

M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2013, LNCS 8004, pp. 371–380, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Developing Mobile Apps Using Cross-Platform
Frameworks: A Case Study

Shah Rukh Humayoun, Stefan Ehrhart, and Achim Ebert

Computer Graphics and HCI Group,
University of Kaiserslautern,

Gottlieb-Daimler-Str., 67663, Kaiserslautern, Germany
{humayoun,ebert}@cs.uni-kl.de, s_ehrhart@gmx.net

Abstract. In last few years, a huge variety of frameworks for the mobile cross-
platform development have been released to deliver quick and overall better so-
lutions. Most of them are based on different approaches and technologies;
therefore, relying on only one for using in all cases is not recommendable. The
diversity in smart-devices (i.e. smartphones and tablets) and in their hardware
features; such as screen-resolution, processing power, etc.; as well as the avail-
ability of different mobile operating systems makes the process of mobile appli-
cation development much complicated. In this work, we analyze few of these
cross-platform development frameworks through developing three mobile apps
on each of them as well as on the native Android and iOS environments. More-
over, we also performed a user evaluation study on these developed mobile
apps to judge how users perceive the same mobile app developed in different
frameworks and environments, from the native to the cross-platform environ-
ment. Results indicate that these frameworks are good alternative to the native
platform implementations but a careful investigation is required before deciding
to check whether the target framework supports the needed features in a stable
way.

Keywords: Cross-platform development, mobile apps, iOS, Android,
smart-device, smartphone, tablet, user evaluation.

1 Introduction

The rate of smartphones amongst cell-phones was expected to exceed the 50% boun-
dary in the year 2012 [11] with the amount doubling each year [3]. Nowadays smart-
devices, which include smartphones and tablets, are a vital platform for people to
access services in their daily life, not only in developed countries but in developing
countries too [2]. Due to great variations in smart-device types (from mobiles to tab-
lets), in their hardware (different screen sizes, resolutions, and computation power),
and in the underlying operating systems (e.g., Android, iOS, Windows Phone 8) make
it a big challenge for software developers to develop applications (called mobile apps
or just apps) for them. Developing mobile apps separately for each platform or device
is costly and time consuming process while keeping focus on just one platform or
device reduces the number of accessible users. This problem leads to a solution where

372 S.R. Humayoun, S. Ehrhart, and A. Ebert

the mobile apps are developed through frameworks, called cross-platform develop-
ment frameworks. In these frameworks, the apps are developed just once and then can
be deployed on those platforms and devices that are supported by the underlying
framework. However, one of the main problems the industry is facing nowadays in
this solution is that the apps developed on these frameworks normally provide not as
good interaction and functionalities compared to the apps developed on the native
development environments.

In last few years, plenty of frameworks for mobile cross-platform development
have been released to deliver overall cost-effective and better solutions. Most of these
frameworks use different underlying approaches and technologies; therefore, relying
only on one for using in all cases is not recommended. In this work, we analyze few
of these cross-platform development frameworks through developing three apps on
each of them as well as on the two most widely used native environments, i.e., the
Google Android and the Apple iOS. Moreover, we also performed a user evaluation
study on these developed apps to judge how users perceive the same app developed in
different frameworks and environments, from the native to the cross-platforms.

The remainder of this paper is structured as follows. In Section 2, we highlight the
background. In Section 3, we describe the three scenarios for developing apps and
details of the development of these apps in different frameworks and environments. In
Section 4, we provide details of the user evaluation study. In Section 5, we analyze
from the software evaluation perspectives. Finally, we conclude in Section 6.

2 Background

Smartphones and tablets are getting more and more popular since after launch of the
Apple iPhone and iPad even though the first smartphone, the IBM Simon, was built in
1992 and then released in 1993 by BellSouth [1]. Nowadays, a number of operating
systems from different vendors are available for these smart-devices. Few examples
of the most famous ones are Google Android, Apple iOS, Microsoft Windows Phone,
Symbian OS, and RIM Blackberry OS. Developing mobile apps separately for each
platform is quite costly as it needs the same number of development time for each
target platform. Moreover, it also makes the maintenance more costly and time-
consuming. To resolves these issues, many cross-platform development frameworks
have been developed in which developers write code once and then the resulting app
can be deployed on different platforms and environments. Each of these frameworks
targets a number of different platforms and environments starting at least from two.
A study by Vision Mobile [8] pointed out over one hundred different mobile cross-
platform frameworks. The availability of these frameworks on one-side gives developers
the freedom to choose amongst them according to their requirements, but on the other side
also makes it difficult to choose the right one.

