Supportive User Interfaces for MOCOCO (Mobile,
Contextualized and Collaborative) Applications

Bertrand David, René Chalon, and Florent Delomier

Université de Lyon, CNRS,
Ecole Centrale de Lyon, LIRIS, UMR5205,
36 avenue Guy de Collongue, F-69134 Ecully Cedex, France
{Bertrand.David,Rene.Chalon,Florent.Delomier}@ec-lyon. fr

Abstract. Enhancing interaction with supplementary Supportive User Interfac-
es: Meta-Uls, Mega-Uls, Extra-Uls, Supra-Uls, etc. is a relatively new chal-
lenge for HCI. In this paper, we describe our view of supportive user Interfaces
for Aml applications taking into account Mobility, Collaboration and Contextu-
alization. We describe proposed formalisms and their working conditions:
initially created for designers in the design stage; we consider that they can now
also be used by final-users for dynamic adjustment of working conditions.

Keywords: Interactive and collaborative model architectures, formalisms, Am-
bient Intelligence, pervasive and ubiquitous computing, tangible UL

1 Introduction

The Supportive User Interface (SUI) issue is a relatively new CHI research field, as
illustrated by the first workshop devoted to this issue in 2011 [8]. However, several
approaches to this issue were proposed already a long time ago without calling them
Supportive Uls, just as Mr. Jourdan wrote prose, ... We have a relatively long expe-
rience in this approach, as since 1994 we have proposed a formalism the aim of which
was to support designers’ and final-users’ manipulations to allow dynamic changes
during execution of interactive applications, first purely interactive, then collabora-
tive, and now mobile, collaborative and contextualized.

2 State of the Art

In the workshop mentioned above [8] several approaches were recalled such as Meta-
Uls, Mega-UlIs, Extra-Uls, Supra-Uls, and others presented as SEUI (Self Explanato-
ry UI), ISATINE and its SUI as well as supportive Uls derived from Collaborative
User Interfaces.

3 Our Proposals

To present our general approach and detailed contributions, we start with a brief reminder
of the historical evolution of UI design. The first step was software architecture geared

M. Kurosu (Ed.): Human-Computer Interaction, Part V, HCII 2013, LNCS 8008, pp. 29-B8] 2013.
© Springer-Verlag Berlin Heidelberg 2013

30 B. David, R. Chalon, and F. Delomier

towards the need to separate Presentation, Control and Application behavior. Architec-
ture models accounted for this need first by hierarchical models such as the SEEHEIM
model or ARCH model. Then a reactive agent model emerged with mainly a PAC mod-
el. In a MDA (Model-driven architecture) approach, several models and formalisms such
as ours (see hereafter) were proposed. The CAMELEON reference framework [1] pro-
posed three layered approaches with CUI, SCUI and FUI. We based our work in relation
to this state of the art.

3.1 AMF Architecture Principles Model

Our first contribution for SUIs (supportive user interfaces) is in relation to our pro-
posal of the AMF model [10]. The AMF model is structured on the basis of agents, in
a way that can be compared to the PAC model [3]. The main difference between PAC
and AMF lies in the generalization of the number of facets: 3 in PAC, multiple in
AMEF. This choice was justified by the need to acquire a clear, clean expression of
interaction control. This means that our goal was to express in the control facet only
different relationships between other facets, the aim of which is to express other as-
pects of behavior. If a new behavior such as explanation, trace collection, and so on,
occurs, and if it is considered as interesting and repeatable in other applications, a
new facet is created. In this way, control can be and is expressed by a graphic repre-
sentation relating different facet inputs and outputs by clearly expressed administra-
tors (Fig.1). The main goal of this graphic expression of control is to allow the
designer to model this behavior in a coherent and comprehensible manner.

