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1 Università Roma Tre, Rome, Italy
{dvr,maccioni}@dia.uniroma3.it

2 Dublin City University, Dublin, Ireland
pcappellari@computing.dcu.ie

Abstract. Keyword-based search over (semi)structured data is today
considered an essential feature of modern information management sys-
tems and has become an hot topic in database research and development.
Most of the recent approaches to this problem refer to a general scenario
where: (i) the data source is represented as a graph, (ii) answers to
queries are sub-graphs of the source containing keywords from queries,
and (iii) solutions are ranked according to a relevance criteria. In this pa-
per, we illustrate a novel approach to keyword search over semantic data
that combines a solution building algorithm and a ranking technique to
generate the best results in the first answers generated. We show that
our approach is monotonic and has a linear computational complexity,
greatly reducing the complexity of the overall process. Finally, experi-
ments demonstrate that our approach exhibits very good efficiency and
effectiveness, especially with respect to competing approaches.

1 Introduction

The amount of data in the Semantic Web is exponentially increasing due to or-
ganizations that are opening up data in the form of linked data and, on the other
side, to users that are interested in using them. In general, to access (semantic)
data users must know how data is organized (e.g., Web ontologies) and the syn-
tax of a specific query language (e.g., SPARQL). Clearly, this is an obstacle to
information access and retrieval. For this reason Keyword Search (KS) systems
are increasingly capturing the attention of researchers and industry, since they
provide an effective facilitation to non-expert users. Let us consider the example
in Fig. 1. Graph G1 is a sample RDF version of the DBLP dataset (a database
about scientific publications). Vertices in ovals represent entities, such as aut1
and aut2, or concepts, such as Conference and Publication. Vertices in rectangles
are literal values, such as Bernstein and Buneman. Edges describe connections
between vertices. For instance, entity aut1 is a Researcher of name Bernstein.
Typically, given a keyword search query, a generic approach would: i) identify
the vertices of the RDF graph holding the data matching the input keywords,
ii) traverse the edges to discover the connections (i.e. trees or sub-graphs) be-
tween them that build n candidate solutions (with n > k), and iii) rank solutions
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Fig. 1. An RDF graph G1 from DBLP

according to a relevance criteria to return the top relevant k. Intrinsically, this
process generates (or computes) more solutions than required (an overset of the
most relevant answers), whereas it would be ideal to generate exactly the best
k. For instance, if one is interested in the top-2 answers for the query Q1 =
{Bernstein, SIGMOD, 2008} over G1 in Fig. 1, then only S1 (i.e. articles of
Bernstein published in SIGMOD 2008 ) and S2 (i.e. articles of Buneman pub-
lished in SIGMOD 2008 ) shall be computed. Intuitively, S1 is more relevant than
S2 because it includes more keywords and it should be retrieved as the first an-
swer. Note that ranking functions consider more elaborated criteria to evaluate
the relevance of an answer. It turns out however, that the relevance of answers
is highly dependent on both the construction of candidates and their ranking.
For this reason, the tasks of searching and of ranking are strongly correlated.

In this paper, we present a novel keyword based search technique over RDF
graph-shaped data that builds the best k results in the first k solutions gener-
ated. This technique is inspired by a previous work [4]. The work in [4] builds
top-k solutions in an approximate and sequential way focusing exclusively on the
quality of the results. Differently, in this paper we address efficiency and scalabil-
ity, beyond effectiveness, providing new algorithms to optimize the complexity
of finding the best answers. To validate our approach, we have developed a sys-
tem for keyword-based search over RDF data that implements the techniques
described in this paper. Experiments over widely used benchmarks (Coffman et
al. [3]) shows very good results with respect to other approaches, in terms of
both effectiveness and efficiency. Specifically, we propose two different strategies
for our framework. The first presents a linear computational cost and enables the
search to scale seamlessly with the size of the input. The second, inspired by the
Threshold Algorithm proposed by Fagin et al. [6], guarantees the monotonicity
of the output as we show that the first k solutions generated are indeed the
top-k. Referring the example in Fig. 1 with k = 2, that strategy builds solutions
S1 and S2 in this order.
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The rest of the paper is organized as follows. In Section 2, we introduce some
preliminary issues. In Section 3 we overview the proposed approach to KS, while
in Section 4 we illustrate the approach strategies in more detail. In Section 5, we
discuss related research and in Section 6, we present the experimental results.
Finally, in Section 7, we draw our conclusions and sketch future research.