Many people from the industry and academia have already analyzed and categorized
the available cross-platform development frameworks. An example form the industry
is a report by Vision Mobile [8] that discusses the tools for mobile cross-platform de-
velopment. In academia, some studies [4, 9, 10] have also been done that analyze the
frameworks and tools for mobile cross-platform development. Each of these studies
analyzed different frameworks and tools and highlighted their advantages and

 Developing Mobile Apps Using Cross-Platform Frameworks: A Case Study 373

disadvantages. They also tried to find out the better option amongst the selected ones
against their chosen criteria.

In comparison to the previous work on the issue of cross-platform mobile devel-
opment, the work behind this paper differs from two aspects. First, we implemented
several sample applications derived from the interaction schema of mobile environ-
ment. Secondly, we verified the results through a user evaluation study to find out if
users from different backgrounds are even satisfied enough with the cross-platform
solutions, in order to make these solutions worth considering in the first place. The
frameworks in which we were interested are: Appcelerator Titanium [5], which is an
open source (under Apache License) runtime interpreter using HTML and JavaScript;
RhoMobile Rhodes [6], which is a Ruby and HTML based open source (under MIT
license) runtime interpreter; and MoSync [7], which is a C++ based open source
(under GPL) mixture of a runtime interpreter, a source code translator and a
web-to-native wrapper.

3 The Testing Scenarios and The Developed Apps

We choose three frameworks out of a variety of frameworks as well as the native iOS
and Android environments for developing apps’ versions and then for detailed testing
based on our targeted criteria. We did not take into account the web app frameworks
due to their reduced functionality as well as the app factory frameworks. Appcelerator
Titanium [5] and RhoMobile Rhodes [6] were selected as these cross-platform devel-
opment frameworks are based on completely different web programming languages.
While the third framework MoSync [7] was selected because it combines the three
approaches of hybrid frameworks and supports a number of platforms.

The sample scenarios (i.e. MovePic, BubbleLevel, and AnnotatePic) for developing
the apps were derived from the perspective of interaction-schema of smart-devices,
which mostly consists of touch-events (such as tap, drag, pinch, etc.), accelerometer,
localization services, camera access, file system access, etc. Our focus was towards
touch-events, accelerometer, camera access, and the file system access. We left other
interaction-schema elements, such as localization services, due to their behavior com-
plexity. For each scenario, we developed apps using the above-mentioned frameworks
as well as the native iOS and Android development environments. The developed
apps for the scenarios target towards not only the smartphones but also the tablets in
order to consider the scalability issues. Following subsections provide the description
of each scenario and the corresponding developed app’s versions.

3.1 The MovePic Scenario

The MovePic scenario’s goal was to test the support and processing of multi-touch
gestures in smart-devices. This was done by hardcoding an image through the image-
view in the underlying device. The presented image could be manipulated with multi-
touch gestures such as panning, pinch zooming, rotating and dragging.

The native iOS version was developed using the built-in gesture recognizers in
which the attached gestures can only be used inside the image, because in iOS the

374 S.R. Humayoun, S. E

gesture recognizers are assi
ment, Android native enviro
touch gestures, needed for
the manual implementation
and its onTouch method, wh
MoSync did not support the
OpenGL view was used for
the usage of a different c
translation of the image wa
Appcelerator Titanium prov
ers for iOS only. Therefore
free gesture recognizer mo
lacked the handling of m
Hence, we skipped the first
MovePic app, developed in

Fig. 1. The MovePic a

3.2 The BubbleLevel Sc

The BubbleLevel scenario s
ter data. A spirit level is a
the ground. The scenario’s
rometer in the device as we
of this scenario have three
Figure 2.a) and a one-dimen
Figure 2.b and Figure 2.c re
tion. The round spirit level
dimensional surface leveli
displays the vertical or hori
The accelerometers in smar
tor in the device’s left-hand
three values for simulating

