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Abstract. In last few years, a huge variety of frameworks for the mobile cross-
platform development have been released to deliver quick and overall better so-
lutions. Most of them are based on different approaches and technologies; 
therefore, relying on only one for using in all cases is not recommendable. The 
diversity in smart-devices (i.e. smartphones and tablets) and in their hardware 
features; such as screen-resolution, processing power, etc.; as well as the avail-
ability of different mobile operating systems makes the process of mobile appli-
cation development much complicated. In this work, we analyze few of these 
cross-platform development frameworks through developing three mobile apps 
on each of them as well as on the native Android and iOS environments. More-
over, we also performed a user evaluation study on these developed mobile 
apps to judge how users perceive the same mobile app developed in different 
frameworks and environments, from the native to the cross-platform environ-
ment. Results indicate that these frameworks are good alternative to the native 
platform implementations but a careful investigation is required before deciding 
to check whether the target framework supports the needed features in a stable 
way. 

Keywords: Cross-platform development, mobile apps, iOS, Android,  
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1 Introduction 

The rate of smartphones amongst cell-phones was expected to exceed the 50% boun-
dary in the year 2012 [11] with the amount doubling each year [3]. Nowadays smart-
devices, which include smartphones and tablets, are a vital platform for people to 
access services in their daily life, not only in developed countries but in developing 
countries too [2]. Due to great variations in smart-device types (from mobiles to tab-
lets), in their hardware (different screen sizes, resolutions, and computation power), 
and in the underlying operating systems (e.g., Android, iOS, Windows Phone 8) make 
it a big challenge for software developers to develop applications (called mobile apps 
or just apps) for them. Developing mobile apps separately for each platform or device 
is costly and time consuming process while keeping focus on just one platform or 
device reduces the number of accessible users. This problem leads to a solution where 
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the mobile apps are developed through frameworks, called cross-platform develop-
ment frameworks. In these frameworks, the apps are developed just once and then can 
be deployed on those platforms and devices that are supported by the underlying 
framework. However, one of the main problems the industry is facing nowadays in 
this solution is that the apps developed on these frameworks normally provide not as 
good interaction and functionalities compared to the apps developed on the native 
development environments.  

In last few years, plenty of frameworks for mobile cross-platform development 
have been released to deliver overall cost-effective and better solutions. Most of these 
frameworks use different underlying approaches and technologies; therefore, relying 
only on one for using in all cases is not recommended. In this work, we analyze few 
of these cross-platform development frameworks through developing three apps on 
each of them as well as on the two most widely used native environments, i.e., the 
Google Android and the Apple iOS. Moreover, we also performed a user evaluation 
study on these developed apps to judge how users perceive the same app developed in 
different frameworks and environments, from the native to the cross-platforms. 

The remainder of this paper is structured as follows. In Section 2, we highlight the 
background. In Section 3, we describe the three scenarios for developing apps and 
details of the development of these apps in different frameworks and environments. In 
Section 4, we provide details of the user evaluation study. In Section 5, we analyze 
from the software evaluation perspectives. Finally, we conclude in Section 6. 

2 Background 

Smartphones and tablets are getting more and more popular since after launch of the 
Apple iPhone and iPad even though the first smartphone, the IBM Simon, was built in 
1992 and then released in 1993 by BellSouth [1]. Nowadays, a number of operating 
systems from different vendors are available for these smart-devices. Few examples 
of the most famous ones are Google Android, Apple iOS, Microsoft Windows Phone, 
Symbian OS, and RIM Blackberry OS. Developing mobile apps separately for each 
platform is quite costly as it needs the same number of development time for each 
target platform. Moreover, it also makes the maintenance more costly and time-
consuming. To resolves these issues, many cross-platform development frameworks 
have been developed in which developers write code once and then the resulting app 
can be deployed on different platforms and environments. Each of these frameworks 
targets a number of different platforms and environments starting at least from two.  
A study by Vision Mobile [8] pointed out over one hundred different mobile cross-
platform frameworks. The availability of these frameworks on one-side gives developers 
the freedom to choose amongst them according to their requirements, but on the other side 
also makes it difficult to choose the right one.  

Many people from the industry and academia have already analyzed and categorized 
the available cross-platform development frameworks. An example form the industry 
is a report by Vision Mobile [8] that discusses the tools for mobile cross-platform de-
velopment. In academia, some studies [4, 9, 10] have also been done that analyze the 
frameworks and tools for mobile cross-platform development. Each of these studies 
analyzed different frameworks and tools and highlighted their advantages and  
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disadvantages. They also tried to find out the better option amongst the selected ones 
against their chosen criteria.  

