker is a ’software infrastructure that allows the rapid exchange
of interaction styles” [[11]. According to Sandor and Klinker there are currently three
aspects of interaction of future human-computer interfaces: mobility, multichannel-
communication and interactions embedded in the real world. DWARF adresses these

A Prototyping and Evaluation Framework for Interactive Ubiquitous Systems 217

three interaction-styles and is built of loosely coupled distributed components. It has
a layered architecture that includes a hardware layer, which manages the sensors and
recieves the input-data. This data is then processed and interpreted by an interaction-
management layer. On top of that, a media-design-layer takes care of the output or rout-
ing of the data. The implementation and utilisation of interaction components however
is more complex as our approach, where interaction channels are modified via graphical
user interface.

The proximity toolkit by Marquardt et al. facilitates the creation of so-called
proxemic-aware applications [9]]. These are applications that use the distance and orien-
tation towards entities to realize interaction, where enities can be people, digital devices
and objects. Orientation, distance, motion, identity and location information between
entities is captured via marker-tracking and cameras in an laboratory. These measures
are provided to prototype engineers for usage in the implementation of interactions.
The toolkit is also able to record and replay events that are generated by the tracked
entities. The proximity toolkit provides a visual monitoring tool, that allows to observe
and record the proxemic relationships of entities in three dimensional space. The archi-
tecture of the proximity toolkit separates sensing hardware from the processing layer.
This way, different sensing technologies can be used. The layered architecture provides
flexibility and extensibility, which is also supported by the plugin-concept that enables
a prototyping engineer to use predefined templates for interactions to support rapid
prototyping. The installation of cameras is fixed and therefore not portable. The prox-
imity toolkit only provides one means of interaction based on the described relation-
ships between entities, other interaction techniques are not planned. Our framework, in
contrast, focuses on providing different interaction channels and on extensibility. Nor-
rie and Murray-Smith show that the Microsoft Kinect sensor can simulate a proximity
sensor for spacial interaction without the installation of special hardware [[10]. Further-
more, the authors suggest additional sensor types that can be simulated using Microsoft
Kinect data. Those are an accelerometer, a pose sensor, an occupancy sensor, a motion
sensor, a light sensor and a sound meter. These sensors can then be used in prototypes
for interactive ubiquitous systems. Their implemented tool simulates a proximity sensor
by tracking the spatial position of the user’s hand. The authors use it for a mobile appli-
cation that utilizes the proximity data and displays useful information if the user points
his mobile phone to different spots. Although the authors suggest the usage of kinect
data for additional sensors and possible interactions, they did not implement these yet.
Therefore, only one interaction technique is supported at the moment.

It is our opinion that toolkits or frameworks that support prototyping of interactive
ubiquitous systems need to be highly flexible to support many different domains, since
there are numerous fields of applications for ubiquitous systems. As multimodal inter-
action is very important for ubiquitous systems, they need to provide different means
of interaction for the prototype. In the following sections we will therefore present our
framework ProtUbique, that allows for rapid prototyping of interactive ubiquitous sys-
tems. It supports different interaction techniques and easy adaptation via graphical user
interface. Its architecture is modular, encapsulating the different interaction channels
and therefore facilitates the extension by additional interaction channels.

218 C. Keller et al.

3 A Rapid Prototyping Framework for Ubiquitous Systems

We developed ProtUbique, a framework that facilitates the user-centered design of ubig-
uitous systems. It supports easy and rapid prototyping of interactive ubiquitous systems
and also enables the evaluation of these prototypes. ProtUbique focuses on interaction
prototypes and for this purpose provides an abstraction layer for the prototyping engi-
neer that encapsulates different interaction channels for supporting a variety of modal-
ities. The prototyping engineer therefore doesn’t have to implement several interaction
techniques but can use the readily implemented interaction components and easily plug
them into his backend code, as displayed in figure [l Because the backend code pro-
vides the program logic and is not restricted in any way, various prototypes for different
interactive ubiquitous fields of application become possible.

O

ul
In/out

Fig. 1. Plugging together different implemented interaction channels for a new prototype

With our approach we are able to reduce the effort needed for programming. The
user can quickly develop mixed or high-fidelity prototypes depending on the maturity
of the backend code. The developed prototypes are then able to provide more or less
functionality depending on the implemented backend code. In doing so several inter-
action techniques can be combined by using pre-implemented channels or by adding
self-implemented channels to the framework.