Ehrhart, and A. Ebert

igned to the image view only. At the time of the devel
onment did not have built-in gesture recognizers for mu
this app; therefore, the functionality was realized throu

n. This was done through the OnTouchListener interf
hich receives all the touch events recognized by the scre
e rotation of elements inside a native or a web view, so
r the implementation. Due to OpenGL 3D environment
oordinate system than the screen coordinate system,

as not as accurate compared to the native implementatio
vided modules to enable multi-touch and gesture recogn
e, the scenario was implemented only for the iOS using
dule. At the time of development, the RhoMobile Rho

multi-touch gestures and the accessing of accelerome
t two scenarios for it. Figure 1 shows a screen-shot of
the native iOS environment.

app (developed in the native iOS environment) on iPad 2

cenario

simulates a spirit level on the screen using the accelerom
tool to measure if some object is parallel or orthogona
goal was to test the support and processing of the acce

ell as checking its request rate. All the developed versi
e different screens; i.e., a round spirit level (as shown
nsional rectangular for vertical and horizontal (as shown
espectively); which switch according to the device orien
is displayed when the device lies flat. This provides a tw

ing. Tilting the device over 45 degree in any direct
izontal bars, which are one-dimensional rectangular shap
rt-devices return three values representing the gravity v
ded coordinate system. The developed versions used th
the desired spirit level.

lop-
ulti-
ugh
face
een.
o an
and
the

ons.
niz-
the

odes
eter.

the

me-
al to
ele-
ions
n in
n in
nta-
wo-
tion
pes.
vec-
hese

 Developing Mobile

The native iOS environm
circle and rectangles in all
The native Android version
rectangles, which resulted a
MoSync’s functions for dra
While the simulating of spi
interfaces for getting from
Sync version looks quite s
version used a web view sh
as the framework itself did
meter values were passed
instead of the circle due to t

(a)

Fig. 2. BubbleLevel app on iP
dimensional vertical spirit leve

3.3 The AnnotatePic Sc

The AnnotatePic scenario’
such as camera access, file
was to take image from th
(name, description and date
internal memory. The main
for showing all saved image
screen consists of informa
shows the detailed-screen v

The native iOS impleme
nerates an app with two scr
ment folder of the app, whi
iOS. The native Android i
classes provide functionali
riables, saving and loading
MoSync version consisted o

Apps Using Cross-Platform Frameworks: A Case Study

ment drawing functions were used to outline and to fill
three views of the app for the native iOS implementati

n used a nested thread class for drawing the circle and
a quicker drawing compared to the native iOS version. T
awing shapes were used to draw the circle and rectang
irit level was implemented using a Moblet, which provi

the accelerometer and then using it accurately. The M
similar to the native versions. The Appcelerator Titani
howing a HTML5 document for realizing the UI of the a
d not have the functionality of drawing UIs. The accele

to the web view through events. A square was dra
the slow processing of the circle drawing.

(b) (c)

Pad 2: (a) a round spirit level when the device lays flat, (b) o
el, and (c) one-dimensional horizontal spirit level

cenario

s goal was the utilization of complex interaction-sche
system access and phone-specific services. The basic t
he device’s camera, adding some additional informat
e), and then saving the image and the data in the devic
n screen of all the developed versions contains a list-v
es in small-view along with their names, while the detai
ation-taking form and an image-taking button. Figur
view on iPad 2 and on Samsung Galaxy S Plus.
entation used the master-detail template of iOS, which
reens. The captured images are saved directly in the do
ile their data is saved using the core data framework of
implementation was done through a set of classes. Th
ities for generating the database, managing memory
g images, and managing activities for the two views. T
of two sample apps for testing the camera functionality

375

the
ion.
the

The
gles.
ides
Mo-
ium
app,
ero-
awn

one-

ema
task
tion
ce’s
iew
iled

re 3

ge-
ocu-
f the
hese

va-
The
and

376 S.R. Humayoun, S. E

the master-detail functiona
MoSync iOS version, only
study. The Appcelerator T
detail application with data
the IDE level, both versio
Rhodes targets towards data
erated components were use
extra-generated component
own defined data models w
difficulties in image storing

Fig. 3. Detailed-screen view
Galaxy S Plus (right-side)

4 The User Evalua

We performed a user evalu
was on checking the interac
scenarios using different de
whether normal users from
is presented to them, even
different platforms.