Simple Returning value Filtering Targets

%nteracnve Agent

Presentation Facet ¥ | Abstraction Facet

Control Administrators

| Communication Ports P

[The symbol \J\ represents a physically activated port J

Fig. 1. AMF administrators and their use in control modeling [9]

An interesting consequence of this choice is the possibility of showing this model
to the final-user and allowing him to modify the control behavior of his application by
using a contextual editor. In this way, the user observing the model can modify it in
order to change the behavior of his application. If he considers that the Echo_Action
is not meaningful for the user, he can remove the relationship between Do_Action and
Echo_Action and the corresponding Control Administrator. Consequently, the

Supportive User Interfaces for MOCOCO Applications 31

manipulation of AMF graphic representations is a Supportive User Interface that can
be assimilated to Meta-UI or Mega UL

3.2 AMF-C Extensions

In the continuity with the AMF model approach, in 1999 the AMF-C model [10] was
proposed as an extension of the AMF model for cooperative applications. In this con-
text, the same idea of clean, clear control, expressed graphically, is used. In a distri-
buted collaborative environment, we proposed either to replicate each AMF agent on
each workstation, or to fragment each AMF agent and locate only the presentation
facet on each workstation. One of the possible implementations is the “replicated
mode”. In this case, each AMF agent is replicated on each user workstation, and a
synchronization mechanism is used at network level to propagate manipulation
echoes to other collaborating actors. In this way, with an augmented set of administra-
tors it is possible, just as for AMF, to design the control graphically. In this case, the
control expresses not only individual interactions, but also, and in particular, colla-
borative behavior.

Fragmented AMF-C Agent

User 1 Present. | Control | Abstraction
\I\ Lock Administrator
N Start_Action X .} -

A

User 2 Present.

Start_Action
Echo_Action

Ny

Do_Action is activated if one
Start_Action port is activated
and if the lock is opened. The
activation closes the lock.

Fig. 2. AMF-C control modeling, expressing awareness.

As regards AMF, our view is that this visual programming is both appropriate and
easy to use by the final-user for modifying several behavioral aspects of a collabora-
tive system or an application using a contextual editor. We can mention, as an exam-
ple of dynamic adjustment of an application behavior, the decision of awareness of a
set of manipulations. This means that echoes of operations and corresponding mani-
pulations or results are not propagated to other contributors, as shown in Fig. 2. All
adjustments relating to control can be formulated in this way and at the time of execu-
tion using a contextual editor.

32 B. David, R. Chalon, and F. Delomier

3.3 IRVO Model

Another model and formalism we proposed, called IRVO (Interaction with Real and
Virtual Objects) is devoted to organizing interactions in augmented reality [2]. This
approach is based on the idea of using a graphic expression to model the design of
this kind of application. However, just as for AMF and AMF-C, we propose using
IRVO as a formalism that can be given to the final-user to allow him to modify the
composition of an interaction choice, i.e. create a new interaction configuration based
on available real and virtual objects. In this way, several augmented reality configura-
tions can be studied (Fig. 3). In this figure and next we present different modeling
related to Lea(r)nlt a serious game oriented to Lean Manufacturing mastering which
is working in real augmented environment [7]. Le(a)rnlT is an 8-player game during
which each student plays an operator role in an industrial production line to under-
stand the complexity of its dynamicity and how to improve it. Raw materials and
processed materials are moved between the player’s tables by a warehouseman han-
dling a cart. After each simulated working sequence, the teacher and students debrief
their working experience in order to find improvements to apply to the production
line.

Assembler

e

{ Table Q-j'/
Ried oo — —

RP_
RN

ETIE!%N (screen) u-é{_ J—

i}

"Lt 2Ls

I Dutput zone

Toal — glue
gun

" | Glued
HE product

——

Fig. 3. IRVO modeling of a working space of Lea(r)nlt serious game

3.4 ORCHESTRA Model

ORCHESTRA [5,6] is a formalism, the aim of which is to express orchestration of
collaborative applications. This formalism works at a symbolic level, and is able to

Supportive User Interfaces for MOCOCO Applications 33

express in a music-like form, the behavior of a collaborative application between its
contributors, their tasks structured in a workflow (states and transitions), and the rele-
vant manipulated artifacts (objects and tools) in a given context. Small working pe-
riods can be organized appropriately to express workflow, with repetitions, optional
sections, linking up between periods, and so on. This graphic description is decorated
by working choices related to cooperative styles, coordination styles, etc.