2 Preliminary Issues

This section states the problem we address and introduces some preliminary
notions and terminology. RDF datasets are naturally represented as labeled di-
rected graphs.

Definition 1 (RDF Data Graph). An RDF data graph is a labeled directed
graph G composed by a tuple G = {V,E,ΣV , ΣE, LG} where V is a set of vertices
and E ⊆ V × V is a set of ordered pairs of vertices, called edges. ΣV and ΣE

are the sets of vertices and edge labels, respectively. The labeling function LG

associates an element of V to an element of ΣV and an element of E to an
element of ΣE.

Intuitively, the problem of KS over RDF is addressed by exploring the dataset
to find sub-graphs holding information relevant to the query. We follow the
traditional Information Retrieval approach to value matching adopted in full-
text search for semantic query expansion. This involves syntactic and semantic
similarities to support an imprecise matching. Since this is not a contribution
of our work, we will not discuss it further. We define a path as the sequence
of vertices and edges from a source to a sink. The sources of a graph are those
nodes with no in-going edges and the sinks are the nodes with no out-going
edges.

Definition 2 (Path). Given a graph G = {V,E,ΣV , ΣE , LG}, a path is a se-
quence pt =lv1 − le1 − lv2 − le2 − . . .− len−1 − lvf where vi ∈ V , ei ∈ E, lvi = LG(vi),
lei = LG(ei), and v1 is a source and vf is a sink.

If a source is not present, a fictitious one can be added. For instance, the graph in
Fig. 1 has two sources: pub1 and pub2. An example of path is pi = pub1-author-

aut1-name-Bernstein. Obviously, at running time we are interested in the paths
relevant to the query, that is, the paths containing at least one vertex matching
a keyword of the query. In particular, as assumed in [12], users enter keywords
corresponding to attribute values, that are necessarily within the sink’s labels.
Under this assumption, we do not search URIs: this is not a limitation because
nodes labeled by URIs are usually linked to literals, which represent verbose
descriptions of such URIs. We index all paths starting from a source and ending
with a sink. In a path, the sequence of edge labels describes the corresponding
structure. To some extent, such a structure describes a schema for the values
on vertices that share the same connection type. While we cannot advocate the
presence of a schema, we can say that such a sequence is a template for the
path. Therefore, given a path p, its template tp results from the path where
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each vertex label is replaced with the wildcard #. In the example again using
Fig. 1, the template tp2 associated to p2 is #-author-#-name-#. We say that p2
satisfies tp2 , denoted with p2 ≈ tp2 . Multiple paths that share the same template
can be considered as homogeneous. When two paths pi and pj share a common
node, we say that there is an intersection between pi and pj and we indicate
it with pi ↔ pj . Finally, a solution S to Q over G is a set of paths forming a
connected components, i.e. a directed labeled sub-graph of G where the paths
present pairwise intersections as defined below.

Definition 3 (Solution). A solution S is a set of paths p1, p2, . . . , pn where
∀pa, pb ∈ S there exists a sequence [pa, pw1 , . . . , pwm , pb], with m < n, such that
pwi ∈ S, pa ↔ pw1 , pb ↔ pwm , and ∀i ∈ [1,m-1] : pwi ↔ pwi+1 .

Ranking and Monotonicity. Given the query Q1 over the graph illustrated
in Fig. 1, the solutions are represented by S1 = {p1, p2, p3} and S2 = {p4, p5}.
Intuitively, S1 is more relevant than S2 because it includes more terms from the
input query. To assess the relevance of a solution S for a query Q, a scoring
function score(S,Q) is adopted. It returns a number that is greater when the
solution is more relevant. Then, the ranking is given by ordering the solutions
according to their relevance. We say that a ranking is monotonic if the i-th solu-
tion is more relevant than the i+1-th solution. Consequently, a query answering
process is monotonic if it generates the solutions respecting a monotonic rank-
ing (i.e. the solution of the i-th step is always more relevant than that of the
i+1-th step). In the following sections, we will use the notation score(p,Q) and
score(S,Q) to evaluate the relevance of a path p and of a solution S with respect
to the query Q, respectively. We remark that, unlike all current approaches, we
are independent from the scoring function. In fact, we do not impose a mono-
tonic, aggregative nor an “ad-hoc for the case” scoring function. Without giving
further details, for the running example and for the experiments we used the
scoring function presented in [4].

Problem Definition. Given a labeled directed graph G and a keyword search
based query Q = {q1, q2, . . . , qn}, where each qi is a keyword, we aim at finding
the top-k ranked answers S1, S2, . . . , Sk to Q.

