
End-User Development of Mobile Mashups

Cinzia Cappiello, Maristella Matera, and Matteo Picozzi

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria

via Ponzio, 34/5, 20133, Milano, Italy
{cinzia.cappiello,maristella.matera}@polimi.it,

matteo.picozzi@elet.polimi.it

Abstract. The spread of mobile devices empowers more and more end
users to access services publicly available on the Web. It also encour-
ages users to construct applications satisfying their situational needs,
by customizing and combining the huge amount of online resources.
Mobile mashups have the potential to accommodate this trend, pro-
viding a flexible paradigm for a service-based development of mobile
applications. This paper introduces and End User Development (EUD)
framework, based on a model-driven approach for the design and the
automatic generation of mobile mashups. The approach is characterized
by a “lightweight” composition paradigm that exploits visual notations
for the specification of data integration and service synchronization rules.

Keywords: Mobile Mashups, End-User Development, Model-Driven
Mashup Development, Data Integration, Data Fusion.

1 Introduction

With the evolution of the mobile world and the proliferation of available services,
Mobile Internet is becoming a reality that empowers users to access services
pervasively. This scenario constantly increases the desire of users to participate
in the development of their own artifacts. This trend was already initiated by the
Web mashup paradigm, through which users have started to be actively engaged
in the creation of Web applications, to satisfy the “long-tail” of niche functions
not always addressed by the most common applications [1]. The need to self-
create applications is now even stronger for the mobile users, for which simple
applications addressing very contingent requirements, as mashups are, can solve
several information needs arising in mobile usage contexts.

As also demonstrated by the last years’ research on Web mashups, only few
users are able to create their applications by programming the service integra-
tion. Difficulties also arise when using some tools for visual composition that
however do not adequately abstract from the underlining technologies and lan-
guages [2,3]. This situation is even accentuated in the mobile context, where also
expert users would need to get experienced with very specific technologies that
depend on the target mobile device. Composition paradigms and tools, abstract-
ing from implementation details, would therefore really help users to construct
their applications.

A. Marcus (Ed.): DUXU/HCII 2013, Part IV, LNCS 8015, pp. 641–650, 2013.
© Springer-Verlag Berlin Heidelberg 2013

642 C. Cappiello, M. Matera, and M. Picozzi

To address the issues illustrated above, this paper proposes a framework for
the lightweight, user-driven composition and deployment of mobile mashups.
The target of our composition approach are device’s native applications that,
in contrast with Web mashups, do not need the Web browser as execution en-
vironment, and thus facilitate the access to mobile device services. One notable
feature of our composition framework is the intuitiveness and ease of use of the
composition language, based on visual mechanisms that allow the users to eas-
ily configure the fusion of contents coming from different data sources, and the
synchronization of such core contents with further UI-rich remote components
[4] and services local to the mobile device.

The paper is organized as follows. Section 2 summarizes some related works
in the field of user-created mobile apps and mobile mashups. Section 3 describes
the overall organization of our platform, and also illustrates our approach for
visual-oriented data integration and service integration. Section 4 finally draws
our conclusions and outlines our future work.

2 Rationale and Background

Mashups have been originally conceived in the Web context, to collect data and
functions from different sources and construct integrated Web applications. The
mashup flexibility, deriving from the possibility to compose varying services,
combined with the diffusion and capabilities of mobile devices, is now leading to
an increased interest in a new mobile mashup paradigm [5,6], whose potential
is to respond to the specific user needs hidden in the long tail of requirements
not satisfied by existing applications. Indeed, although the capability of current
mobile devices to access services, compute data and display results, providing
the users with the right information in the right moment is still an issue for
several mobile apps.

Mobile mashups are the object of our research. We define mobile mashups
as native mobile apps, constructed by integrating data coming from different
services and/or synchronizing services that can be remote (e.g., available in the
Web), or local (i.e., available on the mobile terminal). Our approach to mashup
development in particular focuses on End-User Development (EUD) practices
[3,1], trying to provide solutions to some open issues in the composition of mobile
mashups by the end users. Mobile mashups currently in use are indeed rigid, hard
coded applications, produced by expert developers by programming the service
invocation and the service integration logic.