Our goal is to facilitate the usage of different interaction channels without limit-
ing the flexibility of their application. The interaction channels are therefore made
available through a graphical user interface that allows customizing them. The inter-
action channels generate events that can be used to trigger responses to the specific
interaction. These events have to be used in backend code. We intend to support as
much customizing as possible through the graphical user interface. This way, prototyp-
ing engineers can concentrate on designing the prototype and providing backend code
rather than implementing interaction techniques. In order to support the user-centered
design of interactive ubiquitous systems, the ProtUbique framework also enables user
tests. Prototypes that are realized within the ProtUbique framework can be evaluated
within the framework itself. With the help of the framework interface user tests can be

A Prototyping and Evaluation Framework for Interactive Ubiquitous Systems 219

recorded and played back, showing all captured interactions. The following sections
present our modular system architecture, the graphical user interface (GUI) and current
implemented interaction channels in detail.

3.1 Architecture and Graphical User Interface

The first few interaction channels were implemented using the Microsoft Kinect sensor
for the Xbox 360, which allows for various input modes. The ProtUbique framework
is implemented in C#. We focused, however, on keeping the framework extensible and

on allowing the easy development of additional interaction channels, as displayed in
figure 2

Prototype c

+KinectData

+getComponent()
+addC: 1t()

+Log() : event

JAN

GestureC PostureCi SurfaceC SpeechC

+LogArrived() +setRec i ures() ||+set i ures() |[+AddSurface() [+setRecognizableCommands()
+StartRecord() +GestureRecognized() : event |[+PostureRecognized() : event | [+CollisionDetected() : event | [+CommandRecognized() : event
+StopRecord()

Fig. 2. The modular architecture of ProtUbique

Flexibility in ProtUbique is provided by the Prototype class. Its purpose is to me-
diate between the different hard- and software that realizes the interaction channels and
the backend code that is provided by the user. An interaction channel can either pro-
vide output or input capabilities or both. An output component would consume data to
deliver it to the user in the defined way, where an input component creates events when-
ever an interaction is recognized. The Component class represents general interaction
channels. Individual channels can be realized as specializations of the Component
class. If an implemented interaction channel should be applied in a certain prototype,
the corresponding object is registered in the Prototype class, which then initializes
the interaction channels and delegates resulting events to the backend code or delivers
output data to output channels. A registered interaction channel can be tailored for the
prototype it should be used for.

A prototype engineer must plug the events created by the interaction channels into
his backend code, but apart from that should not have to write much additional code.
This is why we decided to provide a graphical user interface (GUI) that facilitates the
configuration of the selected interaction channels for a new prototype. The first step of
creating a new prototype using ProtUbique is always the generation of a Prototype
class and the registration of the used components. Each component then initializes a
tab in the graphical user interface of ProtUbique, in which it can be configured. Since
most of the implemented interaction channels use the Kinect sensor, we used its depth
frame and VGA image to display the space that is used for the prototype, as shown

220 C. Keller et al.

A

e of Player 562 for gesture: RightHandSwipeL eftGestt
ognize PushGesture (Player 562)

e of Player 562 for gesture: PushGesture recognized
oomOutGestus

yyyyyyy

pla <ol Player 562)
Pos player e sta er 562 for gesture: ZoomOutGesture recogn
Posture of player 928 recognized: BothHandsTogetherPosture couldn't recognize LeftHandSwipeRightGesture (Player 562)
Posture of player 928 recognized: BothHandsTogetherPosture Posture of player 535 recognized: TPosture

Collision with Button Paper detected Posture of player 535 recognized: TPosture

(a) Drawing interactive surfaces (b) Using implemented gestures

Fig. 3. The GUI of the ProtUbique framework

in figure The left column of the graphical user interface consists of the VGA
image on the top and the depth frame in the middle. There is also a presentation of the
recognized skeletons on the bottom of the column on the left hand side. The left column
can easily be omitted, if no Kinect sensor is available. On the bottom of the ProtUbique
GUI, there is an output panel. All fired events and therefore all recognized interactions
are displayed there, which is also shown in figures [3 and They also display the
different configuration tabs of the interaction channels.