3 Keyword Search over RDF

This section overviews our approach to keyword search over RDF and discusses
the conditions under which the solution generation process exhibits a monotonic
behavior with respect to the score of the solutions.

Overview. Let G be an RDF data graph and Q a KS query over it. Our
approach provides two main phases: the indexing (done off-line), in which all
the paths of G are indexed, and the query processing (done on-the-fly), where
the query evaluation takes place. The first task is described in more detail in [2].
In the second phase, all paths P relevant for Q (i.e. all paths whose sinks match



342 R. De Virgilio, A. Maccioni, and P. Cappellari

cl1[#-year-#] : cl2[#-author-#-name-#] :(
p1 : pub1-year-2008
p4 : pub2-year-2008

) (
p2 : pub1-author-aut1-name-Bernstein

)

cl3[#-acceptedBy-#-name-#] : cl4[#-editedBy-#-name-#] :(
p3 : pub1-acceptedBy-conf1-name-SIGMOD

) (
p5 : pub2-editedBy-conf1-name-SIGMOD

)

Fig. 2. Clustering of paths

at least one keyword of Q) are retrieved in G by exploiting the index and the best
solutions are generated from P . An important feature of this phase is the use of
the scoring function while computing the solutions. This phase is performed by
the following two main tasks:

Clustering. In this task we group the paths of P into clusters cli according to
their template, and we return the set CL of all clusters. As an example, given the
query Q1 and the data graph G1 of Fig. 1, we obtain the clusters shown in Fig. 2.
In this case clusters cl1, cl2, cl3 and cl4 correspond to the different templates
extracted from P . Before the insertion of a path p in the cluster, we evaluate
its score. The paths in a clusters are ordered according to their score with the
greater coming first, i.e. score(p1, Q1) ≥ score(p4, Q1). It is straightforward to
demonstrate that the time complexity of the clustering is O(|P |): we must only
execute |P | insertions into CL at most.

Building. The last task aims at generating the most relevant solutions by com-
bining the paths in the clusters built in the previous step. This is done by
picking and combining the paths with greatest score from each cluster, i.e. the
most promising paths. Note that by building solutions with paths from different
clusters we diversify the solution content since we do not include homogeneous
data, i.e. from the same cluster. The combination of paths is led by a strategy
that decides whether a path has to be inserted in a final solution or not. In
particular, two different strategies are exploited as follows.

1. Linear strategy: guarantees a linear time complexity with respect to the size
of the input. Basically, the final solutions are the connected components of
the most relevant paths of the clusters.

2. Monotonic strategy: generates the solutions in order according to their rele-
vance in a quadratic time complexity with respect to the size of the input.
As the linear strategy, it computes the connected components from the most
relevant paths in the clusters. Unlike the previous strategy, the path inter-
connection is not the only criterion to form a solution. At this point every
connected components is locally analyzed to check if it fulfills the mono-
tonicity, i.e. we check if the solution we are generating is the optimum. This
check is supported by the so called τ -test, which is explained in the next
Section 3. Furthermore, we derived a variant of this strategy that, reducing
a bit the quality of the results, is able to optimize the analysis guaranteeing
the execution in linear time w.r.t. the size of the input.
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Monotonic Generation. Monotonicity when building the result set represents
a significant challenge in keyword search systems. This means returning the
optimum solution at each generation step instead of enduring the processing
of blocks of candidate solutions and then selecting the optimum. The second
strategy relies on the Theorem 1 to guarantee the monotonicity of the building.
It requires to verify the two following properties, i.e. Property 1 and Property 2,
on the scoring function. Our strategy is independent from such implementation:
it works with any scoring function as long as it satisfies the properties below.
Furthermore, the two properties are very general and in fact, they are fulfilled
by the most common IR based functions. It is possible to prove that the pivoted
normalization weighting method (SIM) [11], which inspired most of the IR scoring
functions, satisfy Properties 1 and 2. For the sake of simplicity, we discuss the
properties by referring to the data structures used in this paper.

Property 1. Given a query Q and a path p, score(p,Q) = score({p}, Q).

This property states that the score of a path p is equal to the score of the
solution S containing only that same path (i.e. {p}). It means that every path
must be evaluated as the solution containing exactly that path. Consequently we
have that, if score(p1, Q) > score(p2, Q) then score({p1}, Q) > score({p2}, Q).
Analogously, extending Property 1 we provide the following.

