
M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2013, LNCS 8004, pp. 300–309, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Formal Pattern Specifications to Facilitate
Semi-automated User Interface Generation

Jürgen Engel1,2, Christian Märtin1, Christian Herdin1, and Peter Forbrig2

1 Augsburg University of Applied Sciences, Faculty of Computer Science,
An der Hochschule 1, 86161 Augsburg, Germany

{Juergen.Engel,Christian.Maertin}@hs-augsburg.de
2 University of Rostock, Institute of Computer Science,
Albert-Einstein-Strasse 21, 18059 Rostock, Germany

Peter.Forbrig@uni-rostock.de

Abstract. This paper depicts potentialities of formal HCI pattern specifications
with regard to facilitate the semi-automated generation of user interfaces for in-
teractive applications. In a first step existing proven and well accepted tech-
niques in the field of model-based user interface development are highlighted
and briefly reviewed. Subsequently it is discussed how we combine model-
based and pattern-oriented methods within our user interface modeling and
development framework in order to partly enable automated user interface gen-
eration. In this context a concrete pattern definition approach is introduced and
illustrated with tangible examples from the domain of interactive knowledge
sharing applications.

Keywords: HCI patterns, model-based user interface development, pattern-
based development, formalized pattern specification, user interface generation.

1 Introduction

There are many valuable pattern collections available for user interface (UI) designers
and software developers. However, most patterns lack standardized specification and
are therefore hard to retrieve and often impractical to use. Due to this fact the Pattern
Language Markup Language (PLML) has been introduced in the year 2003. But
PLML in turn shows clear weaknesses when patterns are intended to be used for
(semi-)automated UI generation. Therefore, we started from PLML as a basis and
made several changes and enhancements to support automatic pattern processing.
These efforts predominantly focus on features conveying pattern relationship model-
ing and provision of means for automated pattern treatment. This paper deals with
well-known and widely accepted model-based techniques and how they can be com-
bined with a pattern-based approach where emphasis is on the structured and formal
specification of HCI patterns.

 Formal Pattern Specifications to Facilitate Semi-automated User Interface Generation 301

2 Related Work

Patterns were originally introduced by Christopher Alexander in 1977 as a means to
accomplish reuse when solving problems in architecture and urban planning [1].
Eighteen years later, the pattern concepts were translated to the domains of software
architecture and software engineering by the Gang of Four (GoF) [11]. Nowadays
patterns are also applied to the fields of HCI [8], user experience (UX) [19], usability
engineering [13], task modeling [10], and application security [21].

There exist many widely accepted pattern collections, for instance the ones of Jeni-
fer Tidwell [18], Martijn van Welie [20], or Douglas van Duyne [5]. However, differ-
ent pattern authors usually describe their patterns in different and inconsistent styles.
This can be regarded as a clear shortcoming of patterns, because this makes it difficult
or even impossible to search, choose and reference patterns across the various pattern
collections. In a workshop held within the context of the CHI 2003 conference the
participants aimed at unification of pattern descriptions and guidance for the authors.
Hence the Pattern Language Markup Language (PLML) version 1.1 was constituted.
According to PLML documentation of a certain pattern should consist of the following
elements: a pattern identifier, name, alias, illustration, descriptions of the respective
problem, context and solution, forces, synopsis, diagram, evidence, confidence, litera-
ture, implementation, related patterns, pattern links, and management information [8].

In [7] it is concluded that it is possible to map the pattern descriptions contained in
the previously mentioned pattern collections into PLML compliant formats, however
this cannot be done in a fully automated manner.

Extensions and changes were suggested in PLML version 1.2 [4]. These efforts
strived to make PLML more feasible for Management of User Interface Patterns
(MUIP). A second development is PLMLx [3]. Additional pattern description ele-
ments are introduced, including organization, resulting context, and acknowledge-
ments. Further the <Management information> element is being extended and the
<Example> and <Rationale> elements are separated from each other. A third ap-
proach is the XPLML framework which can be regarded as a bundle of specifications
and tools to formalize HCI patterns. The framework is intended to close the gap be-
tween the textual pattern specifications and their application in user interface soft-
ware. The XPLML framework is implemented on the basis of seven modules: unified
HCI pattern form, semantic metadata, semantic relations among patterns, atomic par-
ticles of HCI design patterns, requirements engineering in HCI community, survey of
HCI design pattern management tools, and specification documentation.