The Experiment Settings
The test devices were a Sam
droid, and an iPhone 3GS a
mentations of the three scen
Six of these versions were
The remaining six impleme
for Android and iOS, the M
iOS, the Appcelerator Tita
and the MoSync impleme

Ehrhart, and A. Ebert

ality with the data storage. Due to some technical issue
y the MoSync Android version was evaluated in the u
Titanium versions were implemented through the mas
abase access. Due to the technical difficulties occurred
ons were not included in the user study. The RhoMob
a-driven business apps, so frameworks’ automatically g
eful for the scenario. But, it also takes time to get rid of
ts. RhoMobile Rhodes custom data models in addition
were used to implement the scenario. Due to the techn
g, the implementations were not included in the user stud

of the AnnotatePic app on iPad 2 (left-side) and on Sams

ation Study

uation study in a controlled environment, where the fo
ction response of different versions of the three mentio
evices and operating systems. The purpose was to anal

m different backgrounds feel any difference if the same
n though it is built through different frameworks and

msung Galaxy S Plus and a Samsung Galaxy Tab for A
and an iPad 2 for iOS. The tested versions were 12 imp
narios for both kinds of devices (smartphones and table
developed in native environments (i.e., Android and iO
entations were: the MoSync implementations of Move

MoSync implementations of BubbleLevel for Android
anium implementation of BubbleLevel for Android on
entation of AnnotatePic for Android only. Due to

s in
user
ster-
d at
bile

gen-
f the
n to

nical
dy.

sung

ocus
ned
lyze
app
for

An-
ple-
ets).
OS).
ePic
and
nly,
the

 Developing Mobile Apps Using Cross-Platform Frameworks: A Case Study 377

technical difficulties in other developed versions, we did not include them in the
study. Table 1 shows those versions that were evaluated in the user study.

Table 1. The tested versions in the user evaluation study

 Native platforms MoSync Appcelerator Titanium
Android iOS Android iOS Android iOS

MovePic ✓ ✓ ✓ ✓ 

BubbleLevel ✓ ✓ ✓ ✓ ✓ 

AnnotatePic ✓ ✓ ✓   

The User Groups and The Experiment Layout
We performed the evaluation study with 9 users (2 females, 7 males). We categorized
them according to their experience with smart-devices where 3 were expert in using
Android based devices, 3 were expert in using iOS based devices, while the remaining
3 had no experience at all with smart-devices. The age of users was between 23 and
31 years old with a mean of 25.88. For each tested version, users were asked to judge
the interaction-response time and the overall satisfaction with the app on a scale from
1 to 5. After testing different versions of the same scenario, each user was asked to
name the version they would prefer for future use with multiple answers possibility.

Results and Discussions
The conducted user evaluation study provided some interesting results that could be
useful for deciding the right environment(s) for developing mobile apps. In the Mo-
vePic scenario, the native iOS implementation received the best results (as it would be
used by 7 users out of 9 users, see Figure 4) but the native Android and MoSync im-
plementations too achieved comparable and good results. The reason that most users
preferred iOS version was probably due to the usage of iOS built-in gesture recogniz-
er in the implementation, which provided a better interaction response than the others.
Moreover, users who were expert with smart-devices preferred the MoSync version of
their own used platform instead of the other one, although both MoSync versions
were identical.

In the BubbleLevel scenario, the MoSync Android version received the best re-
sults, as 7 users preferred it (see Figure 4), while the MoSync iOS and Android native
versions received well appraisals too. On the other side, the iOS native and Appcele-
rator Titanium versions received just moderate ratings as none of the users showed
any interest for using them in future. One thing that needs to be considered while
comparing an app having the accelerometer functionality in Android-based devices is
the quality of accelerometer in the underlying devices, as the device with high power
processor might give better output than the others.

In the AnnotatePic scenario; the native iOS and Android versions received slightly
better estimation in terms of the overall satisfaction, while in the interaction response
time all the three versions achieved comparable and good results. The native imple-
mentations were chosen by most users for future use with 4 votes for the Android
version and 5 votes for the iOS version, as shown in Figure 4. Figure 4 provides a
graph overview of users preference for future usage of the tested versions.

378 S.R. Humayoun, S. E

Fig. 4. Users

Overall, we analyzed tha
time was very critical, i.e.
the native versions because
platform versions also gain
interaction-response time w
versions received approxim
conclude that where the qui
use the cross-platform deve
nearly the same user satisf
sponse time plays an impo
cross-platform developmen
platforms are slightly bette
native implementation envi
tion response, which enhan
that the mobile application
approximately the same us
environments.