Property 2. Given a query Q, a set of paths P in which pβ is the more relevant
path (i.e. ∀pj ∈ P we have that score(pβ , Q) � score(pj , Q)) and P ∗ is its power
set, we have score(S = Pi, Q) ≤ score(S = {pβ}, Q) ∀Pi ⊆ P ∗.

In other words, given the set P containing the candidate paths to be included in
the solution, the scores of all possible solutions generated from P (i.e. P ∗) are
bounded by the score of the most relevant path pβ of P . This property is coherent
and generalizes the Threshold Algorithm (TA) [6]. Contrarily to TA, we do not
use an aggregative function, nor we assume the aggregation to be monotone. TA
introduces a mechanism to optimize the number of steps n to compute the best
k objects (where it could be n > k), while our framework produces k optima
solutions in k steps. To verify the monotonicity we apply a so-called τ -test to
determine which paths of a connected component cc should be inserted into an
optimum solution optS ⊂ cc. The τ -test is supported by Theorem 1. Firstly,
we have to take into consideration the paths that can be used to form more
solutions in the next iterations of the process. In our framework they are still
within the set of clusters CL. Then, let us consider the path ps with the highest
score in CL and the path py with the highest score in cc� optS. Then we define
the threshold τ as τ = max{score(ps, Q), score(py, Q)}. The threshold τ can be
considered as the upper bound score for the potential solutions to generate in
the next iterations of the algorithm. Now, we provide the following:

Theorem 1. Given a query Q, a scoring function satisfying Property 1 and
Property 2, a connected component cc, a subset optS ⊂ cc representing an
optimum solution and a candidate path px ∈ cc� optS, S = optS ∪ {px} is still
optimum iff score(S,Q) ≥ τ.
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Necessary condition. Let us assume that S = optS ∪ {px} is an optimum
solution. We must verify if the score of this solution is still greater than τ .
Reminding to the definition of τ , we can have two cases:

– τ = score(ps, Q) > score(py , Q).
In this case score(ps, Q) represents the upper bound for the scoring
of the possible solutions to generate in the next steps. Recalling the
Property 1, we have score(ps, Q) = score(S′ = {ps}, Q). Referring to
the Property 2, the possible solutions to generate will present a score
less than score(S′ = {ps}, Q): S = optS ∪ {px} is optimum. Therefore,
score(S = optS ∪ {px}) ≥ τ .

– τ = score(py, Q) > score(ps, Q).
In a similar way, score(S = optS ∪ {px}, Q) ≥ τ .

Sufficient condition. Let us consider score(S = optS ∪ {px}, Q) ≥ τ . We
must verify if S = optS∪{px} is an optimum solution. From the assumption,
score(S = optS∪{px}, Q) is greater than both score(ps, Q) and score(py , Q).
Recalling again the properties of the scoring function, the possible solutions
to generate will present a score less than both score(S′ = {ps}, Q) and
score(S′ = {py}, Q). Therefore, S = optS ∪ {px} is an optimum solution. 
�

4 Building Strategies

Given the query Q and the set P of paths matching the query Q, we compose
those paths to generate the top-k solutions. As said in the previous section, we
organize such paths into clusters. In the following we discusses two strategies to
compose the paths organized in the set CL of clusters.

4.1 The Linear Strategy

Given the set of clusters CL, the building of solutions is performed by generating
the connected components cc from the most promising paths in CL as shown in
Algorithm 1.

Algorithm 1. Building solutions in linear time
Input : The map CL, a number k.
Output: A list S of k solutions.

S ← ∅;1
while |S| < k and CL is not empty do2

first cl← ∅;3
cc← ∅;4
foreach cl ∈ CL do5

first cl← first cl ∪ cl.DequeueTop() ;6

cc← FindCC(first cl );7
s← ∅;8
foreach cc ∈ cc do9

s.Enqueue(cc);10

S.InsertAll(s.DequeueTop(k-|S |)) ;11

return S;12
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The algorithm iterates k times at most to produce the best k solutions
(i.e. a list S). At each iteration, we initialize a set first cl with the best
paths from each cluster, that is the paths with the highest score (lines [3-
6]). DequeueTop retrieves the top paths from cl, i.e. all paths having the same
(top) score. Referring again to the example of Fig. 1, in the first iteration we
have first cl = {p1, p2, p3, p5}. Out of first cl we compute the connected
components cc (line [7]), each of which represents a solution. For the example,
{p1, p2, p3, p5} represents a single connected component cc1. At the second it-
eration, we have first cl = {p4} and thus, cc2 = {p4}. Then, all generated
connected components are included into a priority queue s, in order with re-
spect to the score. Finally, through a variant of DequeueTop, we insert the top n
elements (i.e. n = k -|S|) of s into S (line [11]). The execution concludes when
k solutions are produced (i.e |S| < k) or CL becomes empty.