The basic idea to support user interface designers and software developers with a
combination of both, model-based techniques and pattern-based methods is realized
by the integrated framework for pattern-based modeling and generation of interactive
systems (PaMGIS) [6]. PaMGIS is developed by the Automation in Usability Engi-
neering group (AUE) at Augsburg University of Applied Sciences. As illustrated in
Figure 1, this framework allows for creation of abstract user interface models (AUI)
on the basis of diverse fundamental information about the users, the users’ tasks, used
devices, and environment. Additionally the AUI designer can make use of patterns
stored in a pattern repository. The AUI is iteratively transformed into a semi-abstract

302 J. Engel et al.

UI model which in turn is used to generate respective user interface source code. The
framework has been continuously improved. Patterns are now available in a modified
PLML format and seamless pattern hierarchies can be modeled [7].

Fig. 1. Functional overview of the PaMGIS framework

Task models play an important role in the area of HCI in general and, in particular,
for model-based user interface development. They represent the logical activities of
users executed in order to reach their goals [16]. Therefore, knowing the necessary
user tasks is fundamental to the design process [15]. A well-known approach for
representing task models is ConcurTaskTrees (CTT). CTT provides a graphical syn-
tax and is organized in a strictly hierarchical structure, so that complex tasks can be
iteratively decomposed into less complex subtasks until a certain level of granularity
is reached. Thus, the logical structure of the task models is represented in a tree-like
manner. CTT distinguishes four different task types, i.e. user, interaction, application,
and abstract tasks. Temporal relationships between tasks can be expressed by a varie-
ty of temporal operators, i.e. hierarchy, enabling, choice, enabling with information
passing, concurrent tasks, concurrent communicating tasks, task independence, dis-
abling, and suspend-resume. Additionally tasks can be defined as optional or iterative
[15]. ConcurTaskTrees are used for task model specifications within the PaMGIS
framework. An illustrated example can be viewed in chapter 3.

Besides task models, dialog models comprise essential information for user inter-
face generation. Dialogs can be directly derived from the related task model [2]. Here,
it is assumed that all tasks which are active at a certain point in time are to be visua-
lized within a common dialog. This can be regarded feasible for relatively small task
models, but fails for more complex models since related user interfaces tend to be
overloaded [9]. This phenomenon can be avoided by explicitly designing navigation
specifications on the basis of abstract dialog graphs [17] and assigning individual
tasks of the task model to the dialog specification nodes. Using this technique it is
possible to define platform-specific navigation models [9]. The nodes of the dialog
graph represent dialogs of different types, i.e. single, multiple, modal, and complex.
The edges indicate whether dialog transitions are of sequential or concurrent nature
[9]. Dialog graphs are used to define platform-dependent dialog models within the
PaMGIS framework. Exemplary dialog graphs are provided in chapter 3.

 Formal Pattern Specifications to Facilitate Semi-automated User Interface Generation 303

3 Formal Pattern Specifications

The intension of the PaMGIS framework is to combine model- and pattern-based
methods and techniques in order to make user interface modeling and realization
more easy and practicable even for users with less development skills. Once the rele-
vant models are available the framework takes the job to at least semi-automatically
transform the models iteratively and generate UI source code. One of the basic ideas
is also to support the construction of the relevant models by means of patterns. In this
sense PLML shows some deficiencies notably in terms of pattern relation modeling
and provision of details required for automated pattern processing. Indeed PLML
provides relevant description elements, i.e. <Pattern-link> and <Implementation>, but
the former lacks of detail for appropriate pattern referencing and the latter is com-
pletely unstructured yet. Therefore, we started with PLML version 1.1 and made sev-
eral changes and enhancements which mainly apply to the specification elements
<Pattern ID>, <Pattern-link>, and <Implementation> as illustrated in Table 1. Further
we introduced a new element named <Embedding-link> which is highlighted in [14].
The entire structure of the resulting PLML variant which we now call PaMGIS Pat-
tern Specification Language (PPSL) is also summarized in [14].