In comparison to the previous work on the issue of cross-platform mobile devel-
opment, the work behind this paper differs from two aspects. First, we implemented 
several sample applications derived from the interaction schema of mobile environ-
ment. Secondly, we verified the results through a user evaluation study to find out if 
users from different backgrounds are even satisfied enough with the cross-platform 
solutions, in order to make these solutions worth considering in the first place. The 
frameworks in which we were interested are: Appcelerator Titanium [5], which is an 
open source (under Apache License) runtime interpreter using HTML and JavaScript; 
RhoMobile Rhodes [6], which is a Ruby and HTML based open source (under MIT 
license) runtime interpreter; and MoSync [7], which is a C++ based open source  
(under GPL) mixture of a runtime interpreter, a source code translator and a  
web-to-native wrapper. 

3 The Testing Scenarios and The Developed Apps 

We choose three frameworks out of a variety of frameworks as well as the native iOS 
and Android environments for developing apps’ versions and then for detailed testing 
based on our targeted criteria. We did not take into account the web app frameworks 
due to their reduced functionality as well as the app factory frameworks. Appcelerator 
Titanium [5] and RhoMobile Rhodes [6] were selected as these cross-platform devel-
opment frameworks are based on completely different web programming languages. 
While the third framework MoSync [7] was selected because it combines the three 
approaches of hybrid frameworks and supports a number of platforms.  

The sample scenarios (i.e. MovePic, BubbleLevel, and AnnotatePic) for developing 
the apps were derived from the perspective of interaction-schema of smart-devices, 
which mostly consists of touch-events (such as tap, drag, pinch, etc.), accelerometer, 
localization services, camera access, file system access, etc. Our focus was towards 
touch-events, accelerometer, camera access, and the file system access. We left other 
interaction-schema elements, such as localization services, due to their behavior com-
plexity. For each scenario, we developed apps using the above-mentioned frameworks 
as well as the native iOS and Android development environments. The developed 
apps for the scenarios target towards not only the smartphones but also the tablets in 
order to consider the scalability issues. Following subsections provide the description 
of each scenario and the corresponding developed app’s versions.  

3.1 The MovePic Scenario 

The MovePic scenario’s goal was to test the support and processing of multi-touch 
gestures in smart-devices.  This was done by hardcoding an image through the image-
view in the underlying device. The presented image could be manipulated with multi-
touch gestures such as panning, pinch zooming, rotating and dragging. 

The native iOS version was developed using the built-in gesture recognizers in 
which the attached gestures can only be used inside the image, because in iOS the 
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technical difficulties in other developed versions, we did not include them in the 
study.  Table 1 shows those versions that were evaluated in the user study.  

Table 1. The tested versions in the user evaluation study  

 Native platforms MoSync Appcelerator Titanium 
Android iOS Android iOS Android iOS 

MovePic ✓ ✓ ✓ ✓  

BubbleLevel ✓ ✓ ✓ ✓ ✓ 

AnnotatePic ✓ ✓ ✓   

The User Groups and The Experiment Layout  
We performed the evaluation study with 9 users (2 females, 7 males). We categorized 
them according to their experience with smart-devices where 3 were expert in using 
Android based devices, 3 were expert in using iOS based devices, while the remaining 
3 had no experience at all with smart-devices. The age of users was between 23 and 
31 years old with a mean of 25.88. For each tested version, users were asked to judge 
the interaction-response time and the overall satisfaction with the app on a scale from 
1 to 5. After testing different versions of the same scenario, each user was asked to 
name the version they would prefer for future use with multiple answers possibility. 

Results and Discussions 
The conducted user evaluation study provided some interesting results that could be 
useful for deciding the right environment(s) for developing mobile apps. In the Mo-
vePic scenario, the native iOS implementation received the best results (as it would be 
used by 7 users out of 9 users, see Figure 4) but the native Android and MoSync im-
plementations too achieved comparable and good results. The reason that most users 
preferred iOS version was probably due to the usage of iOS built-in gesture recogniz-
er in the implementation, which provided a better interaction response than the others. 
Moreover, users who were expert with smart-devices preferred the MoSync version of 
their own used platform instead of the other one, although both MoSync versions 
were identical.  

In the BubbleLevel scenario, the MoSync Android version received the best re-
sults, as 7 users preferred it (see Figure 4), while the MoSync iOS and Android native 
versions received well appraisals too. On the other side, the iOS native and Appcele-
rator Titanium versions received just moderate ratings as none of the users showed 
any interest for using them in future. One thing that needs to be considered while 
comparing an app having the accelerometer functionality in Android-based devices is 
the quality of accelerometer in the underlying devices, as the device with high power 
processor might give better output than the others.  