Computational Complexity. Algorithm 1 produces the best-k solutions in
linear time with respect to the number I of paths matching the input query Q:
it is in O(k×I) ∈ O(I). In the worst case, the algorithm iterates k times. The
execution in lines [4-5] is O(|(CL)|) ∈ O(I). Then we have to execute FindCC that
is O(I) since each path knows which are the other intersecting paths. Finally,
both the executions in lines [9-11] and line [12] are in O(I) (i.e. at most we have
to make I insertions). Therefore, the entire sequence of operations in Algorithm 1
is in O(k×I) ∈ O(I).

Ranking. Observing the solutions of the running example, S1 contains the un-
necessary p5, while S2 is partially incomplete (i.e. it should include p5). Such
strategy tends to produce solutions exhaustive but not optimally specific, that
is to include all relevant information matching the query but not optimally lim-
iting the irrelevant ones. Moreover the solution generated at each step may
not be the optimum solution, i.e. the strategy is not monotonic. In fact, it
may happen a generation of a sequence of two solutions Si and Si+1 where
score(Si+1, Q) > score(Si, Q). The next section discusses the conditions under
which the solution generation process exhibits a monotonic behavior with respect
to the score of the solutions.

4.2 The Monotonic Strategy

To generate the top-k solutions guaranteeing monotonicity, differently from Al-
gorithm 1, the building algorithm (Algorithm 2) introduces an exploration pro-
cedure to analyze the connected components of the most relevant paths (line [9]).

The function MonotonicityExploration (Algorithm 3) finds the best solu-
tions CCOpt in cc by launching the analysis over each connected component cc.

Monotonicity Analysis. Algorithm 4 checks if the solution we are generating
is (still) optimum, thus, preserves the monotonicity. It is a recursive func-
tion that generates the set OptSols of all solutions (candidate to be optimum) by
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Algorithm 2. Monotonic Building of top-k solutions
Input : A list CL of clusters, a number k.
Output: A List S of k solutions.

while |S| < k do1
first cl← ∅;2
cc← ∅;3
foreach cl ∈ CL do4

first cl← first cl ∪ cl.DequeueTop() ;5

cc← FindCC(first cl );6
if CL is not empty then7

ps ← getTopPath(CL );8
BSols ← MonotonicityExploration(cc, CL, ps);9
S.InsertAll(BSols ) ;10

else11
foreach cc ∈ cc do12

sol← newSolution(cc);13
ccSols.Enqueue(sol );14

S.InsertAll(ccSols.DequeueTop(k-|S |)) ;15

return S;16

Algorithm 3. Monotonicity Exploration
Input : A set cc of connected components, a list CL of clusters, a path ps.
Output: A list of solutions BSols.

CCOpt← ∅;1
foreach cc ∈ cc do2

CCOpt.Enqueue( MonotonicityAnalysis(cc, ∅, ps));3

BSols.InsertAll(CCOpt.DequeueTop());4
InsertPathsInClusters(CCOpt, CL );5
return BSols ;6

combining the paths in a connected component cc. At the end it returns a solu-
tion optS given by the maximal and optimum subset of paths in cc. It takes as
input the connected component cc, the current optimum solution optS and the
top path ps contained in CL.

If cc is empty, we return optS as it is (lines [1-2]). Otherwise, we analyse all
paths px ∈ cc that present an intersection with a path pi of optS (px ↔ pi). If
there is not any intersection then optS is the final optimum solution (lines [6-7]).
Otherwise, for each px, we calculate τ (line [9]), through the function getTau,
and then execute the τ -test on each new solution optS’, that is optS∪ {px}. If
optS’ satisfies the τ -test (line [11]), then it represents the new optimum solution:
we insert it into OptSols and we invoke the recursion on optS’ (line [12]). Oth-
erwise, we keep optS as optimum solution and skip px (line [14]). At the finish,
we want the optimal solution that is not a subset of any other. This is done by se-
lecting the best and maximal solution optS from OptSols by using TakeMaximal
(line [15]). Let us consider our running example. As with the linear strategy, in
the first iteration of the algorithm we start from first cl = {p1, p2, p3, p5}. By
using the scoring function in [4], the paths of first cl have scores 2.05, 1.63,
1.6 and 1.49 respectively. Now the exploration considers all possible combina-
tions of these paths to find the optimum solution(s). Therefore, at the beginning
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Algorithm 4. Monotonicity Analysis
Input : A set of paths cc, a solution optS, a path ps.
Output: The new (in case) optimum solution optS.