Table 1. Selected pattern specification elements of the PaMGIS Framework

Specification Element Brief Description
UPID
 CollectionID
 PatternID
 Pattern revision
 InstanceID

Unique pattern identifier
 Identifier of the respective pattern collection
 Pattern identifier
 Revision of referenced pattern
 Pattern instance identifier

Pattern-link
 LinkID
 Link-type
 Relationship-type
 Pattern identification
 Label

Relationship to other patterns or pattern instances
 Unique link identifier
 Type of link (i.e. PERMANENT or TEMPORARY)
 Type of relation
 UPID of the respective pattern
 Name of the pattern link

Implementation
 Task model fragment

 Dialog model fragment

 Interaction model fragment

Code or model fragments or details of technical realization
 Specification of pattern-intrinsic tasks and their
 relationships based on an modified CTT notation
 Context-specific definition of dialogs and their relations
 based on dialog graphs
 Abstract specification of the dynamic aspects of the user
 interface dialogs

Details of the PLML modifications are discussed and illustrated in the following by

means of patterns identified during the p.i.t.c.h. project (pattern-based interactive
tools for improved communication habits in knowledge transfers) that was conducted
by AUE and two medium-sized enterprises and was focused at the knowledge man-
agement domain [12]. Within this context prototypical applications for individual
platforms were developed.

304 J. Engel et al.

3.1 Relationships of Patterns

As already elaborated in [7] automated pattern processing demands adequate and
accurate pattern referencing. On one hand, this affects the PLML specification ele-
ment <Pattern ID> which must allow for exact identification of an individual pattern.
On the other hand, <Pattern-link> must be capable to address and describe particular
pattern relations. Therefore, we have replaced PLML’s <Pattern id> element by
<UPID> which now is a composite of identifiers of the relevant pattern collection, the
pattern itself, the particular pattern revision, and an individual pattern instance. This
allows to distinguish individual pattern entities in the case a pattern is applied more
than once in a certain context.

In terms of the PLML specification element <Pattern-link> there is a need to dis-
tinguish two fundamental types of pattern links. First, there exist kinds of permanent
links to other patterns, which can be regarded as “hard-coded” and generally will not
change for a long period of time. If a permanent link is considered to be changed this
would normally lead to a new revision of the pattern. As soon as a respective pattern is
applied, all related patterns referenced by permanent links are also applied automati-
cally. Moreover, there must be a possibility to model temporary pattern links in case a
relationship to an individual pattern is required just under certain circumstances or in a
specific context. Hence we defined a sub-element of <Pattern-link> as outlined in
Table 1, i.e. <Link-type>. A descriptive example is given in [7].

3.2 Support for Automated Pattern Processing

In order to equip HCI patterns with information facilitating automated pattern
processing and user interface generation we render the so far unstructured PLML
element <Implementation> more precisely. For this reason we store relevant task
model, dialog model, and interaction model fragments together with the patterns.
Thus, we have defined a sub-element of <Implementation> named <Fragment>.
Fragments can be regarded as building blocks which can be used to improve the over-
all user interface model by applying a pattern in the design process.

Task models used within the PaMGIS framework are expressed in CTT syntax.
Therefore, the task model fragment of a particular pattern is defined in CTT XML
format. Figure 2 shows an excerpt of the task model of the p.i.t.c.h. pattern Advanced
Search [7].

Fig. 2. Excerpt of the task model of the Advanced Search pattern

In this example we focus on interaction tasks which directly contribute to the re-
sulting user interface while abstract tasks, user tasks and application tasks are less
important within the scope of this paper. We iteratively refine the task model until the
leaves of the task tree can be matched to exactly one interaction object. For this
purpose we have introduced an additional specification element <IeRef> which

 Formal Pattern Specifications to Facilitate Semi-automated User Interface Generation 305

establishes a link between the task and a certain interaction element specified within
the interaction model fragment (see below). The XML representation of the above
task model fragment is sketched in Figure 3.