Different key signatures express collaboration properties such as synchronous or
asynchronous collaborations, collaboration modes, and styles of coordination (compu-
tational 2 or social @, implicit ® or explicit HHl):

@ - Asynchronous with infinite answer delay

@ @ - Asynchronous with limited answer delay corresponding to “on call” partic-
ipation

& - Synchronous “in-meeting” cooperation

&& - Synchronous “in-depth” cooperation

In synchronous collaboration, two different participations must be distinguished:

¢ instantaneous, short-term collaboration, also known as implicit and expressed by
® i.c. vote activity,

¢ long-term participation, long-term collaboration, also known as explicit and ex-
pressed by lNM i e sketching activity.

In short-term activity, as a vote, an implicit collaboration is appropriate (short exclu-
sive access to the shared space), while in a long-term activity, such as sketching, ex-
plicit participation must be requested and authorised (long-term access to the shared
space) either by social coordination (®), i.e. one of the human contributors is in
charge of this coordination, or a computational (£) contributor i.e. the computer
fulfils it. We graphically formulate instantaneous collaboration by a dot over con-
cerned chords, while for long-term collaboration we use a horizontal line Bl .nda
symbol expressing social or computational coordination (®, B) i.e. coordination
performed by one of the contributors or by interaction (asking for, receiving and re-
turning exclusive access right to shared space).

An important notion in CSCW is awareness. Its goal is to allow different contribu-
tors to know (or not) what has been done by another contributor. It is important to
decide statically (by the designer) or dynamically by the contributor himself the scope
of information propagation to other contributors. Statically, we propose expressing
awareness in ORCHESTRA formalism. Special marks are proposed:

e €3 for no awareness,
o & for partial awareness (for specific contributors),
e it for overall awareness (for all contributors).

The main goal of this description is to allow in a comprehensible manner the design
of collaborative application behavior. This description or this model is initially de-
voted to the designer; however, we consider that it can be used also to support dynam-
ic remodeling of application behavior, which can be proposed to users, or at least to
experienced users. The following example (Fig. 4) shows how to change the behavior

34 B. David, R. Chalon, and F. Delomier

of a part of a collaborative application. This specification can be modified either at the
“cords” description level, i.e. to add a new activity or tool to be used, or at decoration
level, i.e. allowing change in awareness level.

Game run

N . Lean Game debriefing

o @ & € &)

Tuter Tutor Turor

| Garme briefing |

X

Role

|

Activity

Game sup; Debriefl help

Supervise ebriefing enhancement debriefing
* H
Monitor WGrior and ga -
Manitor %"M% Statistics
PC

i

Process

Artefact

I

Context PC & projector PC & projector projector
||) ¥ items betwi

Activity listen . et . ;w listen

Process [ooperative debriefing

k debrisfing
oduction
.>l~;_< .
Artefact Raw materials
‘ Tablet ablet e
rojectos rojector
Assembler

Assemble ram
aterial into d propose
Process " . ooperatve . F——
-,>-"‘$M-”< .
Artefact R

Context

Ul

Rale Assembler

Activity

listen

debriefing

aw materials & glue
Pupit: pitre pitre’
e rojector rojector

Paint dells propose
3 T
P " o~ Cooperative’

i debriefing
o —pmtws Ty
Artefact Dolls & paint
| Pupitre & ’ pitre Tpitre
Context Pupitre ertor oioctor

ol Q e
Activity |— listen e el

Context

é

Role

Painter Painter

Activity

listen

|

debriefing

L f

Comtomer > Customer
dalls Fropose
L3
Process [— Process. debriefing debriefing
. L]
Artefact Finished dolls
able & ~ Table & able
Contest — Surface table C_projertor @
= o b e T o L
Patterns - 3
aed e @ = @
a® £ ¥ e

Fig. 4. ORCHESTRA modeling of Lea(r)nlt serious game

3.5 ORCHESTRA+ Approach

The ORCHESTRA mechanism is symbolic-level oriented; we thus propose to take
into account progressively more precise considerations related to the user interface
finalization process. We use an example to explain thus. In collaboration on interac-
tive mono or multi-touch tables, and mono or multi-users, it is important to be able to
express and manage distribution of users and actions. For this reason we are currently