if cc is empty then1
return optS;2

else3
OptSols← ∅;4
foreach px ∈ cc do5

if (�pi ∈ optS : px ↔ pi) and optS is not empty then6
OptSols← OptSols ∪ optS ;7

else8
optS’← optS ∪ {px};9
τ ← getTau(cc - {px }, ps );10
if score(optS’, Q) ≥ τ then11

OptSols← OptSols ∪ MonotonicityAnalysis(cc - {px }, optS’, ps);12

else13
OptSols← OptSols ∪ optS ;14

optS← TakeMaximal(OptSols ) ;15
return optS;16

we have optS = {p1}, since p1 has the highest score, and ps is p4. The value
of τ is 1.86. The algorithm will then retrieve the following admissible optima
solutions: S′1 = {p1, p2, p3}, S′2 = {p1, p3}, and S′3 = {p1, p2, p5}. These solu-
tions are admissible because they satisfy the τ -test and corresponding paths
present pairwise intersections. During computation, the analysis skips solutions
S′4 = {p1, p2, p3, p5} and S′5 = {p1, p3, p5} because they do not satisfy the τ -test:
the scores of S′4 and S′5 are 1.55 and 1.26 respectively, as they are both less than
τ . Finally, the function TakeMaximal will select S′1 as the final first optimum
solution S1 since it has more paths and the highest score. Following a similar
process, at the second round, the algorithm will return S2 = {p4, p5} with a
lesser score than S1.

Computational Complexity. Although this analysis achieves our goal, the
computational complexity of the result generation process is in O(I2). As for
Algorithm 1, in the worst case the computation iterates k times. In lines [2-6]
we follow the same strategy as with Algorithm 1. Therefore, the executions
in lines [4-5] and line [6] are in O(|CL|) ∈ O(I) and O(I) respectively. Then
we have a conditional instruction: if the condition is true, we execute the
monotonicity exploration (lines [8-10]), otherwise we consider each connected
component cc ∈ cc as a solution to insert into S (lines [12-15]). As in Al-
gorithm 1, the execution in lines [12-15] is in O(I). In lines [8-10] we call
the function MonotonicityExploration, that executes the analysis of mono-
tonicity at most I times. This analysis is performed by the recursive function
MonotonicityAnalysis: in Algorithm 4 the main executions are in lines [9-
12] and line [15]. In both the execution is in O(I), since we have I elements
to analyze at the most. Since in Algorithm 3 both the operations in line [4] and in
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line [5] are in O(I), the complexity of the monotonicity exploration is O(I2).
Therefore we conclude that the monotonic strategy is in O(I2).

Linear Monotonic Strategy. To reduce the complexity of the mono-
tonic strategy, we provide a variant of the monotonicity analysis (i.e.
LinearMonotonicityAnalysis) that reaches a linear time complexity of the
overall process. Without showing the pseudo-code, we can say that this strat-
egy directly selects the best path px in cc having an intersection with a path
of optS. It stops the recursion as soon as the best path does not have in-
tersection with a path in optS. In the worst case optS is the initial cc.
LinearMonotonicityAnalysis recurses I times and each execution is O(1),
therefore the whole strategy is in O(I). Nevertheless, with respect to the build-
ing using Algorithm 4, we can generate more specific solutions and (possibly)
less exhaustive, since we compose each solution starting from the most relevant
path (i.e. we favor keywords that are more closely connected in graph terms).