<Fragment Type="TaskModel" Identifier="TMF_0001">
 <Task Identifier="PAS_0001" Category="abstraction" Iterative="false"
 Optional="false" Frequency=" ">
 <Name>Advanced_Search</Name>
 <Parent name=" "/>
 <SiblingLeft name=" " TempOp="Interleaving"/>
 <SiblingRight name=" "/>
 <SubTask>
 …
 <Task Identifier="PAS_0003" Category="interaction"
 Iterative="false" Optional="false" Frequency=" ">
 <Name>Specify_Search_Args</Name>
 <TemporalOperator name="SuspendResume"/>
 <Parent name="Advanced_Search"/>
 <SiblingLeft name="Decide_Search_Args"/>
 <SiblingRight name="Send_Request"/>
 <SubTask>
 <Task Identifier="PAS_0013" Category="interaction"
 Iterative="false" Optional="false" Frequency=" ">
 <Name>Input_Keyword</Name>
 <TemporalOperator name="Interleaving"/>
 <Parent name="Specify_Search_Args"/>
 <SiblingLeft name="Decide_Search_args"/>
 <SiblingRight name="Input_Tags"/>
 <IeRef>IE_0001</IeRef>
 </Task>
 </Subtask>
 </Task>
 …
 </Subtask>
 <Task>
</Fragment>

Fig. 3. XML code snippet of the Advanced Search pattern’s task model

Here, the subtask Input_keyword is linked to an interaction element with ID
IE_0001. The content of the elements marked in bold have to be calculated and re-
placed when the pattern is applied respectively the model fragment is integrated into
the overall task model. While the <Parent>, <SiblingLeft> and possibly <Siblin-
gRight> elements are to be automatically aligned to the conditions inside the overall
task model the data held within the <TempOp> attribute of the <SiblingLeft> element
is destined to be moved to the <TemporalOperator> element of the left sibling task and
deleted from the task model fragment. Note that dependent on the task types included
in the task model fragment adjustments of the type of parent elements might be neces-
sary, i.e. becoming abstract tasks. However, this can be covered automatically, too.

While one pattern usually possesses one particular task model fragment it might
include several dialog model fragments. Dialog models represent target platform-
specific navigations. In the mentioned example of the Advanced Search pattern all

306 J. Engel et al.

subtasks can be assigned to one single dialog on a desktop PC equipped with a large
display. The related dialog graph can be viewed on the left and the resulting UI dialog
on the right side of Figure 4.

Fig. 4. Possible desktop PC dialog graph (left) and resulting UI (right)

The related XML representation of the PC desktop dialog model fragment is
sketched in Figure 5. The assignment of tasks to the dialog is accomplished by means
of the <Coverage> specification element.

<Fragment Type="DialogModel" Identifier"DMF_0001">
 <DMName>Advanced_Search_Desktop</DMName>
 <Dialog>
 <DID>00010001</DID>
 <DName>Prepare_Advanced_Search<DName>
 <Coverage>
 <Task>
 <TID>PAS_0003</TID
 <TName>Specify_Search_Args</TName>
 <Processing>recursive</Processing>
 </Task>
 <Task>
 <TID>PAS_0004</TID>
 <TName>Send_Request</TName>
 <Processing>exclusive<Processing>
 </Task>
 </Coverage>
 </Dialog>
</Fragment>

Fig. 5. XML code snippet of the desktop PC dialog model

The <Processing> element indicates whether solely the mentioned subtask itself (ex-
clusive) or all subtasks shall also be included in the dialog specification (recursive). In
contrast to this simple example the dialog model for mobile phones is more complex

 Formal Pattern Specifications to Facilitate Semi-automated User Interface Generation 307

because owing to screen size limits the functionality has to be split into several dialogs.
The various nodes in the task tree help to compose meaningful groups. Note that not all
tasks are incorporated in the mobile dialog model. The respective dialog graph is illu-
strated on the left of Figure 6. The resulting UI dialog is shown on the right side.