3.2 Implemented Interaction Channels

Up to now, we implemented postures, gestures, speech and interactive surfaces to sup-
port rapid prototyping of interactive and possibly multimodal ubiquitous systems. The
PostureComponent can recognize designated postures of the skeleton detected by
the Microsoft Kinect sensor. The Kinect is able to detect and distinguish 20 skeleton
joints. We only use eleven of the skeleton joints for posture detection. A posture is
defined using their relative positions. Constraints restrict the angle between two skele-
ton joints. The “Posture Creator” tab of the ProtUbique GUI provides a graphical tool
for defining postures, as shown in figure [d(a)l The skeleton joints that can be used for
posture definition, are displayed on the left in the GUI. The skeleton can be edited by
clicking on the nodes and dragging them into the required positions. The second page
of the Posture Creator serves for editing constraints and angles between the different
joints, as shown in figure Constraints for postures helps distinguishing different
postures from each other. A constraint is defined by selecting a base joint, displayed
in red, and two leg joints, displayed in green. Base and leg joints form an angle. The
constraint restricts this angle between the two leg and base joints and has a given toler-
ance, which translates into a minimum and maximum angle. The posture is then saved
into an XML file, which can be loaded again at any time. The name given for the file
is also the name for the posture. Using this name, the postures can be registered in the
Prototype class. All registered and therefore available postures are then displayed in

A Prototyping and Evaluation Framework for Interactive Ubiquitous Systems 221

the “Posture” tab, where also the name of the last recognized posture is given, as shown

in figure

=]
O ®
Toler: 0
Someone said hallo -
start posture of Player 570 for gesture: ZoomInGesture recognize
Someone said hallo
Someone said hallo
Collision with Button Kugel2 detected
— e Posture of player 526 recognized: BothHandsTogetherPosture
F— Collision with Button Kugel2 detected
Collision with Button Kugel2 detected
(a) Creating postures using the Posture (b) Posture tab.
Creator.

Fig. 4. Posture component: creating and customizing

The SsurfaceComponent is used to create interactive surfaces (any polygons) or
volumes (e.g. spheres) defined by their coordinates in space. Interactions are triggered
by collisions of a body-joint with the defined surfaces using the Kinect depth sensor.
A developer can use interactive surfaces to simulate buttons or interaction with fixed
objects. The surfaces can be designed “around” the objects that are meant to be interac-
tive. By touching these real-world objects and consequently interacting with the defined
surface, the interaction with the object itself can be emulated. Interactive surfaces can
be created by directly drawing them into the depth frame of the Kinect sensor, that is
displayed on the left in the GUI. There are two drawing modes - a triangle mode that
allows for creation of any kind of polygons, which are automatically split up into tri-
angles. While in triangle mode, the user can click on the “Create New Surface” button
and then mark the vertices of the polygon in the depth frame. A mouse click defines a
vertex at the current x and y position. The depth information is taken directly from the
depth information of the sensor. A right mouse click completes the definition of a new
interactive polygon. The second mode is the sphere mode. By clicking into the depth
frame, the center of a new interactive sphere is marked. A prompt allows to input the
radius of the sphere. Each new interactive surface or sphere is given a name, that is also
used to reference it in the underlying code. As shown in figure[3(2)] the tab also shows
a front view and a top view of the space that is captured by the Kinect sensor. The inter-
active surfaces are displayed there, in order to give a three dimensional impression. The
detected skeletons can also be displayed in the front and top view. Interactive surfaces
can be exported and saved to a file for reuse and import in other prototypes.

The detection of gestures is implemented in the GestureComponent. They are
not so easy to define via graphical interfaces. Gestures consist of different postures that
are performed in sequence. Variations in speed of the executed gesture as well as angles

222 C. Keller et al.

and movement during the transition between postures affect the precision of gesture
recognition. The given tolerances have a strong influence on the precision of recog-
nition and they differ for each gesture. Therefore, we decided to implement different
gestures that are provided by ProtUbique. The gesture library can be extended by pro-
gramming additional gesture recognition components and we hope that the future use
of ProtUbique leads to the development of components that can be added to the library.
Prototyping engineers that do not want to implement new gestures can use the prede-
fined gestures from our library. Using the gesture tab of the GUI (3(b)), all registered
gestures can be selected and a picture of the postures that form the start and end of one
gesture is displayed as well as a textual description of the gesture.