Correctness, Complexity and Quality of Results. Our discussion is sup-
ported by three measures proposed recently [10]: exhaustivity (EX ), specificity
(SP) and overlap. Exhaustivity measures the relevance of a solution in terms
of the number of contained keywords. Specificity measures the precision of a
solution in terms of the number of contained keywords with respect to other
irrelevant occurring terms. Overlap measures the redundancy of the information
content among the solutions. Clearly, the ideal ranking process balances ex-
haustivity and specificity while reducing overlap. The linear strategy focuses on
maximizing the number of keywords in a solution, and consequently the num-
ber of paths, privileging EX to the detriment of SP . On the other hand, the
monotonic strategy tries to balance the number of keywords and the number
of paths (i.e. maximizing the former and minimizing the latter); therefore EX
and SP are perfectly balanced. The linear variant of the monotonic strategy is
quite similar, but it privileges SP to the detriment of EX , focusing only on min-
imizing the number of paths. Finally, all strategies do not generate overlapping
solutions since ∀cli, clj ∈ CL, with i �= j, we have that cli ∩ clj = ∅. It means
that a path cannot belong to more than one cluster and moreover, we combine
paths from different clusters that gather a different kind of information content.
As we will demonstrate experimentally in Section 6, state-of-the-art approaches
mainly focus on finding the most exhaustive solutions at the cost of a high level
of overlapping. In terms of precision and recall, other approaches tend to priv-
ilege the recall (finding the best matches with the query) to the detriment of
the precision (i.e. introducing a large number of irrelevant matches, that is noise
in the result set). Demonstrating the correctness of our approach is straightfor-
ward. First of all, our algorithm always terminates. Indeed, (i) the clustering
groups a finite set of paths (at most all the data graph G), (ii) the building
strategies implement recursive functions to traverse finite sets of paths (clusters
or connected components). They also employ sets of visited paths to avoid loops
on the analysis. Second, our framework returns a match S in G for Q: all paths
in S are paths in G that match at least a keyword of Q. Finally, if there exists
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a match S in G over Q, our framework is able to discover S. In fact, if there
exists S for Q over G, then there exists a set of paths in S matching Q. Since
our framework indexes all paths in G, we retrieve with Q those paths. If S is
also a top-k solution, then we generate it.

5 Related Work

The most prominent work in the area of keyword search concerns the relational
databases. Here, answers are usually trees composed of joined tuples, so-called
joined tuples trees (JTTs). They can be classified in schema-based or schema-free
approaches (see [13] for survey). Schema-based approaches (e.g., [8]) implement
a middleware layer that makes use of schema information in order to interpret
the query and produce a (possible large) number of relational queries. This inter-
pretation is an NP-complete problem [8] and all the SQL statements produced
must be executed but some (could) return empty results, leading to inefficiency,
which is likely to worsen with the size of the dataset. Schema-free approaches
(e.g., [1,9,7]) are more general as they search, on arbitrary graph-shaped data,
the (minimal) Steiner trees. In all of these approaches a relevant drawback is
that finding a (minimal) Steiner tree is known as an NP-Hard problem. Therefore
the algorithms rely on (rather) complex sub-routines or heuristics to calculate
approximations of Steiner trees. In the best case, such proposals have polynomial
complexity in time. The relational approaches are not suitable to work well on
RDF data and therefore new approaches have been proposed [12,14,5]. The work
in [12] proposes a semi-automatic system to interpret the query into a set of can-
didate conjunctive queries. Users can refine the search by selecting the computed
candidate queries that best represent information need. Candidate queries are
computed exploring the top-k sub-graphs matching the keywords. The approach
in [14] relies on a RDFS domain knowledge to convert keywords in query-guides
that help users to incrementally build the desired semantic query. While unnec-
essary queries are not built (thus not executed), there is a strict dependency
on user feedback. The work in [5] employs a ranking model based on IR and
statistical methods.

6 Experimental Results

We implemented our approach in Yaanii, a Java system for keyword search
over RDF graphs. In our experiments, we used the benchmark provided by Coff-
man et al. [3] which provides a standardized evaluation using three datasets
of different size and complexity. It employs two well-know datasets, IMDb and
Wikipedia, and an ideal contrast due to its smaller size, Mondial. We used the
RDF versions of all three datasets: the Linked IMDb and Wikipedia3, while for
Mondial we converted the SQL dump into RDF ourselves. For each dataset, we
run the set of 50 queries provided in [3] (see the paper for details and statistics).
Experiments were conducted on a dual core 2.66GHz Intel Xeon, running Linux
RedHat, with 4 GB of memory, 6 MB cache, and a 2-disk 1Tbyte striped RAID
array, and we used Oracle 11g v2 to manage our index, as described in [2].
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Fig. 3. Response Times on IMDb and Wikipedia