Fig. 6. Possible mobile phone dialog graph (left) and resulting UI (right)

Similar to the desktop version it is necessary to assign the tasks to particular dialogs
using the <Coverage> element. But in addition it must be specified when and how a
transition to a different dialog shall happen. For this purpose we introduced the <Di-
alogFlow> element which allows for specification of respective successor dialogs and
interaction elements triggering the dialog transition. As shown in Figure 7 both, the
successor dialog and the interaction element are referenced via appropriate identifiers.

<Fragment Type="DialogModel" Identifier"DMF_0002">
 <DMName>Advanced_Search_Mobile</Name>
 <Dialog>
 <DID>00020001</DID>
 <DName>Advanced_Search_Start</DName>
 <Coverage>
 …
 </Coverage>
 <DialogFlow>
 <Successor Type="sequential">
 <DID>00020002</DID>
 <Trigger>
 <IeRef>IE_0101</IeRef>
 <Event>On_Klick</Event>
 </Trigger>
 </Successor>
 …
 </DialogFlow>
 </DialogFlow>
</Fragment>

Fig. 7. XML code snippet of the mobile phone dialog model

308 J. Engel et al.

The three dialogs Creation_Date_Specification, Last_Modified_Specification, and
Search_Type_Specification do yet neither directly nor indirectly possess an inter-
action element that could trigger the transition back to the Advanced_Search_Start
dialog. This problem is fixed by applying the OK_Cancel pattern in each case.

Finally the interaction model fragment contains the abstract specifications of the
required interaction elements. The XML definitions of the two previously mentioned
interaction elements are illustrated in Figure 8.

<Fragment Type="InteractionModel" Identifier"IMF_0001">
 <InteractionElement Identifier="IE_0001" Visible="true"
 Enabled="true" Optional="false">
 <Name>userInput_Keyword</Name>
 <Type>InputField</Type>
 <DataType>String</DataType>
 <Label>Keyword(s)</Label>
 </InteractionElement>
 <InteractionElement Identifier="IE_0101" Visible="true"
 Enabled="true" Optional="false">
 <Name>userAction_CreationDate</Name>
 <Type>TransitionActivator</Type>
 <Event>OnKlick</Event>
 <Label>Creation Date</Label>
 </InteractionElement>
</Fragment>

Fig. 8. XML code snippet of the interaction model fragment

Some of the elements specified in the interaction model address user inputs and
system outputs, e.g. the interaction element userInput_Keyword specified in the XML
code snipped above. Such elements can be regarded as interface to the underlying
business logic of the particular software.

During the model transformation process the defined abstract interaction elements
are substantiated until they can be mapped to the particular widget sets appropriate for
the present context of use and available on the target platform. For instance, an ab-
stract TransitionActivator might become a link in a browser-based application or a
button in a Windows-based fat client.

4 Conclusion

In this paper, we have introduced our approach to specify HCI patterns formally in
order to support automatic respectively semi-automated pattern processing and user
interface generation. We took PLML version 1.1 as basis and reworked the mecha-
nisms for appropriate modeling of relationships between patterns, i.e. the specification
elements <Pattern id> and <Pattern-link>. Additionally we have structured the <Im-
plementation> element in order to hold fragments of task, dialog, and interaction
models which can be used during the user interface model design process and for UI
generation purposes. These enhancements are explained and illustrated by means of
examples from experimental applications in the knowledge sharing domain.

In our current research we focus on further improvements of model design and
code generation automation.