5 The Software Ev

We also performed evaluati
software quality measurem
ferent platforms and frame
the style guides.

In the MovePic scenario
However, the image was
While the MoSync version’
between the 2D screen and
scenario, the iOS version h
version. The reason behind
of circle through a set of c
not so efficient. While in t
difficulty occurred in the im
celerometer data. The MoS

0
1
2
3
4
5
6
7
8

MovePic

Ehrhart, and A. Ebert

preference for future usage of the tested versions

at in case of those scenarios where the interaction-respo
in MovePic and BubbleLevel scenarios, users liked m

e they received more quick response, but even so the cro
ned good results. While in the case of scenarios where
was not so critical (i.e. in AnnotatePic scenario), all
mately the same kind of user satisfaction. Hence; we
ick response time is not so important, the better option i
elopment as it saves time and cost and at the end achie
faction level. While in the cases where the interaction
ortant role, if the quick response is not very critical t
nt could be the alternative option; otherwise, the nati
er than the cross-platform frameworks. This is because
ironments provide better solutions for the critical inter
nces the user satisfaction level. Overall, we can concl

ns developed using the cross-platform frameworks prov
ser satisfaction level as the ones developed in the nat

valuation

ion of the developed versions of the three scenarios aga
ments to check the required development time between
eworks. Moreover, we estimated their conformity aga

o, the native Android and iOS versions performed bet
following the fingers interaction slightly better in iO

’s performance was the worst one due to the transformat
d the 3D OpenGL coordinate system. In the BubbleLe
had the worst performance followed by the Appcelera

d Appcelerator version’s low performance was the draw
circular lines by the provided function, which seems to
the case of native iOS version, it was due to the techn
mplementation for getting the quick request rate of the
Sync version had a far better performance but the best

BubbleLevel AnnotatePic

Android-native

iOS-native

Mosync-Android

Mosync-iOS

App. Tit.-Android

onse
more
oss-
the
the
can

is to
eves

re-
then
ive-
the

rac-
lude
vide
tive

ainst
dif-

ainst

tter.
OS.
tion
evel
ator

wing
o be
nical

ac-
one

 Developing Mobile Apps Using Cross-Platform Frameworks: A Case Study 379

was given by the native Android due to using a separate thread for the drawing. The
AnnotatePic is not an interaction-response time critical scenario; hence, all the devel-
oped versions provided approximately the same performance level.

The implementations of the MovePic had a slightly different functionality for each
version. The functionality provided by the native iOS version was better compared to
the others, as it had the most natural interaction with the image and it also prevented
the image from moving out of the screen, followed by the native Android version. In
the BubbleLevel scenario, all implementations provided the same level of functionali-
ty due to the limitation of the scenario. In the AnnotatePic scenario, only the native
Android version was without any errors while the iOS native version performed well
until we updated it to the iOS 5.1. The MoSync version had problems during saving
the images and was showing just half of the screen for the camera view.

From the maintainability perspective, the iOS-based versions were better compared
to Android-based versions as much of the functionality was provided by the platform;
hence, it shortens the code and reduces the time to develop. But as it is just for one
platform only, so we felt the cross-platform development as the better solution. We
also noticed that working with RhoMobile Rhodes framework saved development
time compared to other frameworks as it provides many facilities for data-driven ap-
plications built-in from the start, followed by the iOS as it also provides much built-in
functionality for utilizing many device features. In the case of cross-platform, we
noticed that implementation time on MoSync was little bit faster than the others.

Lastly from the style-guide perspective, most of the cross-platform frameworks
had not adopted the Android style guide. It is because the Android released its style-
guide just few months before the time of our implementations. Moreover, we consi-
dered only the Android 2.2 and 2.3 versions during the development while some of
the style-guide elements, like the action bar, work only on and above the Android 3.0.
With regard to iOS based devices, we found out that all the tested cross-platform de-
velopment frameworks provided pretty good adaptions to the iOS environment.
Results of most of these frameworks conformed the style-guide of the iOS efficiently.