Performance and Scalability. For query execution evaluation, we compared
the different strategies of our system (i.e. linear L, monotonic M and the vari-
ant linear/monotonic LM), with the most related approaches: SearchWebDB
(SWDB) [12], EASE (EASE) [9], and the best performing techniques based
on graph indexing, i.e. 1000 BFS and 300 BFS that are two configurations of
Blinks [7]. For each dataset, we grouped the queries into five sets (i.e. ten
queries per set): each set is homogeneous with respect to the complexity of the
queries (e.g., number of keywords, number of results and so on). For each set, we
ran the queries ten times and measured the average response time. The total re-
sponse time of each query is the time required for computing the top-10 answers.
We performed cold-cache experiments: we cleared all caches before restarting the
various systems and running the queries. The query response times are shown
in Fig. 3 (in ms and logarithmic scale). Due to space constraints, we report
times only on IMDb and Wikipedia, since their much larger size poses more
challenges. However the performance on Mondial follows a similar trend. In
general EASE and SWDB are comparable with Blinks. Our system performs
consistently better (in any strategy) for most of the queries, significantly outper-
forming the others in some cases (e.g., sets Q21-Q30 or Q31-Q40). This is due
to the greatly reduced (time) complexity of the overall process with respect to
those that spend a lot of time traversing the graph and computing candidates to
be (possible) solutions. An evaluation of the scalability of our system is reported
in Fig. 4.(a). In particular, we report the scalability of Yaanii on IMDb. Our
system provides a similar behavior on Wikipedia. The figure shows the scalabil-
ity with respect to the size of the input, that is the number I of paths. Moreover
we enriched such experiment by introducing also scalability with respect to the
the average size of the query (i.e. |Q|), that is the number of keywords, as shown
in Fig. 4.(b). In particular we evaluate the impact of the number of keywords
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Fig. 4. (a) Scalability w.r.t. #paths on IMDb and (b) w.r.t. the size of Q

to find the top-k (i.e. k ∈ {10, 15, 20, 25}) solutions. Also in this case the time
grows linearly. The impact of query length is relevant with a higher k.

Effectiveness. We have also evaluated the effectiveness of results. The first
measure we used is the reciprocal rank (RR). For a query, RR is the ratio be-
tween 1 and the rank at which the first correct answer is returned; or 0 if no
correct answer is returned. Fig. 5.(a) shows the mean reciprocal rank of the
queries for each system in any dataset. Due to the small size, all systems show
comparable performance on the Mondial dataset. Conversely, we have different
results using IMDb and Wikipedia. As expected, Blinks and Ease performs
poorly on this task since they implement a proximity search strategy where
the ranking is unable to distinguish solutions containing a single node. SWDB
performs well in average because it exploits an IR ranking strategy: usually IR-
style search systems prefer larger results supporting the disambiguation of search
terms. Our linear strategy L is comparable with SWDB. This strategy confirms
the problems discussed in Section 3: L favors exhaustive solutions introducing
noise in the final results (i.e. unnecessary information). On the other hand, the
monotonic strategy M significantly outperforms all others: this strategy is able
to return the best result for first (i.e. RR = 1) for all cases. In other words,
it demonstrates how much M balances solutions between being exhaustive and
specific. The linear/monotonic strategy LM shows a similar trend too. We then
measured the interpolation between precision and recall to find the top-10 solu-
tions, for each strategy on the queries on all datasets, that is for each standard
level rj of recall (i.e. 0.1, . . ., 1.0) we calculate the average max precision of
queries in [rj , rj+1], i.e. P (rj) = maxrj≤r≤rj+1P (r). We repeated this procedure
for each strategy. Similarly we calculate the top-10 interpolated precision curve
averaged over the systems: Fig. 5.(b) shows the results. As expected, the pre-
cision of the other systems decreases dramatically for large values of recall. On
the contrary our strategies keeps values within the range [0.6,0.9]. In particular,
the monotonic strategy M presents the highest quality (i.e. a precision in the
range [0.8,1]). LM and L also present good quality in results.
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Fig. 5. (a) RR measures for all frameworks and (b) Effectiveness of Yaanii

7 Conclusions and Future Work

In this paper, we presented a novel approach to keyword search query over
large RDF datasets, by providing two strategies for top-k query answering. The
linear strategy enables the search to scale seamlessly with the size of the input,
while the monotonic strategy guarantees the monotonicity of the output. In the
worst case, the two strategies present a linear and a quadratic computational
cost respectively, whereas other approaches show these results as lower bounds
(i.e. best or average cases). Furthermore, we described a variant of the second
strategy that reaches both monotonicity and linear complexity. Experimental
results confirmed our algorithms and the advantage over other approaches.

This work now opens several directions of further research. From a theoretical
point of view, we are investigating algorithms to keyword search over distributed
environments, retaining the results achieved in this paper. From a practical point
of view, we are widening a more synthetic catalogue to index information (e.g.,
NoSQL technology), optimization techniques to speed-up the index creation and
update (mainly DBMS independent) and compression mechanisms.
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