Supportive User Interfaces for MOCOCO Applications 35

working on an extension of ORCHESTRA formalism, called ORCHESTRA+, the
goal of which is to progress in concretization from the conceptual user interface (CUI)
to the final user interface (FUI) in the CAMELEON reference framework [1]. We can
explain this using an example. For artifact manipulation, it appears important to create
logical zones in which these artifacts (objects and tools) “can be alive”, i.e. used,
stored, manipulated, etc. This first structuring is more precise than the symbolic de-
scription of ORCHESTRA, but not enough to be considered as final, and to be used in
CUI or FUL

Fig. 5. Tables and tablets as collaboration support and tangible interfaces

To continue this process, we propose two complementary notions and mechanisms:
layers and physical zones. The notion of layer is used to facilitate the expression of
access to the artifacts. For a user or a category of users, it is possible to decide that a
particular layer is either not visible, or only visible or updatable. The layer appears to
be an appropriate mechanism for this access problem. The notion of physical zone is
important to allow physical distribution of users’ workspaces. In this way, we can
dynamically determine the distribution and sharing of physical workspaces. Let us
now describe an interesting situation. In a collaborative application, which is a serious
game, we use several tablets and tables to work. In this context, we found it very use-
ful to be able to dynamically determine the working conditions for each contributor.

Fig. 6. Work on different workspaces with tangible interfaces

36 B. David, R. Chalon, and F. Delomier

Input Working Output

zone zone zone

Surface

O cames porcprs Command zone
...... Movemant possibility

@ conextualisation possioility

Fig. 7. a) A possible flow of materials between different workspaces (manipulation tables, distribu-
tion tablet and Surface based shop), b) A workspace with organization of different zones

Warehouseman
U Production manager |V
' =
“ - T N -

] ~

acts | ~ | .
i ! perceives | Iperceivet . | perceives
acts: / |] N |
¢ ¥ L v ap [Y 28 S \ 2P
TabletPC Screen Laptop i
/ providgs \‘ ;
! ,- - - o | \2n6 | r
Zc] |
] nd | s || Zimf
I)
SN
Zmf

rocessed material |
one i

{when ZN4) (when ZN2)}

{when ZN3)
(when ZN5)

Fig. 8. IRVO Physical, numerical and logical locations modeling of Lea(r)nlt serious game

We can allow each user one tablet or table (Fig. 5), or combine all the tables to
create a larger one. Moreover, we can associate different logical working zones with
physical zones and thus give users the possibility to act on a zone of a table and also

Supportive User Interfaces for MOCOCO Applications 37

on another zone of another table. We can thus create or adjust interesting working
conditions (Fig. 6,7a,b). As we indicated, we can dynamically modify this distribu-
tion. We therefore created an appropriate graphic representation, suitable for the de-
signer’s work, but also and, in particular, we propose it to the final user.

The user could thus change working conditions dynamically, and allow users to
work together in a table consisting of all tables, or to distribute tables and working
zones according to the goal of a future working phase (Fig. 8).

4 Conclusion

In this paper we explained our view of Supportive User Interfaces (SUI). Our choice
was to propose a variety of formalisms for agent-based user interface modeling
(AMF), for cooperative application modeling (AMF-C), for augmented reality inte-
raction (IRVO), and for cooperative application orchestration (ORCHESTRA). All
these formalisms are initially design — developer oriented, and completed by tools and
editors. As these formalisms are easy to understand, we decided to propose them also
to final users, at least experienced final users, who can use a contextual editor to mod-
ify the proposed description and thus dynamically change the working application.
Through their use during execution of applications, they become supportive user in-
terfaces.

In the last case (ORCHESTRA+), we integrated 3 formalisms to describe (design)
a collaborative contextual mobile augmented reality-based serious game called
Lea(r)nlt. We used ORCHESTRA to describe the game and its workflow, IRVO to
define augmented reality artifacts (tools and objects) working on tables or tablets, and
ORCHESTRA+ to distribute work zones on workspaces of different contributors. SUI
thus proposed allows us to modify dynamically the workflow of the game and to
modify artifacts (tools and objects) by deciding their real or virtual being. It is also
possible to remodel topological and geometrical distribution of working zones on
different tables, as well as the distribution of artifacts (tool end object).