6 Conclusion

In this study, we performed a comparison between the native development environ-
ments and the cross-platform development environments. Apps were developed
against three scenarios using the Android and iOS and native development environ-
ments as well as three selected cross-platform development environments (i.e. Mo-
Sync, Appcelerator Titanium, and RhoMobile Rhodes). The evaluation results from
the software perspective and from the user study show that in many terms the results
of cross-platform frameworks are as good as the native ones and in some cases even
better. But the striking of Appcelerator Titanium has shown that relying on only one
cross-platform development framework may lead to failures, because the whole
smart-device market is evolving pretty fast and is in a constant flow. Also, when de-
veloping using the cross-platform approach, it is always better to think twice before
updating an SDK to the newest version. It could be possible that the underlying cross-
platform framework may not be able to build anymore on the new SDK version, as
the developers of these frameworks need time for the adaption of the new SDKs.

380 S.R. Humayoun, S. Ehrhart, and A. Ebert

The hybrid cross-platform frameworks provide much functionality today and it is
surely further emerging. They also allow basic adaption and scalability to the tablets.
The main difficulty for developers, who want to build cross-platform applications, is
to find the solution best fitting their needs. But in most cases, it is not easy to find out
what functionality a particular framework provides better than the others. In the fo-
rums of these frameworks many questions, which were posted one year ago or longer
for asking some functionalities, are still looking for the answers or the answers are
“coming soon functionality”.

Overall, it can be said that the hybrid cross-platform frameworks are a good alter-
native to the native implementations with definite better cost-efficiency. But before
choosing a particular framework, it is a must to find out if the underlying framework
supports the needed features in a stable way. Moreover, the possibilities for porting
existing applications between Android and iOS automatically are not fully developed,
yet. The manual porting has some issues to remind but when considering them from
the start, the process is manageable. In the near future, web cross-platform frame-
works may compete the hybrid frameworks more and more, because of the fact that
HTML5 is already capable of a few hardware access features and will perhaps evolve
to replace the hybrid frameworks partially or totally. So, keeping eye on both tech-
nologies will help in deciding the better options for the underlying scenario.

References

1. A Look Back in Time at the First Smartphone Ever Business 2 Community,
http://www.business2community.com/mobile-apps/
a-look-back-in-time-at-the-first-smartphone-ever-040906

2. Di Giovanni, P., Romano, M., Sebillo, M., Tortora, G., Vitiello, G., Ginige, T., De Silva,
L., Goonethilaka, J., Wikramanayake, G., Ginige, A.: User centered scenario based ap-
proach for developing mobile interfaces for Social Life Networks. In: UsARE 2012, pp.
18–24 (2012)

3. Gartner Says Android to Become No. 2 Worldwide Mobile Operating System in 2010 and
Challenge Symbian for No. 1 Position by 2014, http://www.gartner.com/it/
page.jsp?id=1434613 (last accessed February 21, 2013)

4. Heitkötter, H., Hanschke, S., Majchrzak, T.A.: Evaluating Cross-Platform Development
Approaches for Mobile Applications. In: Cordeiro, J., Krempels, K.-H. (eds.) WEBIST
2012. LNBIP, vol. 140, pp. 120–138. Springer, Heidelberg (2013)

5. http://webinos.org/crossplatformtools/appcelerator-titanium/
6. http://webinos.org/crossplatformtools/rhomobile-motorola/
7. http://webinos.org/crossplatformtools/mosync/
8. Jones, S., Voskoglou, C., Vakulenko, M., Measom, V., Constantinou, A., Kapetanakis, M.:

VisionMobile Cross-Platform Developer Tools (2012),
http://www.visionmobile.com/blog/2012/02/crossplatformtools/

9. Paananen, T.: Smartphone Cross-Platform Frameworks A case study. Bachelor’s Thesis.
Jyväskylän Ammattikorkeakoulu - JAMK University of Applied Sciences (2011)

10. Palmieri, M., Singh, I., Cicchetti, A.: Comparison of cross-platform mobile development
tools. In: ICIN 2012, October 8-11, pp. 179–186 (2012)

11. Smartphones setzen Siegeszug fort - Kalenderwoche 07 - 17. Februar - aetka Partnerforum
(February 17, 2012), http://partnerforum.aetka.de/
index.php?page=Thread&postID=993

	Developing Mobile Apps Using Cross-Platform
Frameworks: A Case Study
	1 Introduction
	2 Background
	3 The Testing Scenarios and The Developed Apps
	3.1 The MovePic Scenario

	3.2 The BubbleLevel Scenario

	3.3 The AnnotatePic Scenario

	4 The User Evalua ation Study
	5 The Software Ev valuation
	6 Conclusion
	References