Mobile End-User development is still in its infancy and presents new issues
mainly related to the need of identifying composition paradigms and models for
the final apps that can fit the characteristics of the mobile devices and of the mo-
bile context of use [7]. Some approaches offer authoring environments directly
on the mobile devices; however, also due to the well-know limitations of the
terminal devices, the mobile editors just enable the production of very simple
applications, so-called micro-services, very limited in terms of offered contents
and functionality [8,9]. Such authoring approaches, although based on intuitive

End-User Development of Mobile Mashups 643

visual metaphors, do not address at all the composition of remote services and
APIs. The TELAR platform [10] goes some steps further and assists the con-
struction of map-based Web mashups, deployed as HTML pages enriched with
JavaScript code running in the mobile Web browser. TELAR in particular en-
ables the integration of selected data sources with Google Maps, but the only
flexibility shown by this approach is the ability of the mashup client (the mobile
web browser) to load an XML file when the HTML page including the mashup
is downloaded, which includes configuration parameters referring to the data
sources to be queried. The platform does not offer any support for the speci-
fication of the configuration parameters - in case of changes, the user is thus
required to write XML code and upload it on the mobile device.

An interesting approach is reported in [11], where the authors present a plat-
form for mashup composition where the users can configure, through a form-
based paradigm, some query parameters for service invocation. The limit of this
approach is however that service integration is possible only between a selected
service and some zone maps. Thus the approach is exclusively oriented to the
construction of mashups for the access to zone-based services within interactive
public spaces (e.g., within a mall).

In [12] the authors illustrate a mobile generator system that, in line with our
perspective on the user-centric development of mobile mashups, offers a desk-
top environment that automatically generates the code of the mobile application.
The composition paradigm however shows an intrinsic complexity, being it based
on the specification of parameter values and programming scripts. Also, while
this approach enables content extraction from Web documents, it does not sup-
port at all data and service integration. We believe this is instead a fundamental
feature for the mobile usage context, where the access to integrated views of the
retrieved contents can definitely improve the user experience and productivity.

3 Approach and Architecture

In our approach for the composition of mobile mashups, the end users, by means
of visual actions and guided by visual templates, are enabled to construct uni-
fied views over integrated data sets extracted from multiple sources, (e.g., music
events published by REST services, such as Upcoming and Brite), and to syn-
chronize items from such data views with UI-rich components (e.g., tapping on
a geo-referenced music event triggers the localization of that item on Google
Map) and with services local to the mobile device (e.g., tapping on a phone
number triggers the store of that number in local device agenda). The design ac-
tivity is supported by a Web-based design environment that offers a composition
paradigm strongly characterized by a visual approach: i) users are required to
perform only visual actions to compose their applications, and ii) any concept in
the underlying mashup model has a visual characterization in the composition
paradigm. The visual nature of our approach is reflected by the notion of visual
templates, i.e., a set of abstractions that constitute the interface between the
visual composition paradigm requiring the completion of user interface skeletons

644 C. Cappiello, M. Matera, and M. Picozzi

with data and functions extracted from services, and the underlying mashup
model for data and service integration.

3.1 Visual Templates

Within the platform design environment Visual templates offer an immediate
representation of the user interface through which the data set filtered out and
integrated by the user composition actions will be displayed in the final appli-
cation. The completion of visual templates with data items retrieved through
remote services enables an “integration-by-example” paradigm, through which
the users can (i) select data from pertinent data sources, and (ii) in case of
multiple sources express how data have to be merged and displayed.

Figure 1 illustrates the design environment where the visual composition takes
place. The left part of the screen, the data panel, is devoted to show the data
retrieved by querying services. The right hand area, the visual template panel,
instead shows one selected visual template. The visual template reported in figure
is based on a list-based representation of data items. In our current platform
prototype, also map-based and chart-based visual templates are available. In
order to support our data integration paradigm (which we describe in the sequel
of this section), the visual templates are organized into two main views. A global
view, as the one reported in figure, visualizes all the retrieved data by means of
the attributes selected by the user in the data panel. In a list of concerts, as the
one represented in figure, each instance is for example represented though a title,
a subtitle, and an image; on a map-based template POIs can instead identify the
retrieved instances. A secondary view, which can be accessed on demand, then
display further data attributes of one selected instance.