The least but not the last problem to be taken into account relates to orchestration
of interactive applications in the context of their integration in a more important sys-
tem. In this situation, it is important to be able not only to orchestrate these applica-
tions from their layout point of view but also from their functional rules point of view,
i.e. which operation each user can execute [4].

References

1. Calvary, G., Coutaz, J., Thevenin, D.: A Unifying Reference Framework for Multi-Target
User Interfaces. Interacting with Computer 15(3), 289-308 (2003)

2. Chalon, R., David, B.T.: IRVO: an Interaction Model for designing Collaborative Mixed
Reality Systems. In: HCI International 2005, Las Vegas, USA, July 22-27 (2005)

3. Coutaz, J.: PAC, on Object Oriented Model for Dialog Design. In: Interact 1987 (1987)

38

10.

11.

B. David, R. Chalon, and F. Delomier

David, B., Chalon, R.: Orchestration Modeling of Interactive Systems. In: Jacko, J.A. (ed.)
HCI International 2009, Part I. LNCS, vol. 5610, pp. 796-805. Springer, Heidelberg
(2009)

David, B., Chalon, R., Delotte, O., Masserey, G., Imbert, M.: ORCHESTRA: formalism to
express mobile cooperative applications. In: Dimitriadis, Y.A., Zigurs, 1., Gémez-Sanchez,
E. (eds.) CRIWG 2006. LNCS, vol. 4154, pp. 163-178. Springer, Heidelberg (2006)
978-3-540-39591-1 ISSN 0302-9743

David, B., Chalon, R., Delotte, O., Masserey, G.: ORCHESTRA: formalism to express
static and dynamic model of mobile collaborative activities and associated patterns. In:
Jacko, J. (ed.) Human-Computer Interaction, Part I, HCII 2007. LNCS, vol. 4550,
pp. 1082-1091. Springer, Heidelberg (2007)

Delomier, F., David, B., Benazeth, C., Chalon, R.: Situated and collocated Learning
Games. In: Conference EC-GBL 2012, European Conference of Game Based Learning,
Cork, Ireland (September 2012)

Proceedings of the ler International Workshop on Supportive User Interfaces : SUI 2011
at the 3rd ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
Pisa, Italy (June 13, 2011)

Tarpin-Bernard, F., David, B.T.: AMF a new design pattern for complex interactive soft-
ware? In: International HCI 1997, Design of Computing Systems, San Francisco, August
24-29, vol. 21 B, pp. 351-354. Elsevier (1997) ISBN 0444 82183X

Tarpin-Bernard, F., Samaan, K., David, B.: Achieving Usability of Adaptable Software:
The AMF-based Approach. In: Seffah, A., Vanderdonckt, J., Desmarais, M. (eds.) Human-
Centered Software Engineering: Software Engineering Models, Patterns and Architectures
for HCI. Springer HCI Series, pp. 237-254 (2008)

Tarpin-Bernard, F., David, B.T., Primet, P.: Frameworks and Patterns for Synchronous Group-
ware: AMF-C Approach. In: Chatty, S., Dewan, P. (eds.) Proceedings of the IFIP Tc2/Tc13
Wg2.7/Wgl3.4 Seventh Working Conference on Engineering For Human-Computer Interac-
tion, September 14 - 18. IFIP Conference Proceedings, vol. 150, pp. 225-241. Kluwer B.V,
Deventer (1998)

	Supportive User Interfaces for MOCOCO (Mobile, Contextualized and Collaborative) Applications
	1 Introduction
	2 State of the Art
	3 Our Proposals
	3.1 AMF Architecture Principles Model
	3.2 AMF-C Extensions
	3.3 IRVO Model
	3.4 ORCHESTRA Model
	3.5 ORCHESTRA+ Approach

	4 Conclusion
	References