By using the Windows Desktop Speech API from Microsoft, we also realized a
SpeechComponent. Words and phrases can be defined as commands. The Speech-
Component encapsulates the Windows Desktop Speech API and passes the events of
recognized commands on to the Prototype class. A prototype engineer can add new
words and phrases as commands by entering them on the speech tab of our ProtUbique
GUI. The last word that was recognized is also displayed there for logging purposes.

To evaluate the prototypes created with our system, we additionally integrated a
built-in recording-tool which is implemented as a specialized component, called Re-
corderComponent. It uses a camera and microphone to record audio and video
data. In addition, the interactions that are recognized and fired events are also logged.
In order to study the performance of test users, the prototyping or usability engineer can
replay the recorded audio and video and also review the performed interactions. On the
“Recorder* tab of the GUI it is possible to insert an ID to identify the current test user.
This ID is then used to associate the recordings with the performed tests.

3.3 A Practical Example of How to Develop a Prototype Using ProtUbique

To test the functionality of ProtUbique, two developers, who were unfamiliar with our
framework, developed a new prototype for a ubiquitous music player. To implement a
new prototype there are only a few steps necessary. At first, a new ProtUbique project
has to be created. It contains a Main class that initializes the different interaction
components and instantiates the Prototype object. By instantiating Prototype,
the prototype engineer can choose if the GUI, the Kinect sensor and the evaluation
recorder should be enabled. The chosen interaction components are then added to the
Prototype object. Once registered, the interaction components can be configured
using the GUI, as described above. Afterwards, the events that are generated by Prot-
Ubique and the used interaction components can be plugged into backend code, in order
to trigger responses.

The music player’s functions comprise a central storage of different types of music
and the possibility to play this music. The player is controlled by gestures, surfaces,
postures, and speech. The following functions were implemented by the developers:
Associate different categories of music with objects through interactive surfaces, start
and stop music, adjust volume up and down, forward and rewind, start and stop karaoke
mode. The developers worked as a team because one person had to assemble the pro-
totype and to program the backend code, while another person was necessary to test
the behaviour of the implemented prototype and also to discuss their concept for the

A Prototyping and Evaluation Framework for Interactive Ubiquitous Systems 223

protoype. The developers were asked to assess their programming skills and experience
with Microsoft Kinect and the Kinect SDK before starting the implementation. Both
stated that they have middle-rated experience with the Microsoft Kinect sensor as in-
teraction device and a lot of experience in programming in general. They rated their C#
skills as little to moderate.This information was gathered to figure out whether users
have to be experts for using the prototyping framework or not. It turned out that C#
knowledge would be an asset but is not mandatory. This is actually due to the fact that
the backend code and the processing of events proved difficult, given their moderate
expertise using C#. The test programmers stated, that the ProtUbique framework was
helpful implementing a prototype for a ubiquitous system. They also judged that ubig-
uitous prototyping supported by a framework is easy and fast in contrast to complex
constructions that they figured would be needed if no framework is provided. Different
interaction options are easy to integrate and development cycles are fast, too. Both de-
velopers evaluted the framework as usable, operable and easy to learn. In addition, the
functions of the offered components were comprehensible. For applying gestures and
postures they used the framework’s GUI, which was considered suitable. Some sugges-
tions for improvement were given by the developers, too: the realization of different
grammars for SpeechComponent, allocation of templates, pre-assembled elements
and patterns within the framework’s GUI to speed up the prototyping and the support
of composition by drag-and-drop. As our example shows, our modular concept seems
to work and the facilitation of the prototyping process was highly appreciated.

4 Conclusions

In this paper we presented the ProtUbique framework, that facilitates rapid prototyping
and evaluation of interactive ubiquitous systems. Since interactive ubiquitous systems
come with innovative and for most users unfamiliar interaction concepts, they have to be
designed involving users to ensure high usability. Therefore the ProtUbique framework
is conceived to support the user-centered design process of ubiquitous systems.