Independently of its concrete display (e.g., whether through a list, a map or
a chart), a visual template can be seen as a tuple, V T =< vr1, vr2, . . . , vrn >,
where each vrk represents a visual renderer serving the visualization of a data
attribute extracted by one of the user selected sources. Each visual template can
be then decomposed in two sub-templates, representing the organization of the
two different screens in the final application:

– A union sub-template, whose vrk (i.e., uvrk) display data attributes that
concisely represent the instances retrieved by querying the involved services
(e.g., for a concert, the name of the player, her music gender, a picture).

– A merge sub-template, whose vrk (i.e., mvrk) display the details of a data
instance selected in the union sub-template. While the union sub-template
has a fixed organization, the structure of the merge sub-template, i.e., the
visual renderers included in it, is determined by the the number and type
of the heterogeneous data elements that the user selects as details to be
displayed for each item in the union sub-template.

3.2 Data Source and Service Integration

Given the availability of a set of registered data sources and of a visual template,
the user constructs the presentation layer of the final application - and implicitly

End-User Development of Mobile Mashups 645

The drop of data from data
panel to visual template
maps them onto visual

elements

Data panel Visual Template Panel

(a) Data panel and the global sub-template

The drop of the service icon
on the visual renderer

creates a binding between
them

(b) Detail sub-template and the menu with some
of UI rich components available in the platform

Fig. 1. The design environment where the user can query services and map the retrieved
data onto elements of visual templates.

646 C. Cappiello, M. Matera, and M. Picozzi

integrates data. If the user select data from different sources, a data integration
process starts, and the user actions are therefore targeted towards the construc-
tion of a unified data view. The approach consists of phases comparable to those
ones occurring in the classical data integration processes. However, each phase
is conceived to make the overall process lightweight. Also, to better support the
end-users, some phases are automatically performed by the design environment.

The data integration process starts with the source data sampling phase in
which each selected data source is queried according to the basic parameters and
settings defined at registration time. The returned result set is thus processed
and visualized through an automatically generated representation of “attribute-
value” items within the data panel (see the left area in Figure 1(a)). The user
then selects a visual template as the basis for the visualization of data retrieved
by the selected services. This selection implicitly corresponds to the definition
of the global schema for data integration. In fact, at the end of the composition
process, the visual template provides a unified schema that guides the extraction
of data from each involved service.

A visual mapping follows, in which the user associates data fields visualized in
the data panel, which are extracted from one or more data services, with some
notable elements of the visual template, the so-called visual renderers. This as-
sociation operates a reduction of the data service schema that is used at runtime
for querying the service. In other words such visual mapping process constructs
the integration queries, mapping the local schema of each single service to the
global schema imposed by the visual template.

The data integration in our approach is based on two important assumptions:
(i) the user can ask for the integration of two or more sources associated with the
same visual template and (ii) the different sources are intersected on the basis
of a subset of the fields contained in the union visual template (i.e., the title
field in case of a list-based visual template, the geographical position in case of a
map-based visual template). The global schema is built by considering the set of
visual renderers included in the visual template. The mapping between the local
service schema and the global integration schema is derived by the association
between data attributes and visual renderers as defined by the user.

Besides the integration of data sources according to the visual template
paradigm, the platform design environment also allows the user to synchronize
the unified data view with other services. The aim is to enrich the core data with
contents of different nature. For example, data on concerts could be integrated
with multimedia contents (videos and images) retrieved through APIs such as
YouTube and Flickr. In line with the Web mashup paradigm defined by our pre-
vious research [13,3], the design environment allows the users to bind the data
attribute displayed through visual renderers with requests to operations offered
by UI-rich APIs. Such APIs are registered into the platform and wrapped to
make it possible invoking their functionality. As shown in Figure 1, the available
APIs are shown to the user through an icon menu, which adapts itself showing
the only APIs that are compatible with a given visual renderer. To create bind-
ings, users move the API icon on a visual renderer. At runtime, the same icon,

End-User Development of Mobile Mashups 647

displayed next to the visual renderer, enables the invocation of the API. With
the same mechanism, it is also possible to take advantage of the mobile device
capabilities and bind visual renderers to device services such as the dialer service
or the address book.

3.3 Generation of the Application Schema

Based on the visual actions for data integration and service binding definition
performed by the user, the design environment generates and upload on a server
a configuration file that contains rules for the automatic instantiation of the final
mobile app. In the following, a (simplified) fragment of the application schema
is showed; it refers to a mashup offering data about concerts and the access to
UI components (Flickr, Twitter, Wikipedia) and device custom apps (dialer and
address book).