 Formal Pattern Specifications to Facilitate Semi-automated User Interface Generation 309

References
1. Alexander, C., et al.: A pattern language. Oxford University Press (1977)
2. Berti, S., et al.: A transformation-based environment for designing multi-device interactive

applications. In: Proceedings of the 9th International Conference on Intelligent User Inter-
faces, Funchal (January 2004)

3. Bienhaus, D.: PLMLx Doc. (2004), http://www.cs.kent.ac.uk/people/
staff/saf/patterns/plml.html (last website call on February 3, 2012)

4. Deng, J., Kemp, E., Todd, E.G. (Hg.): Focusing on a standard pattern form: the develop-
ment and evaluation of MUIP. In: Proceedings of the 6th ACM SIGCHI New Zealand
Chapter’s International Conference on Computer-Human Interaction: Design Centered
HCI (2006)

5. van Duyne, D., Landay, J., Hong, J.: The Design of Sites, Patterns for Creating Winning
Websites, 2nd edn. Prentice Hall International (2006) ISBN 0-13-134555-9

6. Engel, J., Märtin, C.: PaMGIS: A Framework for Pattern-based Modeling and Generation
of Interactive Systems. In: Jacko, J.A. (ed.) HCI International 2009, Part I. LNCS,
vol. 5610, pp. 826–835. Springer, Heidelberg (2009)

7. Engel, J., Märtin, C., Herdin, C.: Exploiting HCI Pattern Collections for User Interface
Generation. In: Proceedings of PATTERNS 2012, the 4th International Conferences of
Pervasive Patterns and Applications, Nice, France, pp. 36–44 (2012)

8. Fincher, S., et al.: Perspectives on HCI patterns: concepts and tools. In: CHI 2003 Ex-
tended Abstracts on Human Factors in Computing Systems, Ft. Lauderdale, Florida, USA,
pp. 1044–1045. ACM (2003)

9. Forbrig, P., Reichart, D.: Spezifikation von “Multiple User Interfaces” mit Dialoggraphen.
In: Processdings of INFORMATIK 2007: Informatik Trifft Logistik, Beiträge der 37,
Bremen. Jahrestagung der Gesellschaft für Informatik e.V., GI (September 2007)

10. Gaffar, A., et al.: Modeling patterns for task models. In: TAMODIA 2004 Proceedings of
the 3rd Annual Conference on Task Models and Diagrams. ACM, New York (2004)

11. Gamma, E., et al.: Design Patterns. Elements of Reusable Object-Oriented Software. Addi-
son-Wesley, Reading (1995)

12. Kaelber, C., Märtin, C.: From Structural Analysis to Scenarios and Patterns for Knowledge
Sharing Applications. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part I, HCII
2011. LNCS, vol. 6761, pp. 258–267. Springer, Heidelberg (2011)

13. Marcus, A.: Patterns within Patterns. Interactions 11(2), 28–34 (2004)
14. Märtin, C., Herdin, C., Engel, J.: Patterns and models for automated user interface con-

struction – in search of the missing links. In: Kurosu, M. (ed.) Human-Computer Interac-
tion, Part I, HCII 2013. LNCS, vol. 8004, pp. 401–410. Springer, Heidelberg (2013)

15. Paternò, F.: ConcurTaskTrees: An Engineered Approach to Model-based Design of Inter-
active Systems. ISTI-C.N.R., Pisa (2001)

16. Paternò, F.: Model-based Design and Evaluation of Interactive Applications. Springer,
London (2000)

17. Schlungbaum, E., Elwert, T.: Dialogue Graphs – A Formal and Visual Specification Tech-
nique for Dialogue Modelling. Springer (1996)

18. Tidwell, J.: Designing Interfaces. Patterns for Effective Interaction Design, 2nd edn.
O’Reilly Media Inc. (2011) ISBN 978-1-449-37970-4

19. Tiedtke, T., Krach, T., Märtin, C.: Multi-Level Patterns for the Planes of User Experience.
In: Proc. of HCI International, July 22-27. Theories Models and Processes in HCI, vol. 4.
Lawrence Erlbaum, Las Vegas (2005)

20. van Welie, M.: Patterns in Interaction Design, http://www.welie.com
(last website call on November 25, 2012)

21. Yoder, J., Barcalow, J.: Architectural patterns for enabling application security. In: Inter-
national Conference on Pattern Language of Programs, PLoP (1997)

	Formal Pattern Specifications to Facilitate
Semi-automated User Interface Generation
	1 Introduction
	2 Related Work
	3 Formal Pattern Specifications
	3.1 Relationships of Patterns
	3.2 Support for Automated Pattern Processing

	4 Conclusion
	References