It is extensible so that additional interaction channels can be easily implemented.
With this functionality, rapid prototyping of ubiquitous interactive systems becomes
easily feasible. A prototyping engineer however, can use the given interaction channels
with minimal programming effort. He therefore can focus on providing detailed back-
end code or on conducting user studies and evaluating his ideas. For this purpose we
provide a GUI that can be used to configure the different current implemented interac-
tion channels as far as possible.

Our concept is not fully implemented yet, since there are no dedicated output com-
ponents at the moment, e.g. a speech output channel. This is part of our future work
on ProtUbique. In another iteration, we plan to further extend the available input inter-
action channels and also to implement new gestures by adding for example the Ges-
ture Authoring Tool of Omek Beckon SDKIH. So far, implementation of new interaction
channels has proven to be easy and quick, due to the modular design. As interaction
channels are separated from each other and implemented as individual components,
the development of new components is straightforward. We would like to test the next

! http://www.omekinteractive.com/

http://www.omekinteractive.com/

224 C. Keller et al.

version of ProtUbique with some participants, in order to evaluate the usability of the
framework. The vision of our work is to evolve the ProtUbique framework from a tool-
based rapid prototyping framework for ubiquitous systems into an integrated user inter-
face and software engineering approach for multimodal ubiquitous systems, spanning
the whole life-cycle of highly interactive ubiquitous systems.

Acknowledgements. We wish to thank Enrico Hinz, Josefine Zeipelt, Mirko Wolff,
Nico Schertler, Philipp Sonnefeld and Ronald Graupner for the contributions made by
their practical work.

References

1. Ballagas, R., Ringel, M., Stone, M., Borchers, J.: istuff: A physical user interface toolkit for
ubiquitous computing environments. In: CHI 2003, pp. 537-544 (2003)

2. Bdumer, D., Bischofberger, W.R., Lichter, H., Ziillighoven, H.: User interface prototyping
- concepts, tools, and experience. In: Proceedings of the 18th International Conference on
Software Engineering, ICSE 1996, pp. 532-541. IEEE Computer Society, Washington, DC
(1996)

3. Dey, A.K., Abowd, G.D., Salber, D.: A Conceptual Framework and a Toolkit for Support-
ing the Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction 16,
37-41 (2009)

4. Gould, J.D.: How to design usable systems. In: Handbook of Human-Computer Interaction
(1988)

5. Kiihn, R., Keller, C., Schlegel, T.: Von modellbasierten storyboards zu kontextsensitiven
interaction-cases. i-com - Zeitschrift fiir Interaktive und Kooperative Medien 10(3), 12-18
(2011) (in German)

6. Liu, L., Khooshabeh, P.: Paper or interactive?: a study of prototyping techniques for ubiqui-
tous computing environments. In: CHI 2003 Extended Abstracts on Human Factors in Com-
puting Systems, CHI EA 2003, pp. 1030-1031. ACM, New York (2003)

7. Luqi: Software evolution through rapid prototyping. IEEE Computer 22, 13-25 (1989)

8. Maguire, M.: Methods to support human-centred design. International Journal of Human-
Computer Studies 55(4), 587-634 (2001)

9. Marquardt, N., Diaz-Marino, R., Boring, S., Greenberg, S.: The proximity toolkit: Prototyp-
ing proxemic interactions in ubiquitous computing ecologies. In: UIST 2011 (2011)

10. Norrie, L., Murray-Smith, R.: Virtual sensors: Rapid prototyping of ubiquitous interaction
with a mobile phone and a kinect. In: MobileHCI 2011 (2011)

11. Sandor, C., Klinker, G.: A rapid prototyping software infrastructure for user interfaces in
ubiquitous augmented reality. Personal Ubiquitous Comput. 9, 169-185 (2005)

12. Weiser, M.: The computer for the 21st century. Scientific American 265, 94—104 (1991)

13. Weiser, M.: Some computer science issues in ubiquitous computing. Communications of the
ACM 36(7), 75-84 (1993)

	A Prototyping and Evaluation Framework for Interactive Ubiquitous Systems
	1 Introduction and Motivation

	2 Related Work

	3 A Rapid Prototyping Framework for
Ubiquitous Systems
	3.1 Architecture and Graphical User
Interface
	3.2 Implemented Interaction Channels

	3.3 A Practical Example of How to Develop a
Prototype Using ProtUbique

	4 Conclusions

	References