<sources >
<category name="Concerts " icon="...">
<source name="EventBright" url="...">
<params >
<param name="location " label="Location " type="input">chicago </param >
...

</params >
</source >
<source name="Upcoming " ...>...</source >

</category >
</sources >

<visual -mapping >
<union type="List">
<vr name="Title" type="Text">
<data source="EventBright" query="/title"/>
<data source="Upcoming " query="/@name"/>

</vr>
<vr name="Subtitle " type="Text">
<data source="EventBright" query="/venue/name"/>
<data source="Upcoming " query="/@venue_name"/>

</vr>
<vr name="Image" type="Image">
<data source="EventBright" query="/venue/image"/>
<data source="Upcoming " query="/@photo_url"/>

</vr>
</union >
<merge >
<vr name="State" type="Text" source="EventBright" query="..."

binding ="twitter |flickr |wiki"/>
<vr name="Telephone" type="Text" source="EventBright" query="..."

binding ="dialer|addressbook"/>
<vr name="City" type="Text" source="Upcoming " query="..."

binding ="twitter |flickr |wiki"/>
<vr name="Address " type="Text" source="Upcoming " query="..."

binding ="maps"/>
</merge >

</visual -mapping >

The generated schema reflects our model for mobile mashups, and based on the
structure of the visual template, it specifies:

– The presentation layer : it represent the vr elements as deriving by the visual
template filled in during the mashup design. An attribute type for each vr

648 C. Cappiello, M. Matera, and M. Picozzi

denotes the type of visual element (for example, a text field or an image
placeholder) that is automatically derived by the design phase, taking into
account the type of the associated data item.

– The service data layer : for each vr, the data source attribute specifies the
service providing the mapped data and the corresponded query; the setting
to invoke the service (service URL and possible parameters) are expressed
in the source specification, at the beginning of the configuration file. Source
properties also include the definition of possible filters to be used during the
app execution to progressively refine the service result set.

– The service binding layer : for each vr the binding attribute specifies the list
of services subscribed to the selection of a data item. Since the management
of this bindings is based on service wrappers, no other details about how the
services must be queried are needed. The wrappers for the involved services
will be downloaded on themobile device together with the application schema.

3.4 The Device Execution Environment

Figure 2 illustrates the main elements composing the execution engine running on
the mobile device. The Rules Interpreter parses the application schema created
at design time. The users download the execution engine app from the same
server where they download the mobile mashup schema. The execution engine

Execution Engine

Binding service
APIs

Execution Environment

OS

Custom
Device app

Schema
Repository

SchemaComponent wrappers

Rules
interpreterBinding

manager

Visual renderer manager

Data manager

Remote
Data Sources

Schema

Design Environment

Fig. 2. Architecture of the execution environment

End-User Development of Mobile Mashups 649

masters the creation of the application by invoking the other modules in charge
of managing the different application layers. In particular:

– Based on the visual template definition, the visual renderer manager (VRM)
translates the specified vr elements into native code for the UI layout gen-
eration. For example, if Android is the target OS, the application schema
is translated into the Android layout markup language that will be used by
the OS for the generation of screens – so-called activities. The VRM also
handles the visualization of data into each vr. The VRM is also in charge of
constructing dynamically other UI elements, for example the app menu.

– Based on the visual mapping rules defined for each vr, a data manager (DM)
queries the involved services, according to the specifications of the vr data

source attribute and the data source settings. The DM module also man-
ages the detection and elimination of duplicates, by means of the Soundex
similarity algorithm [14], and the fusion of corresponding data attributes
into the merge sub-template.

– Based on binding rules, the binding manager (BM) sends a request to the
VRM for the creation of the screens for displaying UI components. During
the mashup execution, BM is then in charge of “listening” to the selection
of publisher data items, capturing parameters embedded in such data items,
and invoking, by means of the API wrappers, the synchronized service op-
erations. The results are then sent back to VRM module.