In the AnnotatePic scenario; the native iOS and Android versions received slightly 
better estimation in terms of the overall satisfaction, while in the interaction response 
time all the three versions achieved comparable and good results. The native imple-
mentations were chosen by most users for future use with 4 votes for the Android 
version and 5 votes for the iOS version, as shown in Figure 4. Figure 4 provides a 
graph overview of users preference for future usage of the tested versions.   
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was given by the native Android due to using a separate thread for the drawing. The 
AnnotatePic is not an interaction-response time critical scenario; hence, all the devel-
oped versions provided approximately the same performance level. 

The implementations of the MovePic had a slightly different functionality for each 
version. The functionality provided by the native iOS version was better compared to 
the others, as it had the most natural interaction with the image and it also prevented 
the image from moving out of the screen, followed by the native Android version. In 
the BubbleLevel scenario, all implementations provided the same level of functionali-
ty due to the limitation of the scenario. In the AnnotatePic scenario, only the native 
Android version was without any errors while the iOS native version performed well 
until we updated it to the iOS 5.1. The MoSync version had problems during saving 
the images and was showing just half of the screen for the camera view.   

From the maintainability perspective, the iOS-based versions were better compared 
to Android-based versions as much of the functionality was provided by the platform; 
hence, it shortens the code and reduces the time to develop. But as it is just for one 
platform only, so we felt the cross-platform development as the better solution. We 
also noticed that working with RhoMobile Rhodes framework saved development 
time compared to other frameworks as it provides many facilities for data-driven ap-
plications built-in from the start, followed by the iOS as it also provides much built-in 
functionality for utilizing many device features. In the case of cross-platform, we 
noticed that implementation time on MoSync was little bit faster than the others. 

Lastly from the style-guide perspective, most of the cross-platform frameworks 
had not adopted the Android style guide. It is because the Android released its style-
guide just few months before the time of our implementations. Moreover, we consi-
dered only the Android 2.2 and 2.3 versions during the development while some of 
the style-guide elements, like the action bar, work only on and above the Android 3.0. 
With regard to iOS based devices, we found out that all the tested cross-platform de-
velopment frameworks provided pretty good adaptions to the iOS environment.  
Results of most of these frameworks conformed the style-guide of the iOS efficiently. 

6 Conclusion 

In this study, we performed a comparison between the native development environ-
ments and the cross-platform development environments. Apps were developed 
against three scenarios using the Android and iOS and native development environ-
ments as well as three selected cross-platform development environments (i.e. Mo-
Sync, Appcelerator Titanium, and RhoMobile Rhodes). The evaluation results from 
the software perspective and from the user study show that in many terms the results 
of cross-platform frameworks are as good as the native ones and in some cases even 
better. But the striking of Appcelerator Titanium has shown that relying on only one 
cross-platform development framework may lead to failures, because the whole 
smart-device market is evolving pretty fast and is in a constant flow. Also, when de-
veloping using the cross-platform approach, it is always better to think twice before 
updating an SDK to the newest version. It could be possible that the underlying cross-
platform framework may not be able to build anymore on the new SDK version, as 
the developers of these frameworks need time for the adaption of the new SDKs. 



380 S.R. Humayoun, S. Ehrhart, and A. Ebert 

 

The hybrid cross-platform frameworks provide much functionality today and it is 
surely further emerging. They also allow basic adaption and scalability to the tablets. 
The main difficulty for developers, who want to build cross-platform applications, is 
to find the solution best fitting their needs. But in most cases, it is not easy to find out 
what functionality a particular framework provides better than the others. In the fo-
rums of these frameworks many questions, which were posted one year ago or longer 
for asking some functionalities, are still looking for the answers or the answers are 
“coming soon functionality”.   

Overall, it can be said that the hybrid cross-platform frameworks are a good alter-
native to the native implementations with definite better cost-efficiency. But before 
choosing a particular framework, it is a must to find out if the underlying framework 
supports the needed features in a stable way. Moreover, the possibilities for porting 
existing applications between Android and iOS automatically are not fully developed, 
yet. The manual porting has some issues to remind but when considering them from 
the start, the process is manageable. In the near future, web cross-platform frame-
works may compete the hybrid frameworks more and more, because of the fact that 
HTML5 is already capable of a few hardware access features and will perhaps evolve 
to replace the hybrid frameworks partially or totally.  So, keeping eye on both tech-
nologies will help in deciding the better options for the underlying scenario.  
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