4 Conclusions

In this paper we have introduced our perspective over the development of mobile
mashups; thus we have discussed how adequate abstractions, mainly based on
visual template construction, can enable a lightweight data integration process,
leading to the definition of unified data views, and the synchronization between
such data and remote APIs and custom device services. A formative evaluation
session with real users has confirmed the effectiveness of such choices. Also,
some performance tests, executed on a Samsung SII smart phone, have shown
that our lightweight data fusion paradigm is possible in reasonable time on the
mobile device. Although optimized for mobile mashups, we also believe that our
approach can target as well other execution platform, with the only effort of
identifying adequate visual templates and modifying the logics behind the app
instantiation by the execution engine.

The examples shown throughout the paper refer to easy configuration of ser-
vices and service integration. They also assume a set of default rules, for example
related to the operations that can be invoked trough UI components. We how-
ever believe that with few extensions, but keeping the same visual metaphor,
our current platform can evolve towards a development environment for expert
users, giving them the possibility to configure services and UI components more
flexibly, and also introducing more sophisticated conflict resolution policies in
the construction of the unified data views. Our future work is devoted to im-
prove the design environment along this direction, trying to achieve a full-fledged
approach, accommodating different expertise levels.

650 C. Cappiello, M. Matera, and M. Picozzi

References

1. Daniel, F., Matera, M., Weiss, M.: Next in mashup development: User-created apps
on the web. IT Professional 13(5), 22–29 (2011)

2. Namoun, A., Nestler, T., De Angeli, A.: Conceptual and usability issues in the
composable web of software services. In: Daniel, F., Facca, F.M. (eds.) ICWE
2010. LNCS, vol. 6385, pp. 396–407. Springer, Heidelberg (2010)

3. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,
C.: Dashmash: A mashup environment for end user development. In: Auer, S.,
Dı́az, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166.
Springer, Heidelberg (2011)

4. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Un-
derstanding ui integration: A survey of problems, technologies, and opportunities.
IEEE Internet Computing 11(3), 59–66 (2007)

5. Maximilien, E.M.: Mobile mashups: Thoughts, directions, and challenges. In: Pro-
ceedings of ICSC 2008, August 4-7, pp. 597–600. IEEE Computer Society, Santa
Clara (2008)

6. Xu, K., Zhang, X., Song, M., Song, J.: Mobile mashup: Architecture, challenges
and suggestions. In: Proc. of Management and Service Science, MASS 2009,
pp. 1–4 (September 2009)

7. Cuccurullo, S., Francese, R., Risi, M., Tortora, G.: Microapps development on
mobile phones. In: Piccinno, A. (ed.) IS-EUD 2011. LNCS, vol. 6654, pp. 289–294.
Springer, Heidelberg (2011)

8. Häkkilä, J., Korpipää, P., Ronkainen, S., Tuomela, U.: Interaction and end-
user programming with a context-aware mobile application. In: Costabile, M.F.,
Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 927–937. Springer,
Heidelberg (2005)

9. Davies, M., Fensel, A., Carrez, F., Narganes, M., Urdiales, D., Danado, J.: Defining
user-generated services in a semantically-enabled mobile platform. In: Kotsis, G.,
Taniar, D., Pardede, E., Saleh, I., Khalil, I. (eds.) iiWAS, pp. 333–340. ACM (2010)

10. Brodt, A., Nicklas, D.: The telar mobile mashup platform for nokia internet tablets.
In: EDBT. ACM International Conference Proceeding Series, vol. 261, pp. 700–704.
ACM (2008)

11. Soroker, D., Paik, Y.S., Moon, Y.S., McFaddin, S., Narayanaswami, C., Jang, H.K.,
Coffman, D., Lee, M.C., Lee, J.K., Park, J.W.: User-driven visual mashups in
interactive public spaces. In: Cahill, V. (ed.) MobiQuitous. ACM (2008)

12. Chaisatien, P., Prutsachainimmit, K., Tokuda, T.: Mobile mashup generator sys-
tem for cooperative applications of different mobile devices. In: Auer, S., Dı́az, O.,
Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 182–197. Springer,
Heidelberg (2011)

13. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A frame-
work for rapid integration of presentation components. In: Proc. of WWW 2007,
pp. 923–932 (2007)

14. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1) (2008)

	End-User Development of Mobile Mashups
	1Introduction
	2Rationale and Background
	3Approach and Architecture
	3.1Visual Templates
	3.2Data Source and Service Integration
	3.3Generation of the Application Schema
	3.4The Device Execution Environment

	4Conclusions
	References

